79 research outputs found

    Orthogonal transforms and their application to image coding

    Get PDF
    Imperial Users onl

    Improved quality block-based low bit rate video coding.

    Get PDF
    The aim of this research is to develop algorithms for enhancing the subjective quality and coding efficiency of standard block-based video coders. In the past few years, numerous video coding standards based on motion-compensated block-transform structure have been established where block-based motion estimation is used for reducing the correlation between consecutive images and block transform is used for coding the resulting motion-compensated residual images. Due to the use of predictive differential coding and variable length coding techniques, the output data rate exhibits extreme fluctuations. A rate control algorithm is devised for achieving a stable output data rate. This rate control algorithm, which is essentially a bit-rate estimation algorithm, is then employed in a bit-allocation algorithm for improving the visual quality of the coded images, based on some prior knowledge of the images. Block-based hybrid coders achieve high compression ratio mainly due to the employment of a motion estimation and compensation stage in the coding process. The conventional bit-allocation strategy for these coders simply assigns the bits required by the motion vectors and the rest to the residual image. However, at very low bit-rates, this bit-allocation strategy is inadequate as the motion vector bits takes up a considerable portion of the total bit-rate. A rate-constrained selection algorithm is presented where an analysis-by-synthesis approach is used for choosing the best motion vectors in term of resulting bit rate and image quality. This selection algorithm is then implemented for mode selection. A simple algorithm based on the above-mentioned bit-rate estimation algorithm is developed for the latter to reduce the computational complexity. For very low bit-rate applications, it is well-known that block-based coders suffer from blocking artifacts. A coding mode is presented for reducing these annoying artifacts by coding a down-sampled version of the residual image with a smaller quantisation step size. Its applications for adaptive source/channel coding and for coding fast changing sequences are examined

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Sub-band/transform compression of video sequences

    Get PDF
    The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates

    Adaptation of variable-bit-rate compressed video for transport over a constant-bit-rate communication channel in broadband networks.

    Get PDF
    by Chi-yin Tse.Thesis (M.Phil.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 118-[121]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Video Compression and Transport --- p.2Chapter 1.2 --- VBR-CBR Adaptation of Video Traffic --- p.5Chapter 1.3 --- Research Contributions --- p.7Chapter 1.3.1 --- Spatial Smoothing: Video Aggregation --- p.8Chapter 1.3.2 --- Temporal Smoothing: A Control-Theoretic Study。 --- p.8Chapter 1.4 --- Organization of Thesis --- p.9Chapter 2 --- Preliminaries --- p.13Chapter 2.1 --- MPEG Compression Scheme --- p.13Chapter 2.2 --- Problems of Transmitting MPEG Video --- p.17Chapter 2.3 --- Two-layer Coding and Transport Strategy --- p.19Chapter 2.3.1 --- Framework of MPEG-based Layering --- p.19Chapter 2.3.2 --- Transmission of GS and ES --- p.20Chapter 2.3.3 --- Problems of Two-layer Video Transmission --- p.20Chapter 3 --- Video Aggregation --- p.24Chapter 3.1 --- Motivation and Basic Concept of Video Aggregation --- p.25Chapter 3.1.1 --- Description of Video Aggregation --- p.28Chapter 3.2 --- MPEG Video Aggregation System --- p.29Chapter 3.2.1 --- Shortcomings of the MPEG Video Bundle Scenario with Two-Layer Coding and Cell-Level Multiplexing --- p.29Chapter 3.2.2 --- MPEG Video Aggregation --- p.31Chapter 3.2.3 --- MPEG Video Aggregation System Architecture --- p.33Chapter 3.3 --- Variations of MPEG Video Aggregation System --- p.35Chapter 3.4 --- Experimental Results --- p.38Chapter 3.4.1 --- Comparison of Video Aggregation and Cell-level Multi- plexing --- p.40Chapter 3.4.2 --- Varying Amount of the Allocated Bandwidth --- p.48Chapter 3.4.3 --- Varying Number of Sequences --- p.50Chapter 3.5 --- Conclusion --- p.53Chapter 3.6 --- Appendix: Alternative Implementation of MPEG Video Aggre- gation --- p.53Chapter 3.6.1 --- Profile Approach --- p.54Chapter 3.6.2 --- Bit-Plane Approach --- p.54Chapter 4 --- A Control-Theoretic Study of Video Traffic Adaptation --- p.58Chapter 4.1 --- Review of Previous Adaptation Schemes --- p.60Chapter 4.1.1 --- A Generic Model for Adaptation Scheme --- p.60Chapter 4.1.2 --- Objectives of Adaptation Controller --- p.61Chapter 4.2 --- Motivation for Control-Theoretic Study --- p.64Chapter 4.3 --- Linear Feedback Controller Model --- p.64Chapter 4.3.1 --- Encoder Model --- p.65Chapter 4.3.2 --- Adaptation Controller Model --- p.69Chapter 4.4 --- Analysis --- p.72Chapter 4.4.1 --- Stability --- p.73Chapter 4.4.2 --- Robustness against Coding-mode Switching --- p.83Chapter 4.4.3 --- Unit-Step Responses and Unit-Sample Responses --- p.84Chapter 4.5 --- Implementation --- p.91Chapter 4.6 --- Experimental Results --- p.95Chapter 4.6.1 --- Overall Performance of the Adaptation Scheme --- p.97Chapter 4.6.2 --- Weak-Control verus Strong-Control --- p.99Chapter 4.6.3 --- Varying Amount of Reserved Bandwidth --- p.101Chapter 4.7 --- Conclusion --- p.103Chapter 4.8 --- Appendix I: Further Research --- p.103Chapter 4.9 --- Appendix II: Review of Previous Adaptation Schemes --- p.106Chapter 4.9.1 --- Watanabe. et. al.'s Scheme --- p.106Chapter 4.9.2 --- MPEG's Scheme --- p.107Chapter 4.9.3 --- Lee et.al.'s Modification --- p.109Chapter 4.9.4 --- Chen's Adaptation Scheme --- p.110Chapter 5 --- Conclusion --- p.116Bibliography --- p.11

    Visually Lossless Perceptual Image Coding Based on Natural- Scene Masking Models

    Get PDF
    Perceptual coding is a subdiscipline of image and video coding that uses models of human visual perception to achieve improved compression efficiency. Nearly, all image and video coders have included some perceptual coding strategies, most notably visual masking. Today, modern coders capitalize on various basic forms of masking such as the fact that distortion is harder to see in very dark and very bright regions, in regions with higher frequency content, and in temporal regions with abrupt changes. However, beyond these obvious forms of masking, there are many other masking phenomena that occur (and co-occur) when viewing natural imagery. In this chapter, we present our latest research in perceptual image coding using natural-scene masking models. We specifically discuss: (1) how to predict local distortion visibility using improved natural-scene masking models and (2) how to apply the models to high efficiency video coding (HEVC). As we will demonstrate, these techniques can offer 10–20% fewer bits than baseline HEVC in the ultra-high-quality regime

    Layer-based coding, smoothing, and scheduling of low-bit-rate video for teleconferencing over tactical ATM networks

    Get PDF
    This work investigates issues related to distribution of low bit rate video within the context of a teleconferencing application deployed over a tactical ATM network. The main objective is to develop mechanisms that support transmission of low bit rate video streams as a series of scalable layers that progressively improve quality. The hierarchical nature of the layered video stream is actively exploited along the transmission path from the sender to the recipients to facilitate transmission. A new layered coder design tailored to video teleconferencing in the tactical environment is proposed. Macroblocks selected due to scene motion are layered via subband decomposition using the fast Haar transform. A generalized layering scheme groups the subbands to form an arbitrary number of layers. As a layering scheme suitable for low motion video is unsuitable for static slides, the coder adapts the layering scheme to the video content. A suboptimal rate control mechanism that reduces the kappa dimensional rate distortion problem resulting from the use of multiple quantizers tailored to each layer to a 1 dimensional problem by creating a single rate distortion curve for the coder in terms of a suboptimal set of kappa dimensional quantizer vectors is investigated. Rate control is thus simplified into a table lookup of a codebook containing the suboptimal quantizer vectors. The rate controller is ideal for real time video and limits fluctuations in the bit stream with no corresponding visible fluctuations in perceptual quality. A traffic smoother prior to network entry is developed to increase queuing and scheduler efficiency. Three levels of smoothing are studied: frame, layer, and cell interarrival. Frame level smoothing occurs via rate control at the application. Interleaving and cell interarrival smoothing are accomplished using a leaky bucket mechanism inserted prior to the adaptation layer or within the adaptation layerhttp://www.archive.org/details/layerbasedcoding00parkLieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Motion compensation for image compression: pel-recursive motion estimation algorithm

    Get PDF
    In motion pictures there is a certain amount of redundancy between consecutive frames. These redundancies can be exploited by using interframe prediction techniques. To further enhance the efficiency of interframe prediction, motion estimation and compensation, various motion compensation techniques can be used. There are two distinct techniques for motion estimation block matching and pel-recursive block matching has been widely used as it produces a better signal-to-noise ratio or a lower bit rate for transmission than the pel-recursive method. In this thesis, various pel-recursive motion estimation techniques such as steepest descent gradient algorithm have been considered and simulated. [Continues.

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii
    • …
    corecore