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ABSTRACT

The properties of orthogonal transforms and the problems 
of the image coding techniques with the applications of linear 
transforms have been mentioned.

The linear transforms that have been studied are the 
Discrete Fourier transform, Number theoretic transforms, P-adic 
transforms, Cosine transform, Hadamard transform and Polynomial 
transform. Number theoretic transforms have been discussed 
because they have the ability to transform a sequence of data 
without introducing any arithmetic errors. However, these 
transforms are defined modulas an integer .and:so the transform 
length as well as the dynamic range is limited. Thus a new 
transform has been introduced in the P-adic field, which will 
give a larger dynamic range. Error free arithmetic can be 
performed in the P-adic field even with rational numbers.

Extension fields of P-adic numbers have bean discussed 
and new transforms in these fields have been developed.
Only complex P-adic fields and quadratic fields have been 
investigated. Hadamard and Cosine transforms and their 
applications to digital image coding have been studied. 
Polynomial transform algorithms have also been mentioned, 
since these algorithms can implement linear transforms very 
efficiently.

Digital image coding algorithms such as intraframe, 
interframe, predictive and hybrid techniques have been studied 
and simulated for several digital pictures. A two-dimensional 
block transform coding system has been simulated and applied 
to a test image to reduce the bit rate. Adaptive intraframe 
and a predictive coding system have been discussed and some



Hybrid transform/DPCM coding techniques have been studied 
since they are computationally more efficient than the two- 
dimensional block transform coders. A new hybrid coder has 
also been developed which consists of a transformation and a 
vector quantization scheme. The vector quantizer ocheme is 
a look-up table containing the most probable vector patterns 
of the transformed coefficients, which are identified by a 
codeword that is transmitted or stored. This new hybrid coder 
has been simulated for digital pictures, and results have been 
compared with that of conventional hybrid techniques.

Finally, interframe coding techniques have been discussed. 
Most of the available techniques are reviewed and compared.
A new three-dimensional hybrid technique has been developed 
which consists of a two-dimensional linear transform and a 
vector quantization scheme. Simulation has been performed on 
an image sequence for comparison with other coding techniques. 
Objects within digital image sequences move at different speeds 
so an adaptive hybrid transform/vector quantization technique 
has been developed. This uses several codebooks of different 
dimensions in order to exploit the motion variations within 
the image sequence. The adaptive hybrid coding technique 
has been simulated for a digital image sequence and the 
results are compared with the non-adaptive hybrid technique.

new techniques have been developed.
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LIST OF SYMBOLS AND ABBREVIATIONS

The following system of numbering and cross references 
is used in this thesis. Each chapter is labelled with a 
numeral and sub-divided into sections. All sections, figures, 
tables and equations within a chapter are numbered 
consecutively starting from 1. At the end of the volume there 
is a list of references. When such a reference is made in 
the thesis, it is denoted by its list number in brackets.

The following is a list of symbols and abbreviations 
appearing in the thesis.

M Integer
P Prime integer

Ft Fermat

zp ' Field of integers with P an integer prime

ZM Ring of integers with M an integer

(mod M) Modulo M
G The group G 

Equivalence sign
a | b a is a divisor of b
axb a is not a divisor of b
<a>,b Residue of a modulo b
o Convolution operation
NxN Denotes a matrix with N rows and N columns
S Element by element multiplications 

(for matrices)
GF(p2 ) Galios field with p a prime integer
GF(M2 ) Galios ring with M an integer

QP Field of p-adic numbers



QP
H(p.r fa )

Qp (v^T )  

Qp(/m) 

Qp (/i) = Kp

6p (/H) =

tp or $
NTT
MNT
FNT
CNTT
PT
HT
CT
DFT
IDFT
FFT
KVT
PAT
CPAT
WFT
H R
FIR
P(Z)

Segmented p-adic field

Hensel code representation of a 
number a 
g-adic ring
Complex fields with p a prime integer 

Quadratic fields with p a prime intege 

Quadratic extension field of Q
P

Segmented quadratic extension field of

Qp
Euler's totient function
Number Theoretic Transform
Mersenne Number Transform
Fermat Number Transform
Complex Number Theoretic Transform
Polynomial Transform
Hadamard Transform
Cosine Transform
Discrete Fourier Transform
Inverse Discrete Fourier Transform
Fast Fourier Transform

P-Adic Transform 
Complex P-Adic Transform 
Winograd Fourier Transform 
Infinite Impulse Response 
Finite Impulse Response 
Polynomial in terms of Z



P (z ) Polynomial in terms of z

R( z )
pT zT Polynomial ring
(Mod P (z )) Modulo polynomial P(z)
CRT Chinese remainder theorem

<t> Lagendre symbol
< x > n P-adic sequence
A

<xn> Canonical P-adic sequence
f (x) A function with variable x
f '(x) Derivative of f(x)
CCP Circular convolution property
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CHAPTER ONE 

INTRODUCTION

Orthogonal transforms have been applied in many 
applications such as in digital image processing. One of the 
major applications of orthogonal.transforms is in digital medical 
image processing. The introduction of computerised tomography 
(CT) scanners [A1] was a major advance in digital image processing 

'whereby three-dimensional images were reconstructed .from their 
two-dimensional projections. CT scanners of head and body have 
resulted in useful techniques for detection of tumours and 
infectious diseases in medical diagnosis. Medical images are 
usually reconstructed from X-ray [A2], single photo [A3] 
or ultrasound computerised tomography [A4] projections by using 
Radon transform [ A5 ].The Radon transform or parallel projection 
of a two-dimensional object f(x,y) is given by

0 0  CO

Pgtt) = S a a  $<x> $ (x cos 0 + y sin 0 - t) dxdy (1.1)
where 6 represents the line in xy plane.
It has been shown that the Fourier transform of f(x,y) in 
polar coordinates F(w,0) is equal to the one-dimensional Fourier 
transform of the projections Sq (w ). Thus

F(w,0 ) = S q (w )

where (w,0) are polar coordinates.
In order to reconstruct images some two-dimensional Fourier 
transforms have to be implemented, so fast transform algorithms 
are welcomed. Other applications of reconstruction from 
projections include radioastronomy, optical interferometry, 
electron microscopy and geophysical exploration.
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Another application of image processing is in Remote 
sensing, where a three-dimensional transform is performed on 
a multi-spectral band image to investigate inter-band 
correlation and image information.

Multi-spectral images are obtained from the Landsat 
satellites. The first Landsat-1 was launched in 1972 [A6], 
data acquired by these Multi-spectral Scanners (MSS) have been 
utilised for a number of applications. The Scanners on 
the first Landsat series had only four spectral bands (0.5-1.1 um) 
with pixel resolution of 75 m square. The new MSS on Landsat-D, 
launched in 1982,has seven spectral bands (0.45-12.5 um) with 
pixel resolution of 30 m. The images formed by these MSS's 
produce a huge quantity of data which are either transmitted 
to a communication satellite or stored on tapes. The applications 
of these images are in agriculture, topographic maps, crop 
types, infestation, soil texture, forest texture, flood control 
and many more [A7].

Digital image processing has been used for classification 
and identification of crops. Image processing techniques, such 
as enhancement, restoration and coding, have been applied to 
these images. Transform coding techniques have been investigated 
for reduction of data obtained from Landsat Scanners [A7].
Fast two- or three-dimensional transforms have to be performed 
for coding algorithms.

Other major applications of image processing are 
in robot vision, for tasks such as inspection of industrial 
parts [A8]. A large number of applications have been 
investigated, such as visual inspection of integrated circuits, 
recognition of agricultural objects, locating surface defects 
in wood, visual inspection system for hot steel slabs, and
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Digital recursive and non-recursive filters have been 
designed for many years for filtering. Noise removal, low- 
pass and high-pass filtering have been applied to digital 
images for many years;these are implemented by Fourier 
transform. In digital image enhancement digital convolution 
has to be implemented very efficiently. For example, a one­
dimensional convolution can be represented by

N-1
y ( Z )  =  Z x(n) h ( i - i )  for Z  =  0,1,... N-1

n=0
(1.2)

where x(n) is the input sequence of N-points and h(n) is the
impulse response of the filter. To implement expression (1.2)

2directly N multiplications are required. However if the 
two sequences are transformed by a linear transform which has 
digital convolution properties,the convolution becomes N-point 
multiplications as given by

Y(K) = X (K) . H(K) (1.3)

where Y(K), X(K) and H(K) are the transformed data.
Discrete Fourier transform (DFT) and Number theoretic transform 
(NTT) are the two examples of Orthogonal transforms which can 
implement expression (1.2) very efficiently. The bulk of the 
computation is the amount of arithmetic required to convert 
the input sequences into the transform domain and back. Thus 
a large number of algorithms [A11] has been developed to 
implement these transforms efficiently. Because of immense 
applications of expression (1.2) it has motivated us to 
investigate its implementation in detail by making 
investigations into some orthogonal transforms.

many more applications [A9], [A10].
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The first four chapters of this thesis are devoted to 
some orthogonal transforms.

NTT [A12] is believed to implement expression (1.2) very 
efficiently with no arithmetic errors. In Chapter two NTT's 
are defined in detail. In Section 2.2 NTT's in the field 
or ring of integers are introduced. Since arithmetic is 
performed modulo an integer no error is introduced in the 
computation of the transform. However the input sequence has 
to be scaled and rounded to an integer sequence. Thus a large 
dynamic range is required. In Section 2.4 we introduce 
complex NTT's for implementation of complex convolution directly 
instead of performing several real transforms. Digital complex 
convolutions are usually used to form Radar-images using 
Doppler effect (A13]. Fast implementation techiques and 
hardware implementations of NTT are not described since 
Chapter two is believed to be a short review. Appendix A 
is included which introduces Elementary Number Theory to 
complement Chapter two.

Since NTT's have to be scaled and rounded to integer 
value, this has motivated us to investigate other fields such 
as P-adic fields where rational numbers can be represented 
exactly. In Chapter three P-adic transforms are introduced. 
Appendix B is included to give introduction to P-adic numbers 
and some of the properties of the P-adic field. In Section 3.2 
segmented P-adic field is introduced. In Section 3.3 the 
general P-adic transform is introduced which is proved to be 
orthogonal with convolution properties. In the sub-sections 
the derivation of the root of unity is discussed and,for 
practical purposes, Mersennes and Fermat P-adic transforms 
are developed. No simulation results are given, only
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theoretical definitions of the P-adic transform are given. 
Implementation techniques for P-adic transform are discussed 
and comparisons with NTT are studied.

In Chapter four complex P-adic transforms are introduced.
In Appendix D complex P-adic numbers are explained. In 
Section 4.2.1 complex P-adic convolution is introduced and its 
decomposition into real P-adic convolution is discussed. In 
Section 4.2.2 implementation of complex P-adic field via 
Fermat number P-adic transforms are discussed. In Section 4.3 
P-adic transforms in extension fields are discussed. It is 
shown that complex P-adic transforms exist by choosing primes 
such as prime Mersenne integers. Finally, in Section 4.6, g-adic 
transforms are introduced which could be defined as the direct 
sum of several P-adic fields.

In Chapter five several orthogonal transforms are 
introduced- Discrete Fourier, Hadamard and Cosine transforms 
are discussed. In Section 5.4, implementation of discrete Fourier 
transform is explained. Makhoul's algorithm is introduced 
and compared with a new algorithm. This new algorithm employs 
a polynomial transform algorithm discussed in Section 5.5.
In Section 5.5 the concept of polynomial transform algorithm is 
discussed, several polynomial transform algorithms are also 
explained.

One major application of Orthogonal transforms is in 
digital image coding [A14]. The high inter-pixel correlation 
in digital images is representative of a large redundancy in 
digital images which can be removed by two-dimensional transforms. 
Orthogonal transforms have the property that they decorrelate 
image-pixels and concentrate the energy around the low frequency
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coefficients. This energy compaction property makes linear 
transforms useful for image coding. The discrete Cosine transform 
is believed to have the best energy compaction compared with 
other linear transforms. Transmission of digital TV images 
in digital Cable TV network is one application of digital 
image coding where transmission bandwidth is reduced by coding 
algorithms. Due to diverse applications several coding 
algorithms have been developed. In Chapter six image coding 
is introduced. In Section 6.3 Transform image coding concept 
is explained. In Section 6.3.1 Block transform coding is 
defined and in sub-sections adaptive block transform coding 
is explained. In Section 6.3.2 a new adaptive block transform 
coding is designed where inter-block correlation is investigated. 
Chapter six is devoted to intra-frame transform coding, 
transmission bit rate of R = 1.0 bits per pixel are shown to 
be achieved.

In Chapter seven predictive coding techniques are 
investigated. These coding techniques are believed to be very 
simple to implement. However, the transmission bit rates 
achieved are not as low as that of block transform coding.
Entropy coders can be employed with predictive coders (DPCM) 
to reduce the bit rates. In Section 7.3 a new predictive 
coder is designed that modifies the histogram of the difference 
signal for its application to entropy coder.

Chapter eight is devoted to Hybrid image coders. Since 
DPCM systems have superior coding performances at high bit 
rates with less complex hardware implementation, and greatly 
reduced storage requirements compared to transform coders, t h e y  

can be combined with transform coders, which produce higher 
compaction of energy and in turn lower bit rates,to introduce
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hybrid transform/DPCM systems. The computational complexity 
of these hybrid systems is reduced compared with two- 
dimensional transform coders. In Section 8.2 and 8.3 one- 
and two-dimensional hybrid coders are introduced respectively.
DPCM coders suffer from their lack of immunity to noise, and their 
compression ability is not as good as transform coders. Thus, 
in Section 8.4, a new hybrid coding technique is introduced, 
where transform and vector-quantizer coders are employed. Each 
line of the image data is transformed and a vector quantization 
scheme is applied in column direction. The vector-quantizer 
is more efficient than DPCM because the noise due to 
transmission is localised and does not produce the line effects 
as in DPCM. The vector-quantizer is a look-up table so it is 
computationally very fast and efficient. In Section 8.5 a 
two-dimensional hybrid coder is introduced. The concepts of 
these new hybrid coders are very similar to the conventional 
hybrid coders. The new hybrid coders are believed to be 
more efficient than conventional hybrid coders. No adaptivity 
was used in the hybrid coder, although adaptivity could be 
introduced. The two-dimensional hybrid coder is used to exploit 
the inter-block correlation.

In Chapter nine digital image sequence is introduced. 
Three-dimensional or inter-frame coders are studied. The 
applications where image coding is desirable are mentioned 
in Section 9.2. Human visual system is investigated in section
9.3. It is seen that the visual system behaves like a 
three-dimensional bandpass filter. In Section 9.4 several inter­
frame coders are reviewed and the advantages and disadvantages 
are considered. In sub-section 9.4.3 movement compensated 
predictive coder is introduced. This coder has recently
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been developed where the adaptivity is based upon the motion 
estimation. In sub-section 9.4.6 three-dimensional transform 
coders are reviewed and in Section 9.4.7 several inter-frame 
coders are referenced. A comparison between the coders is 
also given. In Section 9.5 a new inter-frame hybrid coder 
is designed. The hybrid coder involves a two-dimensional 
transform and a vector-quantiser coder. In sub-section 9.5.2 
the adaptive version of the hybrid coder is developed, the 
adaptivity is based upon the motion variation in the image 
sequence. The image coding algorithm is based upon three- 
dimensional blocks of the image sequence. Thus several 
processors in parallel can be used to encode each three- 
dimensional blocks in parallel. The only difficulty with the 
proposed coder is the requirement for a large amount of memory.

The highly adaptive version of the proposed coder is 
believed to be as good as three-dimensional transform coders 
with less computational complexity.
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CHAPTER TWO
NUMBER THEORETIC TRANSFORM

2.1 INTRODUCTION
Recently new transforms defined over a finite ring of 

integers with arithmetic carried out modulo an integer have 
been introduced. These transforms are believed to implement 
circular convolution very efficiently since only integer 
arithmetic is to be performed. In this chapter number 
theoretic transform (NTT) is reviewed. The conditions 
for existence of NTT over integer fields and rings are 
discussed in section 2.2. In section 2.3 NTT's with Mersenne 
and Fermat primes are discussed, together with their 
computational simplicity.

Complex number theoretic transforms are discussed 
in section 2.4. Transform over quadratic extension fields 
are discussed in section 2.5. Galois ringsare discussed in 
section 2.6. Introduction to elementary number theory is 
given in Appendix A, since this chapter is planned to be a 
short review.

2.2 NUMBER' THEORETIC TRANSFORM [15], [16]
(a ) Definition

The forward and inverse number theoretic transform 
(NTT) of an n-point sequence x(n) is defined respectively as:

X (K) __
N-l
Z / X nK x ( n ) a modulo M (2.1)

p ll o

x (n) = N'1
N-i
Z X (K ) a modulo M (2.2)oII
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where X(K) is the transformed sequence, M an integer and
N.N  ̂ = 1 modulo M. Number theoretic transform is said to be defined 
over a ring or a field of integers if arithmetic is performed 
modulo a rational integer or a prime integer respectively.

(b ) Number Theoretic Transform over a Field, IM
If transform is defined over a prime integer, the 

conditions for existence and having a circular convolution 
property are given' by:

til
za Mod M ( 2 . 3

N.N 1 = 1 Mod M ( 2 . 4

where a is a root of unity of order N, and M is a prime integer. 
The parameters a, N and M are all inter-related by 
expression (2.3). The maximum transform length is given by 
Euler's totient function cp(M) defined as the number of integers 
smaller than M and relatively prime to it. Thus:

cp ( M ) = M - 1

In order for the transform to exist it must satisfy:

a
M-l

i
<P

Mod M 2 . 5

where is known as primitive root giving the maximum transform
length. The is not the only primitive root, there are
cp (cp(M) )other primitive roots by Euler's f unctions [ 4 1 ]. From the
above it is seen that an integer a can be found in the field<P
of a prime integer.
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By Fermat-Euler theorem (Appendix A) roots of unity 
of order N where N must divide cp(M) can be obtained from the 
expression

( M - l  )a = 1;/N (2.6)

Thus eqn. (2.3) can be solved for transform length N where 
N is divisible by M-l denoted as N|M-1.

(c ) Number Theoretic Transform over a Ring of Integers
If the transform pair in (2.1) and (2.2) is defined over a 

rational integer ring Z^, the ring is decomposed into several 
fields and the condition for existence of transform is derived 
over each field.

A ring can be decomposed uniquely into several fields 
as defined by:

where

M = PlP2.... (2.8)

The condition for existence with a as roots of unity is given
by :

(1) Na = 1 Mod P.i
(2) NN-1 = 1 Mod P.i for i=l, 2 , ... 1

(3) TS! | ( P±-1) (2.9)

If 0(M ) is defined as the greatest common divisor (gcd) of 
the (P^-l) for i = 1,2 ...l, then the maximum transform length in
ZM is

Nmax 0 (M )
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The advantage of defining NTT's over a composite modulo is 
that a larger dynamic range is obtained and by using Chinese 
Remainder Theorem the NTT can be decomposed and implemented 
modulo each prime in parallel and combined together finally by 
the Chinese Remainder Theorem. This has the advantage where 
arithmetic is evaluated modulo small primes P^'s in parallel
using' small word length processors.

The NTT in is given by

(X1 (K), X 2 (K), ...X^(K))
N-l
I (x (n),x (n), 

n=0 1 2
x^(n))(a1 ,a2 r• • )

(2 .10 )

nK

It can also be written as

(X1 (K),
N-l

X 0 (K ),...X0 (K))=( Z 
1 n=0

x., ( n ) anK1'
v „ nKu  X,-Ot- / •

n=0

N-l
Z

n=0
x, )

(2 . 11 )

where each sumation is evaluated modulo corresponding prime P^. 
The data are represented by their decomposed form as

X ( K ) = (X1 (K), X 2 (K), X.(K),... (K )

x ( n ) = (x^(n), x 2 (n), x . (n ) , . . . x, (n )

a = (a1 , a 2 , ,.. • V
M (p i , p 2 , •• • V

where
X i (K), x i (n), a. e Ip

2.3 MERSENNE AND FERMAT NUMBER TRANSFORMS [If], [18]
In previous sections NTT was defined over a field and 

ring. Here we consider hardware implementation of NTT's. 
Since arithmetic is performed modulo an integer prime, certain 
prime integers can be implemented very efficiently. Prime
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integers o£ power of 2 can perform modulo arithmetic by only 
shifting and addition. The attractive primes are Mersenne

pprimes defined as M = 2 -1 where P = 1,3,5,7,13,17,. . . 61, andt2Fermat primes defined as M = 2 + 1  for t = 1,2,3,4. In
the following sub-section transforms in each of these primes 
are considered.

(a ) Mersenne Transform
PConsider arithmetic modulo primes of form M = 2 -1 ; 

then transforms in field 1^ have maximum transform length given
Pby N = cp(M) = 2 - 2 ,  and primitive root of order N can * max ^ ^ max

be found. However,transforms of length P are found to have 
roots of a = 2. These transforms are known as Mersenne 
Transforms defined as:

X (K ) P“1 , , 0nKZ x ( n ) 2
n=0

Mod(2P-1) (2.13)
for K = 1 , . . . P - 1

These transforms have the disadvantage of being short length 
since P determines the processor word-length. Thus NTT's with 
large transform lengths require large word-length processors. 
Also transform length is not highly composite so simple FFT 
algorithm cannot be used. However, they can be implemented 
by more complex algorithms such as Winograds and prime factor 
algorithms [19],[20]. These transforms can be used to 
implement circular convolutions of P-point. The inverse 
transform is defined as:

x( n )
P-1
Z

K=0
X (K ) 2"nK Mod(2?-l) (2.14)

where
2~nK _ 2P-nK Mod(2P-1)

for n 1 , . . .  P- 1
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Mersenne transforms can also be defined over a composite modulo
which can be factorised into several Mersenne prime factors.
Mersenne transforms with a = 2 can be implemented by P(P-l)

2additions and (P-1) shifts.

(b ) Fermat Transform
2fcIf the prime integer is chosen as = 2 + 1  with

2t = 1,2,3,4, the maximum transform length is given by N = 2
which is highly composite and can be implemented by Radix-2
FFT algorithm. The primitive root is gi^ an by = 3 which
cannot be implemented by just shifting. However, transform

tof length N = 2 has roots of a = 2 which can be implemented 
by shifting and Radix-2 FFT algorithm. These transforms are 
known as Fermat Transforms defined as:

N-l
X (K ) = I x(n) 2 

n=0
having an inverse of form:

nk Mod Ffc) (2.15)

-1 N-1 -nKx ( n ) = N I X ( K ) 2
K=0

Mod F, (2.16)

where N = i which divides cp(F^).

Fermat transforms can implement circular convolution 
by only addition and shifting. The disadvantage of Fermat 
transform,as in Mersenne transform,is that the transform length 
is limited by word-length of the processor. Thus large data- 
sequences cannot be transformed directly, however it is possible 
to convert the sequence into a multi-dimensional sequence 
and then Fermat transform [A20]. Hardware implementation 
of Mersenne and Fermat transforms are considered by several 
researchers [A16], [A19].
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2.4 COMPLEX NUMBER THEORETIC TRANSFORM,COMPLEX FIELD,
RING, QUADRATIC FIELDS [A2.I], [A22]
In some applications like Synthetic aperature radar 

image formation, complex convolution is required. Thus 
to implement complex convolution by real NTT's several NTT's 
have to be implemented [A23]. So it is advantageous to
define a complex number theoretic transform where complex 
sequence can be transformed directly. A complex NTT pair 
is defined as:

X (K )
N-l
I x ( n ) 

n=0
Kna

in Q p

x (n ) 1
N

N-l
I

K=0
X (K ) -Kna

(2.17)

where x(n), X(K), a e Q p and P a prime integer.
The field Qp is known as the second order extension of

integer field I . An- element A of extension field Qp can
be represented as A = a + jb, where a,b e Ip and j = / -1

2in Q„. The number of elements in -a finite field Q is P .P p
2Qp is also known as Galois fields denoted by GF(P )

The complex extension field Qp which can be represented also
_  2as Q (/ -l) only exists if expression x + 1 = 0 is irreducible

over Ip .
The above argument can be generalised to all quadratic 

_  2extension fields Q (/ m) of Ip if eqn. x + m= 0 is
irreducible over I. By Euler theorem 1 ] ;

m (P-D/2 = /HI’(P' Mod P (2.18)

The quadratic eqn. x + m = 0 Mod P is reducible over Ip if
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m  2(■p) = + 1 and x + m = 0 and P is said to be irreducible
m 2over Ip if ( — ) = -1 and Qp(/~m) is a field of Pz elements

2isomorphic to GF(P )[41] .
In this section complex number theoretic transforms

are considerd for Mersenne and Fermat primes ; quadratic
extension fields are considered in the next section. Consider
Ffc = 2 + 1 a Fermat prime it can be shown that eqn.
2x + 1 = 0  Mod F^ is reducible in I since expression 

F -1/2 -1
(-1) = (==■) = + 1. Thus there is no complex extension

F t
field with a Fermat prime, however there are quadratic
extension fields which are explained in the next section. If
Mersenne primes p = 2^-1 are considered, it can easily be

2shown that eqn. x + 1 = 0  Mod M is irreducible in I since
P-l/2 -1expression (-1) = ( —  ) = “1 so complex number theoretic

transform can be defined. The condition for existence of 
complex number theoretic transform is given below.

(a) a is root of unity or order N in Qp (-/~-1)
(b) N.N-1 = 1 in Qp (/~-1)

2 2(c) N|(P -1) since there are P -1 distinct elements 
in Qp (/~-l)

An algorithm to calculate the primitive roots in Qp (/~-1) 
are given in [A22].

2.5 QUADRATIC NUMBER THEORETIC TRANSFORMS [A22]
Number theoretic transform can be defined in quadratic

extension fields as:
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in Qp(/~m) (2.18)

X (K ) a“nK

2where Q ^ { / ~ m) is quadratic extension field of Ip of P distinct 
elements with P a prime integer. X(K), x(n), are elements 
of Qp( /~m) where each element is represented as Qp(/~m) = a+/~mb 
with a ,  b e I .

In [A22] it is seen that quadratic extension fields
exist with primes as Fermat and Mersenne integers. For

2"example with Fermat primes F, = 2 + 1  the maximum transform^ t t
length is N = F^ - 1 = 2̂  +  ̂ (2^  ̂ + 1) . Transforms of, max t

2t+lorder 2 can be defined and can be implemented by Radix-2
FFT algorithms. Similarly quadratic Number theoretic transform 
can be defined with Mersenne primes which are implemented by 
Winograds algorithm [A19].

2.6 NUMBER THEORETIC TRANSFORM IN GALOIS RINGS GF(q2) [A24]
In the previous two sections transforms were defined

2over Galois fields GF(P ) where P is a prime integer. Here
2we introduce Number theoretic transform in GF(q ) where q is 

a composite integer which can be factorised into its prime 
factors given as:

N-l
X ( K ) = I

n=0
N-l

x ( n ) = I
n=0

2q = P, P0 ... P .  and x + 1  = 0 Mod P .^ 1 2 £ i

is irreducible for i = 1,2,....A.
2Thus GF(q ) can be decomposed into its Galois fields 

represented as

GF (q ) = GF(P: GF (P! GF(P 2) (2.19)
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2where every element A m  GF(q ) can be represented in its
2Factorised form A = (A^A^, . . . ,A. , . . . ,Â ) in which A^ e GF(P^).

2Thus a number theoretic transform defined in GF(q )
2must be satisfied in every GF(P^).

The condition for existence is given by:

(1) Na = 1 M o d  P .l

(2) N N _1 = 1 M o d  P .l for i = l ,2,.. . & (2.20)

(3) .. | _2 N P . -1 l 1

2where a is the root of unity of order N in GF(q ). The 
detailed proof is given in

2.7 CONCLUSION AND DISCUSSION
In this chapter a review of number theoretic transform 

in different fields was given. Primes such as Mersenne and 
Fermat were discussed because of their implementation simplicity. 
However, other prime integers have been considerd to provide 
larger dynamic range [A25]. Mersenne and Fermat trnsforms
are certainly very efficient to implement compared to DFT's. 
However, transform length is limited by word-length of the 
processor, but their implementation only requires shifting and 
addition. Along data sequence can be transformed by NTT's 
if it is first converted into a multi-dimensional sequence by 
the Chinese Remainder Theorem and then transformed using 
efficient algorithms such as Winograa's, prime factor and 
polynomial algorithms. One advantage of NTT over DFT is 
that arithmetic is done error free, although data has to 
be scaled and rounded into integers.
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Since NTT's have circular convolution properties, 
they can be used in digital signal processing applications. 
Application of NTT to digital image processing has been 
considered in (A26]. Its use to implement circular 
convolution for radar signal is considered in [A27]. Other 
NTT's, such as pseudo-Mersenne and Fermat transforms, 
discussed in [A28], [A29].

are
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CHAPTER THREE

P-ADIC TRANSFORMS

3.1 Introduction
In this chapter the P-Adic number field Qp is first 

introduced. Then a finite-segment P-Adic number field is 
defined which is known as a Hensel code. In Section 3.3 
a number theoretic like transform is defined in the field 
cf segmented P-Adic numbers. This transform is called P-Adic 
transform. The conditions for existence of such a transform 
are also derived. In Section 3.4, such P-Adic transforms are 
defined where prime p is chosen to be a Fermat or Mersenne 
prime number. Computational complexity to implement these 
transforms by prime factor, Winograd and polynomial transform 
algorithms are also considered.

A3.2 P-Adic field Qp and Segmented P-Adic field Qp

3.2.1 Introduction to P-Adic Numbers
The idea of a P-Adic field Qp was originated by 

Hensel [A29] . Hensel stated that every P-Adic number a can be 
uniquely represented by an infinite series of the form

CO

a = Z a Pn , a e I (3.2.1)
n= -m ^

where P is a prime integer and m an interger.

This infinite series (3.2.1) converges to a, with respect to the 
P-Adic norm [A30]. In Appendix 33 a more detailed property of 
the P-Adic field is given with some examples.
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Any P-Adic number is represented by an infinite
series given by expression (3.2.1), but in order to be able 
to do arithmetic a finite segment P-Adic number 
system has to be defined. Krishnumurthy introduced a

P-Adic expansion series of a P-Adic number to a fixed number 
of digits r [A31] . This representation of a finite segmented 
P-Adic expansion of a P-Adic number a is also known as a Hensel 
code [A32] and is denoted by Ii(p,r,a). The conditions for 
construction of such codes are [A33]:

(i) the numerator and denominator of the rational 
numbers to be represented have a prescribed 
bound, given by

(ii) the P-Adic expansions are terminated at 
the right such that r is even. Thus any 
rational number a within the prescribed 
bound (3.2.2) can be represented by a 
Hensel code as

(3.2.2)

H(p,r,a)
i =  - m

r
£ a. pl (3.2.3)

where a . e I .i P
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3.2.2 Arithmetic Operations in Segmented P-Adic Field
The basic arithmetic operations such as Add/Subtract/ 

Multiply/Divide are valid in 6p provided that no overflow 
occurs even in computation. Consider two rational numbers 
H(p,r,a), H(p,r,B) represented by their corresponding Hensel 
codes, then

H (p ,r ,a * B ) = H(p,r,a) * H(p,r,B) (3.2.4)

where * represents an operation.
Expression (3.2.4) is valid provided that the absolute value of
the numerator and denominator of a, B, and a * B do not exceed
J . The arithmetic operations in (or Hensel codes) are
almost identical to the p-ary arithmetic, since it is essentially 

rmodulo p arithmetic realised as a simple recursion of modulo p 
operations. The P-Adic arithmetic operations are error free.
In Appendix B the procedures for basic P-Adic arithmetic
operations are explained.

3 . 3 P-Adic Transforms
3.3.1 General P-Adic Transform [A34]

In this section number theoretic like transforms are 
defined in the finite segmented p-Adic field, Q^, and its 
properties are explained. We define the P-Adic transform of 
N point-sequence x(n) represented by their Hensel codes as 
H(p,r, x(n)) .'or a given (p,r) as;

N-l nk
H (p ,r ,X (k )) = 2 H (p ,r , x(n)) (H(p,r,y)}

n=0
for 0 4 k 4 N-l

3.3.1)



- 3 3 -

and its inverse transform

H ( p , r , x (l ) ) H(p,r, i Z H(p,r,X(k) {H(p ,r ,y )}
K=0

for 0  ̂ il < N - 1
(3.3.2)

where H(p,r,y) is the Nth root of unity in Q ; its existence
sr

and derivation is discussed in the next section.
To derive the conditions for orthogonality (or existence 

of the inverse transform) we substitute eqn. (3.3.') into 
eqn.(3.3.2), then

H (p , r , x ( & ) ) H(p,r,^
ln jl in J. *»■ / n \

Z Z H ( p , r , x (n ) ) {H ( p, r , y )  ̂>
k=0 n=0

(3.3.3)
then reordering

Let

H ( p / r T_
'N

N-l
Z H ( p , r , x ( n ) ) 

n=0
N-l
Z

k=0
{H(p,r,y )}K(n-Jl)

(3.3.4)

H (p , r , S )

We get

1, N „X » ,K ( n-&)H(p,r,^) Z {H(p,r,y)}
k=0

(3.3.5)

H(p,r,S) = H(p,r,1) when (n-il) = 0 Mod N
Since

{H(p,r, Y )}(n-1)N = H (p , r , 1 ) in 3 .

H(p,r,S) = 0 when (n-&) ^ 0 Mod N
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Because we have

{H ( p, r , y ) } ̂ n_5/ * ^ 1 (3.3.6)

thus
{H(p,r, y ) }n-!l - 1 ^ 0  (3.3.7)

Multiply H(p,r,S) by expression (3.3.7) we get

= H(p,r,i) [{H(p,r,y ) } n 1] Z {H(p ,r ,y )}k(n ^
n=0

= H(p,r,|) [{H(p,r,y)}(n“* )N - 1 ] (3.3.8)

= 0

Since
{H(p,r,y)}N = H (p , r , 1) in Q (3.3.9)

and since expression (3.3.7) is not zero, then H(p,r,S) = 0 
is valid.

Thus conditions for the transform having DFT structure 
or the properties of cyclic convolution are, if and only if,

(1) H(p,r,y) is a root of unity of order N in the
Afield of 0 / thus P

{H(p,r,y)}N = H (p ,r ,1) in Q .
(2) H(p,r,^r) should exist (or be representable)

Ain Q .P
(3) H(p,r,y "*■) should be representable.

In the next section existence
A
Q. are given.

and derivation of H(p,r,y) in
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3.3.2 Existence and Derivation of H(p,r,y)in

In the previous section it was shown that one of the 
conditions for the existence of the P-Adic transform is that a 
root of unity H(p,r,y) of order N exists in Q^, in other words

{H(p,r,y)}N = H (p,r,1) in Q (3 .3.10

Bachman [A30 ] has shown that the equation x^ = 0  

has exactly p-1 distinct roots in 6p. Thus the maximum transform 
length which can be used is N = p-1 which is dete:mined by the 
chosen prime, p. We call the root of unity of order N the 
primitive P-Adic root H(p,r,y ), the powers of this primitive 
root will generate all the roots of unity in the given field,

Q p ‘
The number theoretic properties,such as the number of 

primitive roots is given by cp(cp(p) ) , the number of roots of 
order N is given by cp(N) and the Nth root y^ can be obtained 
from the primitive root y as given by y., = y P P//N, are all 
valid in the P-Adic field where cp is defined as Euler's 
function [A35].

3.3.2.1 To Find H(p,r,y )

We have to find the solution for

{H(p,r,x)}P 1 = H(p,r,1) in Q (3.3.1

or in general

N A{H(p,r,x )} = H(p,r,1) in Q

Let y = {a an ... a . . . } be the Nth root of unity in Q . By 1 o 1 n 1 p 2

P-Adic multiplication N times we must get
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NY N' aN-lo 1' . . . }

then by considering each digit we get

{ 1,0,0 ...0 ... }

Na =1 Mod P o

But by Fermat-Euler's theorem [ A35 ] ^  = 1 Mod P and
P -1since cp(P) = P-1 then a ' = 1 Mod P, then for N = P-1 there

exists l root aQ of order P-1. Once the congruence equation 
P-1a = 1 Mod P is solved for a , the P-Adic primitive root o o  r

H(p,r,y) can be evaluated by using Newton's iterative 
method [ A30 ] (see Appendix B) . In the following section 
P-Adic transforms are defined for Mersenne and Fermat integer 
primes and the primitive roots are given.

3.4 Mersennes and Fermat's P-Adic Transforms
The basic arithmetic operations in a segmented P-Adic

field, Qp, is done modulo p where p i s  a prime number. But
operation Mod P is very costly thus simple primes such as
Mersenne P = 2n-l where n = 2,3,5,11,13,... and Fermat prime

2fcintegers such as p = 2 + 1  for t = (1,2,3,4) are usually chosen
in order to reduce the complexity of the processor [ A16 ].
In the following sub-sections Mersenne and Fermat P-Adic

Atransform in Q are introduced.P

3.4.1 Fast-Mersenne P-Adic Transform
AConsider the segmented P-Adic field, Q , with P a

tr

Mersenne prime P = 2n-l for n = 2,3,5,11,13,.... The P-Adic
transform in this field has the maximum length of
N = P - l = 2 n - 2 = 2 ( 2 n  ̂ - 1) which is not highly max ? *
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composite. Thus simple radix 2-FFT algorithm cannot be 
used. But more complex efficient algorithms such as prime 
factors or W.inograd algorithms can be used. In these 
algorithms the transform length is put into prime factorization 
form as shown in Table 3.4.1 for several Mersenne primes.

n 2n - 2 P P . P .ir2 * *

2 2 2
3 6 2.3
5 30 2.3.5
7 126 2 x 3 2 x 7

13 8190 2x3^x5x7xl3

Then by the Chinese Remainder Theorem this one-dimensional 
P-Adic transform is mapped into a multi-dimensional P-Adic 
transform such that it is cyclic with prime transform length 
in every dimension- [A36],[A38].This multi-dimensional 
P-Adic transform is then implemented by Rader algorithm [A38] 
which is a conversion of prime length P^- transforms into 
circular convolutions of P^-l points. The circular 
convolutions are implemented by FFT algorithms, short 
convolutions or polynomial product algorithms [A39].

The P-Adic transform can also be implemented by 
polynomial transform algorithms introduced in Chapter 
five [All].
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3.4.2 Fermat P-Adic Transforms

Consider a P-adic transform with prime p a Fermat
2 tprime. A Fermat prime is given by F, = 2 +1 for t=1,2,3,4.

2 fcThe maximum transform length N is given by N = F - 1 = 2 ̂ max  ̂ 1 max t
obtained from -eqn.(3.3.10). This transform length is highly 
composite, thus a radix-2 FFT algorithm can be employed, so 
Fermat P-adic transforms can be implemented by FFT algorithms.

3.5 Conclusions
In this chapter a number theoretic like transform is 

defined in the field of P-adic numbers. In section 3.2.1 P-adic 
field and segmented P-adic field are introduced. Arithmetic 
in segmented P-adic field is discussed in section 3.2.2. Detailed 
properties of P-adic field are given in Appendix B. P-adic 
transforms are defined in section 3.3. The conditions for 
orthogonality are given in section 3.3.1. It is seen that the 
P-adic transforms have the same properties as that of NTT. In 
section 3.4 Mersenne and Fermat P-adic transforms are defined.
It is seen that in section 3.4.1 the fast radix-3 FFT algorithms 
cannot be used for Mersenne P-adic transforms. However, they 
can be implemented by more complicated techniques as explained 
in section 3.4.1. In section 3.4.2 Fermat P-adic transforms 
are discussed. Hardware implementation of these transforms 
was not considered but the techniques discussed in [Al6] can 
be used to implement such transforms. Only Mersenne and Fermat 
prime integers were discussed, other primes can also be
cons idered.



CHAPTER FOUR



-40-

CHAPTER FOUR

COMPLEX P-ADIC TRANSFORM

4 . 1 Introduction
In many instances of digital signal processing,

digital filtering of complex signals is required, or a complex
convolution has to be implemented. In this chapter it is shown
that a complex convolution can be decomposed into four real
convolutions which are then implemented by four real P-adic
transforms. In section 4.2.2 we show that owing to special
representation of complex numbers in a P adic field with
P a Fermat prime, the complex convolution reduces to two real
convolutions. In sections 4.3 and 4.4 we define complex P-adic
fields, I< . It is shown that the action of this transform P
over K is equivalent to the discrete Fourier transform of a

\r

sequence of complex numbers of finite dynamic range. In 
section 4.5 P-adic transform is mathematically defined in 
G-adic fields.

4.2 Implementation of Complex Convolution Via P-adic
Transforms

4.2.1 Decomposition of Complex Convolution

filtered by a complex sequence having N terms H(p,r,b ), in 
which H(p,r,u ) is the output P-adic sequence given by

Consider a complex P-adic sequence H(p,r,y ) to ben

N-l
Z

n=0
(4.2.1.1)

for n = 0,1,... N-l

m = 0,1,... N-l



- 4 1 -

where

H(p,r,bn) = H(p,r, hQ ) + A3 H(p,r,hn) (4.2.1.2
H(p,r,yn) = H (p, r, x ) + A3 H(p,r,xn)

H(p,r'um ) = H(p,r,zm ) + A
3 H(p,r,zm )

where
A / '■j = A T

The complex convolution (4.2.1-L) can be decomposed into four 
real convolutions as given by eqn.

N-l a
H(P,r'um ) = Z [ H ( p , r , h ) H(p,r,x ) - H(p,r,h ) H(p,r,xm _n )] n=0

A N-l
+ j Z [H(p,r,hn) H(p,r,xm_n) + H(p,r,hn) H(p,r,xm_n)]

n=0 m-n 
(4.2.1.3

then

H ( p, r , z ) m

N-l
Z [H (p , r ,h^ ) H (p , r , x 

n=0 n ) - H(p,r,fi ) H ( p, r , x m-n n m-n

(4.2.1.4)

H(P'r 'zm )

N-i A
Z [H(p,r,h ) H(p,r,x 

n=0 n
) + H ( p, r , h ) H(p, r,x m-n n m-n

(4.2.1.5

The expression (4.2.1.3) consists of four real convolutions 
which can be implemented by Fast Mersenne number P-adic 
transforms, introduced in the previous chapter, section 3.4.1.
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4.2.2 Complex Convolution via Fermat Number P-Adic 
Transforms [A 40]
Consider a P-adic transform defined in Q where p isP

chosen to be a Fermat number p = 2^ + 1 with q = 2U for 
t = 1,2,3,4. But j =  J - Z  has a special representation in 
with p a Fermat prime. Since equation x^ = -1 is solvable in
AQp the square root of -1 can be represented by a P-Adic 
sequence, say, H(p,r,3) where p is a Fermat prime. Thus the 
expression (4.2.1.1) becomes an N-point real P-adic convolution

N-l A A
H(p,r,u ) = Z [H(p,r,h ) + H(D.r,j) H(p,r,h )] 

n=0 n

,t

[H (p ,r ,xm _n ) +H(p,r,j) H(p,r,xm_n )]

(4.2.2.1
where

A /\H ( p , r , u ) = H ( p , r , z ) 4- H(p,r,4) H(p,r,z m m m (4.2.2.2

To recreate the in-phase and quadrature components H(p,r,z 
and H(p,r,z ) of the output sample given by expression
(4.2.2.2) we consider the auxiliary convolution given by
(4.2.2.3) ;

m

N - l
H (p ,r ,v ) = Z [H (p ,r ,h M ) - H(p,r,j) H(p,r,h„)] 

n=0 n n

[H (p ,r ,x m _ n ) - H (p ,r ,j ) H(p,r,xm _n

4.2.2.3)
where

H(p,r,vm ) = H(p,r,z )m
A /\- H(p,r,j) H(p,r,zm (4.2.2.4)
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corn'.lining expressions (4.2.2. 2) and (4.2.2.4) we get

H(p,r,zm ) = H ( p , r ,~|) [ H ( p r r , um ) + H(p,r,vm )] (4.2.2.5)

H(p,r,zm ) = H(p,r,~i) [H(p,r,um ) - H(p,r,vm )] (4.2.2.6)

AThus in the P-adic field where p is a Fermat number 
an N-points complex P-adic convolution is implemented by two 
N-points real P-adic convolutions (4.2.2.2) and (4.2.2.3), 
instead of a conventional approach with four real P-adic 
convolutions. The number of operations (multiplications and 
additions) is reduced but the arithmetic operation must be

Aperformed in with p a Fermat number. The P-adic convolutions
(4.2.2.1) and (4.2.2.3) are then implemented by Fermat number 
P-adic transform.

4.3 P-adic Transform in Extension Fields of Q [ A40]
4.3.1 Introduction to Extension Fields of Q--------------------------------------------- p

The P-adic field has infinitely many distinct 
algebraic extension fields, all the fields being generated by 
roots of algebraic equations xn-p = 0 (n = 2,3,4,...). For 
simplicity only quadratic extension fields of Q are considered.tr
In [ A42] Mahler has shown that for p >. 3 there are exactly 
three distinct quadratic extensions of and these may 
be represented by

Qp(/Np ) , Qp(/p) , Qp(/pNp ) 4.3.1.1)

where is the smallest positive quadratic non-residue, or
2on the other hand the equation x - = 0 is said to have no

solution in Q . By Euler's theorem [ A41] this is further
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equivalent to
N (N -1/2)
<-j? ) = <NP > p = -i 4.3. 1.2)

where (— ) is the P Legendre symbol defined by

+1 if m is a quadratic residue modulo p.
-1 if m is a quadratic non-residue modulo p.

Any one of the three quadratic extension fields (4.3.1.1) 
can be denoted by = Q (t/cT) . Every element z of can be
written in the form

where

and

z = x + jy 

x,y e P

5 =

In the following sections((4.3.2) and (4.3.3)) we
will define the P-adic transforms in the three extension
fields of Q with P a prime Mersenne number.P
4.3.2 P-adic Transform in Qp(/N^) with P a Mersenne 

Prime [A40’j 
4.3.2.1 Introduction

Consider the quadratic extension field K = Q ( )P P P
with P a Mersenne prime

P = 2q - 1 q = 2,3,5,7,13, . . .

2Since x = -1 Mod P is not Soluble in Q , or by Euler's
theorem



P-1
= (-1)2 = (-1)

-45-
2q -2 2q 1-1

= ( - D = -1

(4.3.2.1)

Thus = -1 is the smallest quadratic non-residue modulo
2Mersenne prime, and the polynomial P(x) = x + 1 is said to

be irreducible in Q .P
ALet us informally represent i = /-T as a root of the

2 A2 A polynomial P(x) = x + 1  satisfying i = -1 where i is an
element of the extension field Q (/-l) which is composed of
the set

Kp = Q p t / n r  = {a + ib  }

where A,B Q P
Ai e K plays a similar role over the finite field Q that P 7 P
/-T = i plays over the field of nationals Q. For example the 
basic arithmetic operations in Kp are similar to complex 
arithmetic

(a + ib) ± (c + id) = (a ± c) + i(b ± d)
A A(a + ib) (c + id) = (ac-bd) + i (be + ad)

A A Awhere (a + ib), (c + id) £ Kp and a,b,c,d e Q . Thus (a + ib)
and (c + id) behave similarly to complex number. The other
two distinct extension fields are Q (/p") and Q (/-P).P P
4.3.2.2 P-adic Transforms in Extension Field Q (/-l)

We define a complex P-adic transform pair in Qp(/-I) as
d-1<XT. > = Z <x >K „ nn=0 <Y>

nK for 0 <: K ^ d-1

1 d ~ 1<X £> ± > l <X ><y>
d K=0 K

for 0 ^ A d-1
(4.3.2.2)
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w’nere

<xn> f <XK> <y > , e Q (/^IT

and P is a Mersenne prime.
Conditions for existence are similar to that of complex 

number theoretical transforms [A15].
(a) y is a root of unity of order d in Q { / ^ T )  

in order to have cyclic convolution property
r\(CCP), thus y = 1 in Q (P

(d) i exists in Q (/-l).
2( c ) d divides (p -1 ).

Galois f 
t of the

The number of elements in Q (/-l)
2 2ield of p elements GF(p ) [a 22], 

multiplicative group with a  as the

2is p , as in 
the maximum order 
generator is

t = p2-l = (2q-l)2 - 1 = 2q+1 (2q 1 -1) 14.3.2.3)

thus
ap2-i 1 in Q (/-l).

Y as the generator of order d can be obtained by
(p2-d

y = -a as in the number theoretic transform, which gives
the third condition given above.

For d = the radix-2 FFT algorithm can be used.
In the previous chapter we defined a segmented P'-adic

Afield C) in order to be able to do P-adic arithmetic on a P
finite wordlength processor. Thus to do the arithmetic in 
the extension fields we have to form a finite segmented
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A A

e x t e n s i o n  f i e l d  K = Q ( / - 1 ) ,  w h i c h  i s  a s u b s e t  o f  K .
\r tr

T h i s  i s  o b t a i n e d  b y  t r u n c a t i n g  t h e  P - a d i c  s e r i e s  r e '  p r e s e n t a t i o n  

o f  t h e  e l e m e n t s  i n  K t o  r  d i g i t s  a s  i n  c h a p t e r  t h r e e .  T h i s\r
A

w i l l  p r o d u c e  a f i n i t e  s e t  w i t h  e l e m e n t s  p r e s e n t e d  b y

H ( p , r  , z ) = H ( p , r , A )  + i  H ( p , r , B

w h e r e

H ( p , r , A )  o r  H ( p , r , B )  = >
r
E

n= -m
C F  n ( 4 . 3 . 2 . 4 )

w h e r e  C e l .n p

H (p ,r ,z ) = E ZnP 
n = -m

n (4.3.2.5)

w h e r e  Z = a + i b  .n n n
A

T he  P - a d i c  t r a n s f o r m  p a i r  d e f i n e d  i n  K h a v e  t o  s a t i s f y  t h eP
same c o n d i t i o n s  a s  t h e  P - a d i c  t r a n s f o r m  p a i r s  d e f i e d  i n  K ,

F P
w i t h  an  a d d i t i o n a l  d y n a m i c  r a n g e  c o n s t r a i n t  s u c h  t h a t  i f

(§■  + i  § )  e K t h e n  b d p

P r - 1  , , / Pr -  1a , b , c , d  4 '
(4.3.2.6)

T h u s  t o  t a k e  t r a n s f o r m s  o v e r  o f  a d - p o i n t s  s e q u e n c e  o f
A

c o m p l e x  n u m b e r s ,  H ( p , r , x n ) £ K , we h a v e  t o  f i n d  t h e  r o o t  o f  
u n i t y  y  o f  o r d e r  d .  T h e  c o m p l e x  c o n v o l u t i o n  i s  now  i m p l e m e n t e d  

b y  t w o  f o r w a r d  c o m p l e x  P - a d i c  t r a n s f o r m s  a n d  o n e  i n v e r s e  

t r a n s f o r m .

4 . 3 . 3  P - a d i c  T r a n s f o r m  D e f i n e d  i n  Q ^ y p T a n d  ( / P N  

w i t h  P a M e r s e n n e  P r i m e

I n  t h e  p r e v i o u s  s e c t i o n  we d e f i n e d  P - a d i c  t r a n s f o r m s  

i n  Q ( / N  T w h e r e  N = - 1  a n d  P a M e r s e n n e  p r i m e .  The  o t h e rp p  p ^
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two distinct fields are Qp(/P) and Q (/-P). These are known 
as ramified extension fields because the elements in this 
field have a special representation [A42] as

Z = x + / P  y = E Z fm n n=-m
n 4.3.3.1)

A /— +2where Z e I , P = /P P = EP and E is given by n p rj j

E = 1 if Kp = Q p (/P) P > 3
E = -1 i f Kp = Q p (/-P) P > 3

Thus an element in these two fields is represented
Aby a series of power P with real coefficients Z e I as given -1 n p ^

by expression (4.4.1). We define the transform pair in
Q (/IF) as

d-1
XR = £ x Bn=0

nK for 0 < K < d-1 ( 4.3.3 .'2 )

1 ̂   ̂ K
xi = a 1 XK 636 Q K=0 K for 0 < l . <  d-1 (4. 3. 3.3)

where x , XTr, 8 £ Q (/pT and P is a Mersenne prime. The n K p ^
conditions given in section(4.3.2.2)must be satisfied for this
pair of transforms. (3 is a root of unity of order d in
Q (/pT. The arithmetic in Q (/FT is similar to the arithmetic P P
in complex P-adic field where here /p plays the role of 
j = Z 7! in Qp (/PT.
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4.4 Quadratic P-adic Transform Defined in Extension Fields
K with P a Fermat Prime “P---------------------
In this section a transform over the extension field. K ,

2* Pwith P a Fermat prime P = 2 + 1  for t = 1,2,3,4 is considered.
As in the previous sections there are three distinct extension
fields given by K = Q (/nT), Q (/pT and Q (/PN ) where N isP p P P P P P
the smallest integer non-residue modulo a Fermat prime. However
a complex P-adic transform (where N = -1) does not exist with
P a Fermat prime. Similar to the previous sections a transform
pair can be defined in K . The maximum transform length t is

2n ^given by t = P-1 = 2 . Such a transform length is highly
composite so radix 2-FFT algorithms can be used to implement 
these transforms.

4. 5

in a 9-ad

Transform Defined in q-adic Ring 
of Several P-adic Fields 
It is well known that any number a 
ic ring by an infinite series

over a Direct Sum

can be represented

00

a  = I a gn nn=-m (4.5.1)

Such an infinite series 
It is also known that a 
P-adic fields Qp for k
algebra

is convergent in g-adic norm [A42]. 
g-adic ring, , is a direct sum of 
= l,2,...n. In the language of

Q - 0 ©
„ g P 1 P2 P3 P4.

\V iieve $ ^  Ike cl(i()al)ta iC S oiklui/l .
To define a Fourier like transform over
defining it over the direct sum of the

(4.5.2)

Q is the same asg
fields Q , Q . 

*1 ^2
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Thus any element A of can be represented by

its P-adic components

A — < Ap r A2 r A > n (4.5.3 )

Then the basic arithmetic operations can be done in each P-adic 

field. For example two g-adic numbers made of n P-adic 

components,

A < A , Ap , ... A . . . A >
*1 2 FK n

B = < B P ' B P ' ••• B P ••• BP >
P1 P 2 PK Pn

AB — < A B , Ap Bp , ... A Bp ... A Bp >
P1 P1 p 2 2 Pk k Pn pn 4.5.4

Therefore the arithmetic in each component can be done in 

parallel, provided that we can reconstruct the number from its 

components. Thus a Fourier-like transform defined over 

for a g-adic sequence a^ n = 0, ... d-1 is given by

d-1
A, n£

Z a y m  Q_ ~ n ' gn=0
for £ = 0 , 1  ... d-1

where

d-1
a = -r Z A 0 y

n d 5, = 0  1

-n£
in Q for n = 0,1,...d-1 g

4.5.5

or

A. , a , y e  Q 
&' n ' 1 vg

^ * 4 ^  ' ... (A£ .
)pk

[(an )P 1 ' ... (an :
lpk

] ,
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The condition for orthogonality is that

d , . ~y = 1 in Q

and since y is given by its components as

(4.5.6)

Y = [Yp / Yp - ... Yp 1
*1 2 n

where

Yp e Q p 
n n

then Q ach component of y should satisfy

y = 1 in Q for k = 1,2,... n 
pk

From above it is seen that the transform over

same as a direct sum of transform over {Qp ,
*1

in parallel, giving a larger dynamic range.

is the

}

4.6 Conclusions

In this chapter complex P-adic transforms are 

introduced. Implementation of complex convolutions is discussed 

in section 4.2, complex convolution in P-adic field is defined 

and in section 4.2.2 its implementation by Fermat P-adic transforms 

is considered. It is shown that complex P-adic convolution is 

implemented by two real P-adic convolutions if prime P is 

chosen to be a Fermat prime integer. This algorithm is similar 

to that of Nussbaumer [A23] where a complex convolution is 

implemented by Fermat transforms.
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In section 4.3 extension fields of Q are considered.
P

P-adic transforms are defined in the extension fields. Only 

Quadratic extensions are considered. It is seen that there 

are exactly three distinct quadratic extension fields of Q . 

With p a Mersenne prime integer, complex P-adic transforms 

are defined in section 4.3.2.2. In section 4.3.3 P-adic 

transforms in other extension fields are discussed. From 

section 4.3 it is seen that a complex P-adic convolution can 

be implemented directly by complex P-adic transforms.

In this chapter it is also shown that no complex P-adic 

transforms exist if p is chosen as a Fermat prime integer.

A g-adic transform is defined in a g-adic ring in section 4.5. 

Since a g-adic ring is a direct sum of several P-adic fields, 

it is seen that a transform in a g-adic ring has to satisfy 

all its P-adic field components. The- condition for existence 

of these transforms is also discussed in section 4.5.

Since 

in complex 

to complex 

required to

rational complex number can be represented exactly 

P-adic fields, complex P-adic transforms are preferred 

number theoretic transforms where scaling is 

convert rational numbers into integers. Also, a

larger dynamic range is achieved if P-adic transforms are used.
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CHAPTER FIVE

LINEAR TRANSFORMS

5.1 INTRODUCTION

The main objective of this chapter is to introduce some 

linear orthogonal transforms and some new implementation 

techniques. In section 5.2 Discrete Fourier transform is 

discussed; Hadamard transform is explained in section 5.3; 

Cosine transform is introduced in section 5.4,with some of 

its implementation techniques, and section 5.5 is devoted 

to polynomal transform algorithms and their application to 

implementation of convolution and transforms. This chapter 

is believed to be a short summary of the transforms and their 

implementations. The application of linear transforms to 

image coding are discussed in the following chapters, and 

other applications are discussed in Chapter one.

5.2 DISCRETE FOURIER TRANSFORM

The DFT of a sequence x(n) of length N is defined by:

where X(K) are the transformed coefficients and K = 0,1,... N- 
j 2 tt

and = e'N . The DFT has the property that x(n) and X.(K)

are uniquely related by a transform pair consisting of 

eqn. (5.1) and its inverse:

X (K )
N-l
Z

n=0
/ \ r1nKx (n ) W N (5.1)

x (n ) N 1 Z X(K) V!, 
K=0

-nK
N (5.2)
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The importance of Fourier transform pair is that it 

can implement digital convolution very efficiently. Consider 

a one-dimensional convolution

N-1
y(JJ-) = £ h(n) x(n-H) (5.3)

n=0

This is implemented in the transform domain by direct 

multiplication given as:

Y(K) = H(K) X (K ) (5.4)

where y(K), H(K) and X(K) are the transformed coefficients of 

y (n ), &(n ) and x (n ).

The eqn. (5.2) can be implemented efficiently by fast 

algorithms such as Fast Fourier transform algorithm (F F T ) [A12], 

Prime factor algorithm [A 2 0 ] , Winograd's algorithm [A 19] and 

Polynomial algorithms [All] .

5.3 HADAMARD TRANSFORM

One-dimensional hadamard is defined as

n-1
£ b^(x )b^(u )

N-1 H- II O H H

Z f (x) ( -1 ) (5.5)
x = 0

n - 1

1 N-1
^  - H(u) N nX - 0

Z b . ( x ) b . ( u ) 
i  =  0 1 x

' ( - 1  ) (5.6)

where the summation in the exponent is performed in modulo 2 

and b„(z) is the Kth bit in the binary representation of z. 

Hadamard transform has a particular application in transform
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coding because of its computational simplicity.

5.4 DISCRETE COSINE TRANSFORM
A one-dimensional discrete cosine transform (DCT) 

is defined as:

N-1
C (K ) = 2 £ x (n ) cos

n=0

and its inverse:

it ( 2n+1 ) K 
2N (5.7)

for 0 N< K N-1

x(n) = 1 [C«0> - V  C (K ) cos 1N 2 2N (5.8)

for 0  ̂n  ̂N-1

where x(n) is a N-point real sequence.
It is known that the DCT of x(n) can be obtained from 2N-point 
DFT of x(n). x(n) is extended to 2N-point by padding N zeroes 
to it. DCT can be shown to be obtained from [A44]v

, 2N-1
C (K ) = 2 real £ x(n) W ™  ]

n=0
(5.9)

Similarly a two-dimensional cosine transform is defined as:

N r 1 N - 1

C(K1,K2) = 4 Z

"r° n 2=0 x (n , n 2 ) cos
n(2n +1 )K TT(2n2 + 1 )K

—  cos -2N 2N,

for 0 ^ K1  ̂N1-1 , 0  ̂K2  ̂N2 -

(5.10)
and similarly the inverse is given by

N r 1 N 2-1

1 ' ‘‘2 ' - N T T  Z Z C ’ (K1 ' V  c o s  1 2  K 1=0 K =0
x(n.,nJ =

tt ( 2n ̂ +1 ) K ̂
W . \

cos
u (2n 2 +1 )

2NT

( 2 . 11 )
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where
r
c *3*\oo

K ! = 0 , k2 = 0

c K 1,0)/2 K 1 0 , k 2 = 0

C'( K 1,K2 ) = < c 0,K2)/2 K1 = 0 K2 r 0 (5 .12

c 'K1iK2) K 1 7̂ 0 K2 4 0

It can be shown that the two-dimensional DCT can be obtained 
from a 2N̂  x 2N2 point DFT of xin^n^) given by

K /2 K /2 2N -1 . 2N -1
C( K i ' K2 ) = 4 r e a l  t W2N W2N 1 n 2 n x ( n

1 2 n ^=0 n2=0

n K n K-
n ) W W  ̂  ̂ 1n l } z N 1 W 2N2 J

(5.13)

Since DCT is believed to have the best compression ability 
compared with other Orthogonal transforms [A44j,its application 
in digital image processing is vital. Here some fast techniques 
of implementation of DCT are considered, because DCT has been 
used in our coding algorithms. Recently Makhoul has introduced 
a fast technique of implementation of two-dimensional DCT [A45], 
where the input sequence is rearranged as given by

N i
°'< n i < 4

N 2
x (2n ̂ ,2n2 ) ' °'< n 2 < 2

x(2N1-2n ̂ -1,2 n ^ ) N i
— '< n i< N i

N2
, 0 n 2 < 2

x(2n^,2N2-2n2~ 1 ) N i
0 « v -

n 2
' 2 ^ n 2< N 2

x(2N^-2n^- 1 ,2N2-2n2- 1 ) N i— ^ n 1< N l
N 2

' 2 <:n2<N2

(5.14)
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Then C(K.j,K2) can be obtained from the two-dimensional ( x N^)- 
point DFT of v(n^,n ) as given by

N1"1 N2_1 n K nR,
V (R 1 , K 2 ) = Z Z v ( n r n2 ) WN W ^ (5.15)

n ^=0 n2=0 1 2

K K -K^
C(Kr K2) = 2 real {W^ [W4‘ VlK^Kj) + V(K1 -N2-K2) ] }

(5.16)

The number of multiplications is thus reduced by a factor of 4. 
since only a x N2 point DFT is performed.

Eqn. (5.16) can be implemented by polynomial transform 
algorithm given in[A46], where expression (5.16) is implemented 
as

C(K 1'K 2 ) 2 real { EK r K 2 +  ̂ EK 1,N2- K 2 ^

where j = /-T and
K

V K2
= W4N W4N2 V(Kr K2'

(5.17)

(5.18)

so the bulk of the computation is the implementation of E .
K 1 ' K2

E can be implemented by first performing row-column
K 1'K 2 t
permutation (4n̂  + 1)n2 modulo N2 = 2 and by computing N2
odd DFT's along the lines, with

E( n2 ,z ) =

N l -1

K .j =0

m  -11 (4n +1)K
2 v ( n 1 ,(4 n 1 + 1 )n2 ) W 2N

_  n 1=0 1

K.

5.19)

E(K^,K^) is then obtained by a complex inverse polynomial 
transform
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E ( K 2 f z ) =

E ( K 2 / z ) =

N -1

n2=0
E(n2 / z ) z

4 n 2K2 N1
N^

N1 -K? K
2 E (K1 ,KJ W Z z ' 

K =0 2

Modulo ( z ^-j )

(5.20)

(5.21)

The expression (5.17) is implemented to obtain CU^,!^)-
By the above algorithm a large number of multiplications and
additions are saved compared to Makhoul's method, the details
of the algorithm can be found in [A46]. The above
algorithm is implemented in Fortran for our image coding
techniques where expression (5.20) is implemented by radix-2

t 1 fc2FFT polynomial algorithm sinceN^ = 2 and ^  = 2 . The concept
of the polynomial transform is given in the next section.

5.5 POLYNOMIAL TRANSFORM ALGORITHMS
Recently several new techniques of implementing 2D-DFT 

have been introduced by Nussbaumer[A47j, using polynomial 
transform algorithms. These algorithms are not explained here 
but the concept of polynomial transform is discussed. Polynomial 
transforms can be viewed as discrete Fourier like transforms 
defined in a residue class polynomial ring R[z]/P(z), where 
R is a ring or a field. The polynomial algebra is performed 
modulo P(z ) ,. in which the coefficients of the polynomials are taken 
to lie in R.

A general definition of polynomial transforms can be obtained 
by considering a polynomial convolution Y (z) of length N defined 
modulo a polynomial P(z), with

N-1
Y (z) = £ H ( z ) X 0 (z) Modulo P(z) (5.22)
* m=0 m *"m
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Hm(z)
b - 1

= Z h z (5.23) _ n, m ' * ' n=0

Xr(z)
b-1

= 2 x z S (5.24) 
s = 0 '

where

(Y^z), Hi(z), X.(z)} e H | !

with
R the field of rational numbers 

and b the degree of P(z).

The one-dimensional polynomial convolution can be 
transformed into N element-by-element multiplications in R[z]/f(z) 
by a polynomial transform defined as [A48],

Hk (z ) N-1 mK= Z H (z) [G(z)]lJX Modulo P(z), (5.25) 
m=0 m

K = 0, 1,...N-1

and similarly for

where

N_1 rKXv(z) = E X (z) [G(z)]r Modulo P(z), (5.26)j\ r r=0
K = 0,1,...N-1

{G(z)} is an nth primitive root of unity in R[z]/P(z)
then

Yk (z ) = Hr (z ) . X (z) Modulo P(z) (5.27)

for K = 0 to N - 1
and {Y^(z) } can be recovered from (Y^(z) } using the inverse 
polynomial transform given by

Y,(z) - 1  N-1 _ _ O R= N 1 Z Y (z) [G(z)] Modulo P(z) (5.28) K=0 K
for &=0 to N-1.
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To establish that the polynomial transforms support
circular convolution the transforms H__ ( z ) and ( z ) ofK

H (z) and X (z) are calculated. Then element by element m r
multiplications of H^(z) by X^(z) modulo P(z) is evaluated,
and inverse transform of Y (z) is computed. This can beK

represented as

N - 1 N-1 N-1 , .
Y (z) = N Z Z H (z) X (z) Z [ G (z) ] m
36 m=0 r=0 K=0

(5.29)

The expression (5.29) is valid provided the three following 
conditions are met [A49];

(1) G(z) is an nth primitive root of unity R[z]/P(z); 

[G(z )]N = 1 Modulo P(z) (5.30)

( 2 )

(3)

N and G(z) have inverses modulo P(z)

S N-1 t , n  w
„  r_ .  » i (m+r-fi, >K , . _ ,Z [G(z)] modulo P(z

K=0

( 0 for (m+r-£)#0 Modulo N 
“( N for (m+r-&)=0 Modulo N

The polynomial transforms have the same structure as DFTS, but 
with complex exponential roots of unity replaced by polynomials 
G(z) and with all operations defined modulo P(z). If the 
Kernel G(z) of the polynomial transform can be chosen as a 
power of z, the resulting transforms will involve only the 
multiplication of polynomials by powers of the nth root ẑ
This multiplication is done by shifting the coefficients of 
polynomials which can be done very efficiently in hardware.
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A r a m b e p o l a  a n d  R a y n e r  [ A 5 0 ]  i n v e s t i g a t e d  t h e  c l a s s e s  o f  

p o l y n o m i a l  r i n g s  t h a t  p o s s e s s  s i m p l e  K e r n e l  G ( z ) .  T h e y  f o u n d  

t h a t  t h e r e  e x i s t s  a l w a y s  a p o l y n o m i a l  t r a n s f o r m  w i t h  s i m p l e  

p r i m i t i v e  r o o t s  G ( z )  = z [ o r  z fc w h e r e  ( t , r ) =  1 ]  i n . t h e  r i n g  

R [ z ] / C  ( z )  w h i c h  s a t i s f i e s  t h e  a b o v e  t h r e e  c o n d i t i o n s  ( 5 . 3 0 )  

a n d  ( z ) i s  a c y c l o t o m i c  p o l y n o m i a l  o f  o r d e r  N d e f i n e d  a s

C ( z )  = n ( z - Y . ) ( 5 . 3 1 )
Yi£S

t  hH e r e  S i s  t h e  s e t ,  c o n t a i n i n g  a l l  p r i m i t i v e  r  r o o t s  o f  u n i t y .

T h e  p r i n c i p a l  a p p l i c a t i o n  o f  p o l y n o m i a l  t r a n s f o r m s  c o n c e r n s

t h e  c o m p u t a t i o n  o f  t w o - d i m e n s i o n a l  c i r c u l a r  c o n v o l u t i o n s .

N u s s b a u m e r [ A 5 1 ] h a s  s h o w n  a c i r c u l a r  c o n v o l u t i o n  o f  s i z e  N x  N

w h i c h  c a n  be  r e p r e s e n t e d  a s  a p o l y n o m i a l  c o n v o l u t i o n  o f  l e n g t h
NN w h e r e  a l l  p o l y n o m i a l s  a r e  d e f i n e d  m o d u l o  ( z  - 1 )  a s  g i v e n  b y

yu ,  l
N-1
Em=0

N-1
E

n=0
h n , m x u - n ,  Jl-m u = 0 , . . . , N - 1 ( 5 . 3 2 )

Y ^   ̂ N£ H ( z )  X „  ( z )  M o d u l o  ( z - 1 )  ( 5 . 3 3 )
m _ n  X/ mm=0

<1=0, 1 , . . .N -1

H ^ ( z )  a n d  ( z ) a r e  d e f i n e d  b y  e x p r e s s i o n s  ( 5 . 2 3 )  a n d  
( 5 . 2 4 )  r e s p e c t i v e l y .

F o r  c o e f f i c i e n t s  i n  t h e  f i e l d  o f  r a t i o n a l s  R [ z ] , zN- 1  i s

t h e  p r o d u c t  o f  d  c y c l o t o m i c  p o l y n o m i a l s  C ( z ) ,  w h e r e  d  i s  t h e
L i

n u m b e r  o f  d i v i s o r s  r ^  o f  N ,  i n c l u d i n g  1 a n d  N ,  w i t h

N ^Z - 1  = n C ( z )  ( 5 . 3 4 )
i  =  1 r i

T h e  d e g r e e  o f  e a c h  c y c l o t o m i c  p o l y n o m i a l  C ( z )  i s  $ ( r . ) ,
L i

( w h e r e  $ ( r . ) i s  E u l e r ' s  t o t i e n t  f u n c t i o n  a n d  i s  e q u a l  t o  t h e  

n u m b e r  o f  p o s i t i v e  i n t e g e r s  s m a l l e r  t h a n  r ^ ,  w h i c h  a r e  p r i m e
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S i n c e  t h e  v a r i o u s  p o l y n o m i a l s  ( z )  a r e  i r r e d u c i b l e ,
1 Nt h e  p o l y n o m i a l  c o n v o l u t i o n  d e f i n e d  m o d u l o  (z - 1 )  c a n  be

c o m p u t e d  s e p a r a t e l y  m o d u l o  e a c h  c y c l o t o m i c  p o l y n o m i a l  C ( x ) ,
r  i

w i t h  r e c o n s t r u c t i o n  o f  t h e  f i n a l  r e s u l t  b y  t h e  C h i n e s e  r e m a i n d e r  

t h e o r e m  d e f i n e d  f o r  p o l y n o m i a l s  a s  e x p l a i n e d  i n  A p p e n d i x  A f o r  

i n t e g e r s .

L e t  u s  now  c o n s i d e r  e x p r e s s i o n  ( 5 . 3 3 ) ,  i f  N = P ,  w h e r e  P
Pi s  a n  o d d  p r i m e  t h e n  z - 1  i s  t h e  p r o d u c t  o f  t w o  c y c l o t o m i c  

p o l y n o m i a l s .

to including 1).

ZP-1 = (2- 1 ) p(z)
P-1 p-2P ( z ) =  z + z r  z + . . . . . +  1

( 5 . 3 5 )

Now t h e  p o l y n o m i a l  c o n v o l u t i o n  i s  d e f i n e d  m o d u l o  P ( z )  a n d  
m o d u l o  ( z - 1)

S i m i l a r l y  i f  N =  2 ^  t h e n

t  t - i  t - 1  t - 1
z 2 -  1 =  ( z - 1 )  n z 2 +  1 = ( z 2 + 1 )  ( z 2 - 1

i  = 1

( 5 . 3 6 )

T h u s  t h e  p o l y n o m i a l  c o n v o l u t i o n  i s  e v a l u a t e d  f o r  e a c h  m o d u l o
t - i
2( z  + 1) f j r  i e ( 1 , 2 , . . . ) ,  t h e  f i n a l  h e s u l t  i s  o b t a i n e d  b y  t h e  

C h i n e s e  r e m a i n d e r  t h e o r e m  [ A 5 2 ] .

A r a m b e p o l a  a n d  R a y n e r [ A 5 3 ]  h a v e  a l s o  d e f i n e d  a m a p p i n g  

w h i c h  t r a n s l a t e s  a  c i r c u l a r  c o n v o l u t i o n  i n t o  s k e w  c i r c u l a r  

o n e  a n d  v i c e  v e r s a ,  t h i s  m a p p i n g  w i l l  r e s u l t  i n  a p o l y n o m i a l  

c o n v o l u t i o n  m o d u l o  a c y c l o t o m i c  p o l y n o m i a l  w h i c h  w i l l  

r e m o v e  t h e  n e e d  f o r  a  C h i n e s e  r e m a i n d e r  t h e o r e m  d e c o m p o s i t i o n .  

T h e y  h a v e  a l s o  d e f i n e d  s e v e r a l  n e w  a l g o r i t h m s  g i v e n  i n  [A  4 9 ] .
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R e c e n t l y  N u s s b a u m e r  h a s  d e f i n e d  i n v e r s e  p o l y n o m i a l  

t r a n s f o r m s  [ A 5 5 ]  w i t h  t h e i r  a p p l i c a t i o n s  t o

c o n v o l u t i o n  a n d  DFT .

5 . 6  CONCLUSION

S e v e r a l  o r t h o g o n a l  t r a n s f o r m s  w e r e  r e v i e w e d  i n  t h i s  

c h a p t e r .  H a d a m a r d  t r a n s f o r m  w a s  d i s c u s s e d  b e c a u s e  o f  i t s  

i m p l e m e n t a t i o n  s i m p l i c i t y .  T h e  a p p l i c a t i o n  o f  H a d a m a r d  

t r a n s f o r m  i n  c o d i n g  w i l l  b e  d i s c u s s e d  i n  t h e  f o l l o w i n g  c h a p t e r s .  

C o s i n e  t r a n s f o r m  w a s  d i s c u s s e d  i n  m r e  d e t a i l  a n d  s e v e r a l  

i m p l e m e n t a t i o n  t e c h n i q u e s  w e r e  r e v i e w e d .  T he  m a j o r  a p p l i c a t i o n  

o f  DCT h a s  b e e n  i n  c o d i n g  w h i c h  i s  d i s c u s s e d  i n  t r a n s f o r m  

c o d i n g  c h a p t e r s .  F i n a l l y ,  p o l y n o m i a l  t r a n s f o r m s  w e r e  d i s c u s s e d .  

T h e s e  t r a n s f o r m s  a r e  v e r y  e f f i c i e n t  i n  i m p l e m e n t i n g  m u l t i ­

d i m e n s i o n a l  t r a n s f o r m s  a n d  c o n v o l u t i o n s .  O t h e r  a l g o r i t h m s ,  s u c h  

as  p r i m e - f a c t o r  a l g o r i t h m s  [ A 2 0 ] ,  W i n o ' g r a d s  a l g o r i t h m  [ A 1 9 ]  

a n d  o t h e r  p o l y n o m i a l  a l g o r i t h m s  [ A 5 5 ]  w e r e  n o t  d i s c u s s e d .  

H o w e v e r ,  some o f  t h e s e  a l g o r i t h m s  a r e  s t i l l  t o  b e  i n v e s t i g a t e d .  

M o s t  o f  t h e  a l g o r i t h m s  a r e  c o n c e r n e d  w i t h  r e d u c i n g  t h e  n u m b e r  

o f  m u l t i p l i c a t i o n s  a n d  a d d i t i o n s .  No a t t e n t i o n  i s  p a i d  t o  t h e  

c o m p l e x i t y  o f  t h e  a l g o r i t h m s  s u c h  a s  r e a r r a n g e m e n t  a n d  

p e r m u t a t i o n  o f  d a t a  w h e n  t h e  n u m b e r  o f  m u l t i p l i c a t i o n s  a n d  

a d d i t i o n s  a r e  r e d u c e d .
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CHAPTER S I X  

TRANSFORM CODING

6 . 1  I n t r o d u c t i o n

I n  d i g i t a l  c o m m u n i c a t i o n  n e t w o r k s  s u c h  a s  a r e  u s e d  i n  t h e  

t r a n s m i s s i o n  o f  s p e e c h  a n d  d a t a  i t  i s  a d v a n t a g e o u s  t o  d e v e l o p  

t e c h n i q u e s  t h a t  e x p l o i t  t h e  r e d u n d a n c i e s  i n  t h e  d i g i t a l  s i g n a l ,  I n  

o r d e r  t o  r e d u c e  s t o r a g e  o r  t r a n s m i s s i o n  b i t  r a t e .  T h i s  i s  k n o w n  

a s  s o u r c e  c o d i n g .  I n  t h i s  c h a p t e r  c l a s s i c a l  t r a n s f o r m  c o d i n g  

t e c h n i q u e s  a r e  r e v i e w e d  a n d  s e v e r a l  n ew  t e c h n i q u e s  a r e  

d e v e l o p e d .  O t h e r  s o u r c e  c o d i n g  t e c h n i q u e s  a r e  d i s c u s s e d  i n  

C h a p t e r  N i n e .  I n  S e c t i o n  6 . 2  a  d i g i t a l  im a g e  c o m m u n i c a t i o n  

s y s t e m  i s  i n t r o d u c e d .  T r a n s f o r m  imag ,e  s o u r c e  c o d e r s  a r e  

r e v i e w e d  i n  S e c t i o n  6 . 3 ,  a n d  t h e  e f f e c t  o f  b l o c k  s i z e  a n d  

o v e r l a p p i n g  i s  c o n s i d e r e d .  I n  S e c t i o n  6 . 4  a n ew  z o n a l  c o d i n g  

s t r a t e g y  i s  d e v e l o p e d  u s i n g  v e c t o r  q u a n t i z a t i o n .

6 . 2  I n t r o d u c t i o n  t o  I m a g e  C o d i n g

A s i m p l e  m o d e l  f o r  a  d i g i t a l  s y s t e m  i s  s h o w n  i n  

F i g . 6 . 2 . 1 .

Fig. 6.2.1: A simple digital transmission system
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A variable rate coding system is shown in Fig. 6.2.2, where a 
a buffer is used to smooth the data rate with the use of a 
controller.

INFORMATION TO DECOOER TRANSMITTED OVERHEAO INFORMATION

Fig. 6.2.2: A variable rate coding system

The model is made of an image source which is the sampled 
and quantized picture elements obtained from a television 
camera or facsimile scanner. The source encoder transforms 
the source data into a form that may reduce the number of 
bits required to represent each picture element. Next, the 
coded image source is converted to a format suitable for 
transmission. This step involves modulation of the 
transmission carrier and addition of check bits to each code­
word in order to implement an error detection or correction 
at the decoder. The channe] will introduce some noise 
independently to each bit of the transmitted code-word. The 
channel decoder and source decoders invert the coding processes 
to produce a reconstructed image source.
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In our discussion we are only interested in the 
source coding; its algorithms; how they relate to the 
image signal it encodes; how the bit rate can be reduced 
by exploiting the source signal statistics and properties 
of human perception; the variety of quality criteria; 
the coder complexity;and, above all, how these phenomena 
are interrelated, and can be traded to approach an optimum 
design.

As mentioned above, the possibility of bandwidth 
reduction is indicated by two observations. First, there 
is a large amount of statistical redundancy or correlation in 
normal images. For example, two points that are spatially 
close together tend to have nearly the same brightness level. 
Encoding techniques that take into account the image 
statistics are known as statistical image coding [IB], [2B].
Unfortunately, statistical measures ,means,.covariances and 
first-order probability density functions are not a complete 
measure of picture structure. Pictures contain significantly 
more structure than is represented by the first and second 
order moments. Also pictorial data are not homogeneous, 
different regions of a picture contain different structures.

Second, there is a large amount of psychovisual 
redundancy in most images. The sensitivity of the human 
visual system to errors in the reconstructed picture depends 
on the frequency spectrum of the error, the gray level and 
amount of detail in the picture in the vicinity of the error.
For example, the eye's sensitivity to distortion decreases with 
brightness and decreases with frequency. Hence it is possible to
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increase the efficiency of the coder by allowing distortions that 
do not degrade subjective quality. Coding algorithms that 
take into account the human visual model are known as 
psychovisual coders [3B], [4B]. Hall [4B] has introduced
a mathematical model for the human visual system (HVS) which 
consists of a low pass filter, a log function and a high 
pass filter.

In the next section transform coding is introduced 
which takes into account some aspects of both statistical 
and psychovisual coding.

6.3 Transform Image Coding
Transform source coder can be modelled as a sequence 

of three operations, a transformation, quantizer and coder, 
as illustrated in Fig. 6.3.1.

Noiseless 

c han nel

Fig. 6.3.1: A simple transform coder
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The purpose of the two-dimensional linear transformation is 
to transform the set of statistically dependent pixels into 
a set of statistically independent variables. Such a linear 
transformation is a highly statistical transformation which 
cannot be found exactly because of the complex structure of 
images. The closest linear transformations that produce 
independent coefficients are the ones that produce uncorrelated 
coefficients. The resulting coefficients are uncorrelated but 
not necessarily statistically independent. However, for 
Gaussian image data,decorrelation ensures statistical 
independence. Several sub-optimal linear two-dimensional 
transformations have been employed in [5 B], [6B], [7 B].
Transforms like the discrete Karhunen-Loeve (KLT) [7B], 

which is based upon the statistical properties of an image, 
is found to uncorrelate image components quite well. 
Unfortunately such a statistical transformation does not 
have a fast implementation algorithm, so several deterministic 
fast transformations such as Fourier, Cosine, Sine, Hadamard 
and slant were investigated by several authors [5B], [6B], [8B],

and [9 B].
Ahmad and Rao [10B] investigated the performance of 

the discrete cosine transform with respect to the discrete 
KLT. They found that the cosine transform base functions are 
nearly equivalent to those of the discrete KLT. So, the 
discrete cosine transform is chosen throughout this chapter 
as our linear transformation which is implemented by the 
algorithm given in Chapter Five.

The quantizer is a mapp/j^ from the continuous 
variable domain of transform coefficients into the domain of
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integers. These integers become the code-words that are 
transmitted through the channel. The actual coefficient 
quantization is performed in two steps: (a) the coefficient
is normalized by its estimated variance and (b) the normalized 
variable is processed by the optimum quantizer based on the 
modelled probability density function of unit variance. The 
number of bits for a quantized coefficient is determined by 
relating the assumed prequantized variance to distortion [12B]. 
The optimum quantizer minimizes the mean square error between 
the original and quantized coefficients. The algorithm for 
designing a K-level quantizer was developed by Max [12B] for 
a Gaussian signal and subsequently for other probability 
distributions [13B].

Finally, the entropy coder is a reversible process 
which assigns a unique code-word to each possible input value. 
This entropy encoder exploits the redundancy that exists in 
the non-uniform probability distribution of the quantized 
data. In our algorithms a Huffman coder [14B] is used which 
assigns code-words of unequal lengths to the quantizer output 
levels.

6.3.1 Block-Transform Coding
As a consequence of the computational complexity

*

involved in two-dimensional transform coding an image of 
size (NxN) is sub-divided into a set of (MxM) blocks, where 
each block is coded as a unit, independent of all other 
blocks. Block size is an important practical consideration.
The argument is often made that no benefit is obtained by 
choosing subimages larger than the image correlation distance, 
assuming it is known. For most images the pixel correlation
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distance is likely not to exceed 8 or 20 pixels [15B ] .
This is not a valid assumption since an image has a non- 
homogeneous structure, thus pixel correlation distance is 
different tor different parts of the image. However, for 
practical reasons, it is advantageous not to exceed 16x16 
or 32x32 block size. To obtain maximum decorrelation, 
increasing block size is beneficial. Conversely, to adapt 
to the local image structure, a smaller block size is 
preferred. In addition, the overheads associated with an 
adaptive transform coding algorithm are likely to become more 
important with decrea^iwj transform block size.

In block-transform coding there are two branches:

(a) Non-adaptive two-dimensional block transform 
coding in which each block is coded using 
the same encoder.

(b) Adaptive two-dimensional block transform 
coding where each subimage is coded using 
the best encoder for that subimage content.

In the following sections both adaptive and non- 
adaptive block-transform coding systems will be discussed 
and simulated.

6.3.1.1 Non-Adaptive Block Transform Coding with
Experimental Results

The test images in Figs. 6.3.2 and 6.3.3 of
resolution 128x128 quantized to 8 bits were partitioned into 
blocks of size (8x8), then each block f(i,j) was cosine
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Fig. 6.3.2: Digital test image of size (128 x 128)
with amplitude resolution of 8 bits, 
shown with only 16 levels.

Fig. 6.3.3: Digital test image of a telephone box of
size (128 x 128) with amplitude resolution 
of 8 bits, shown with only 16 levels.
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trans formed. 
are given by

Fi(u ,

The forward and inverse 
expression (6.3.1):

v
N l_1 N 2_1 
Z Z f ( i , j )

i=0 j=0

cosine

AR (i,j)

transforms

(6.3.1)
for u = 0,1,..., N^-l 

v = 0,1,..., N2-l
V 1 N 2 - l

Z Z F (u, v ) B (u , v ) 
u =0 v=0 K

for i = 0,1,..., N^-l 
j = 0,1,..., N2-2

where A„(i,j) and B (u,v) are the forward and inverse transform 
kernels.
A typical cosine transformed block is shown in Fig. 6.3.4.
The result shows that the magnitude of the cosine transformed 
coefficients decrease with increase in frequency, in a zig­
zag manner. Next, the transform coefficients are operated on 
by a coefficient selector that decides which coefficients are 
to be quantized and then transmitted.

There are two methods for selecting coefficients;

(a) Threshold coding system [16B] where each
coefficient whose magnitude is greater than 
a given threshold level is quantized with a 
fixed number of levels and is then coded.
In this system the overhead information 
which gives the position of the selected 
coefficients is run-length coded.
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4 4 4 4 4 4 4 0

4 5 5 5 5 5 4 0

4 5 6 6 6 5 4 n

4 5 6 7 6 5 4 0

4 5 6 6 6 5 4 0

4 5 5 5 5 5 4 0

4 4 4 4 4 4 4 0

4 4 4 4 4 4 4 0

(a)

7 7.5 -5 ') - l. l :.x 3.5 - l.l -5.ft

-4.5 OX o.3 -0.3 0.3 -0.4 0.1 0.7

-4.0 n x 1.7 0.3 0.0 -0.1 0.1 0.3

- i.: 0.‘> I I -0.7 O.o -0.3 -1.4

_ 7 ■> i -0.5 -10 0.7 -o.x 0.3 1.4

S . 2 -14 0. ■ 0 x -0 4 I.X -0 3 -1.7

-5 3 ().<) -0.3 -11.(1 (1.4 -0.7 n.: 0.0

-:.4 0 4 -0.! -0.3 o .: -0.4 0.0 0.8

(b)

Fig. 6.3.4: (a) The original test block
(b) The cosine transform of the test block
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(b) Zonal-coding system, where a bit
assignment matrix N (u,v) is formed whichD

gives the quantization levels with which 
the transformed coefficients are quantized.
The coefficients with larger variances 
generally contribute significantly more to 
the reconstructed image than the coefficients 
with the smaller variances; the total 
distortion due to quantizing coefficients 
may be lessened by allocating more quantization 
levels or bits to the coefficients with the 
larger variances and proportionally fewer to 
the coefficients with the smaller variances.

For a source with Gaussian probability distribution
and mean-square distortion criterion, Davisson [ 17B] has
shown that the bit assignment matrix N0 (u,v ),based upon aD

rate-distortion theory, is given by

(6.3.2)

2where a (u,v) is the expected variance of the transformed
coefficients given by the equation below

Z [ F ■ . (u, v) ]
= n  1 ' J

2 [ m (u, v ) ]2

(6.3.3)

for u,v,e (0,1,2,... , N)
where P and Q give the number of the blocks in each direction,
and m(u,v) is the mean of the transformed coefficients, N is
the number of rows and columns in each block.



- 78 -

D (distortion) is a parameter which controls the tradeoff 
between the rate of the encoder and the quality of the 
reconstructed image. For example,decreasing D increases 
the bit rates with a corresponding decrease in mean-square 
error (MSE).

Figs. 6.3.5(a) and 6.3.5(b) denote the expected 
variance and the bit assignment matrix for a given rate R 
and distortion D, of the test image in Fig. 6.3.2. The 
corresponding matrices for test image in Fig. 6.3.3 are given 
in Figs. 6.3.6(a) and 6.3.6(b). Finally several bit 
assignment matrices are given in Fig. 6.3.6(c), with their 
corresponding bit rate R and distortion D.

Fig. 6.3.7 shows several zonal-coded images using the 
bit assignment matrices given in Fig. 6.3.6(c) , a MAX 
quantizer [12B].

In our tests normalized mean-square error (NMSE) 
was used as a criteria for image quality, given by

Nl"1 N2_1 . a
NMSE = rrt-r- £ £ [ £-(i'.j.L. ~ ■ --(l' V  ]2 (6.3.4)

N1N2 i=0 j=0 f(l'3>
Awhere f(i,j) and f(i,j) are the original and the processed 

images of size (N-̂ xN̂ ) respectively.
Hall [15B ] reported a better image quality measure by 

calculating NMSE in Human Visual Domain (HVDM) rather than 
calculating it in spatial domain.

From the results in Fig. 6.3.7 it is seen that the 
NMSE end-subjective quality of the processed images improve 
as the bit rate is increased.
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22 1 40 20 13 6 4 5 4

2 2 8 4 3 2 1 1 1

9 *4 3 2 2 1 1 1

3 3 2 2 1 1 1 1

•1 2 2 2 1 1 1 1

3 1 1 1 • 1 1 1 1

3 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

Fig. 6.3.5a: The expected variance for blocks of 8x8

of the image in F i g . 6.3.2

8 5 4 4 3 2 3 2

5 3 2 2 1 1 0 0

3 2 2 1 1 1 0 0

2 2 1 1 1 0 0 0

2 1 1 1 1 0 0 0

2 1 i 1 1 0 0 0

2 1 1 1 1 0 0 0
~i 1 1 0 0 0 0 0

F i g . 6.3.5b: The bit assignment matrix for block of 8x8

at bit rate of R = 1.3 with distortion 

D - 0.5

126 42 25 13 8 6 8 6

19 6 3 2 1 1 1 1

12 4 2 1 1 1 1 1

9 3 2 1 2 1 1 1

6 3 2 2 1 1 1 1

5 3 2 1 1 1 1 1

4 3 2 1 1 1 1 1

4 3 2 1 1 1 1 1

Fig. 6.3.6a: The expected variance for blocks of 8x8

of the image in Fig . 6.3 . 3

7 5 5 4 3 3 3 3

4 3 2 1 1 1 1 0

4 2 1 1 1 1 0 0

3 2 1 1 1 0 0 0

3 2 1 1 0 0 0 0

3 2 1 1 1 0 0 0

2 2 1 1 I 0 0 0

2 2 1 1 0 0 0 0

Fig. 6.3.6b: The bit assignment matrix for block of 8x8

at bit rate of R = 1 .42 with distortion

D = 0 . 5



80

) 2 ' * ? 3 3

2 t i 1 3 0 0

1 * t 0 3 0 ■3 3

l l 1 0 3 •3 0

0 ) 0 ) 1 3 0 3

0 0 0 0 3 3

0 0 0 0 3 0 0

< A ) R - 0 . ) 4 , 0  * 0 . 3

3

5

$ 4

J 2 2

3

1

)

0

2

0

3 2 2 1 l 0 a

2 2 i l } 1 0

2 f i 1 0 0 0

2 l i t 0 0 0

2 i 1 1 l 3 0 0

2 i t 0 0 0 0 0

(bt a • t .5, 0  ■ 0 . 5

3 6 5 4 3 3 3

Fiq. 4.3.60(1): 3it assiqnment matrices for the picture in
Fiq. 4.3.3 sc otc rpce R with distortion P

7 5 4 3 3 2 3 2
4 2 1 1 1 0 0 0

3 2 1 1 0 0 0 0

3 l 1 0 1 0 0 0

2 i 1 1 0 0 0 0
2 1 1 0 0 0 0 0

2 1 1 0 0 0 0 0

2 1 1 0 0 0 0 0

(a) R * 1.1, D - 0.9

7 5 5 4 3 3 3 3
4 3 2 1 1 t 1 0

4 2 1 1 1 1 0 0
3 2 1 1 1 0 0 0
3 2 1 1 0 0 0 0

3 2 1 1 1 0 0 0
2 2 1 1 0 0 0 0

2 2 1 1 0 0 0 0

lb) P. * 1.4, D « 0.5

e 6 5 4 4 3 4 3

5 3 2 2 2 2 1 1

4 3 2 2 T ? 1 1

4 3 2 2 2 1 1 0

3 2 2 2 1 1 0 1
3 2 2 1 1 1 1 1

3 2 2 1 1 0 c 1

3 3 2 2 * C c

(ci R « 2 , 0  = 0 2

8 1 6 5 4 4 4 4

5 4 3 3 2 2 2 2
5 3 3 2 2 2 1 1

4 3 2 2 2 1 1 1

4 3 2 2 1 1 1 1

4 3 2 2 2 1 ; 1

3 3 2 2 2 1 1 1

3 3 3 2 1 1 i 1

Id ) R * 2.5, D * 0, 1

Fig 6.3 .6 c (2) Bit assignment matrices for the picture

Fiq. 6.3.3 at bit rate R with distortion D
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F i g  . 6 . 3 . 7 : ( a )  T h e  c o d e d  im a g e  o f  F i g .  6 . 3 . 2  a t  b i t  r a t e  o f  
R = 2 . 4 7  b i t s / p i x e l ,  NMSE = 3,4 x  10 2 w i t h  
d i s t o r t i o n  p a r a m e t e r  DX = 0 . 1 .

( b )  T h e  c o d e d  im a g e  o f  F i g .  6 . 3 . 3 ,  R = 2 . 5 2 ,
NMSE = 1 . 1 3  x  1 0 " 2 w i t h  DX = 0 . 1 .

( c )  T h e  c o d e d  im a g e  o f  F i g .  6 . 3 . 2 ,  R = 1 . 9 ,
- 3NMSE = 5 . 0  x  10 w i t h  DX = 0 . 2 .

( d )  T h e  c o d e d  im a g e  o f  F i g .  6 . 3 . 3 ,  R = 2 . 0 4 ,
NMSE = 1 . 3 3  x  1 0 ‘ 2 w i t h  DX = 0 . 2 .
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6 . 3 . 2  An A d a p t i v e  C o d i n g  T e c h n i q u e  w h i c h  t a k e s  i n t o

a c c o u n t  t h e  I n t e r - c o r r e l a t i o n  b e t w e e n  t h e  B l o c k s

I n  t h e  p r e v i o u s  s e c t i o n  a n  im a g e  o f  s i z e  NxN was  

d i v i d e d  i n t o  b l o c k s  o f  s i z e  MxM. E a c h  b l o c k  wa s  a s s u m e d  t o  

b e  i n d e p e n d e n t  o f  t h e  n e i g h b o u r i n g  b l o c k s  a n d  c o d e d  

i n d e p e n d e n t l y .  T h i s  a s s u m p t i o n  i s  n o t  s t r i c t l y  v a l i d  b e c a u s e  

t h e  p i x e l s  o n  t h e  b o r d e r  o f  a b l o c k  a r e  c o r r e l a t e d  w i t h  

r e s p e c t  t o  t h e  p i x e l s  o n  t h e  b o r d e r s  o f  t h e  a d j a c e n t  b l o c k s .

I n  t h i s  s e c t i o n  t h e  i n t e r - b l o c k  c o r r e l a t i o n  i s  i n v e s t i g a t e d  

a n d  a m e t h o d  i s  d e v e l o p e d  t o  d e c o r r e l a t e  t h e  a d j a c e n t  b l o c k s .  

F i r s t  t h e  e f f e c t  o f  o v e r l a p p i f l j ' t h e  b l o c k s  i s  c o n s i d e r e d  a n d  

i t s  c o m p u t a t i o n a l  c o m p l e x i t y  i s  c o m p a r e d  w i t h  t h a t  o f  t h e  

n o n - o v e r l a p p i n g  m e t h o d .  T h e n  an  a d a p t i v e  o v e r l a p p i n g  t e c h n i q u e  

i s  d e v e l o p e d .

6 . 3 . 2 . 1  E x p e r i m e n t a l  R e s u l t s  f o r  O v e r l a p p e d - b l o c k  T e c h n i q u e

F i r s t  t h e  e f f e c t  o f  o v e r l a p p i n g  b l o c k s  w i t h o u t  

q u a n t i z a t i o n  wa s  c o n s i d e r e d  f o r  c o d i n g  a p i c t u r e  o f  h a n d ­

w r i t t e n  E n g l i s h ;  t h e  l e t t e r s  ' s h u '  o f  s i z e  9 6 x 9 6  d i g i t i z e d  

t o  5 b i t s  a s  s h o w n  i n  F i g .  6 . 3 . 8 .  T h e  im a g e  wa s  t h e n  d i v i d e d  

i n t o  b l o c k s  o f  s i z e  1 6 x 1 6  a n d  e a c h  b l o c k  was  c o s i n e  t r a n s f o r m e d  

a s  g i v e n  b y  e x p r e s s i o n  ( 6 . 3 . 1 ) .  T h e  e f f e c t  o f  d i s c a r d i n g  a 

n u m b e r  o f  l o w  m a g n i t u d e  c o e f f i c i e n t s  a n d  r e p l a c i n g  t h e m  w i t h  

z e r o e s  a n d  r e c o n s t r u c t i n g  was  t h e n  c o n s i d e r e d .

F i g .  6 . 3 . 9  s h o w s  s e v e r a l  i m a g e s  r e c o n s t r u c t e d , o n l y  

r e t a i n i n g  t h e  f i r s t  1 6 , 6 4 ,  144  o f  t h e  t r a n s f o r m e d  c o e f f i c i e n t s .  

As  s e e n  f r o m  t h e  i m a g e s ,  d i s c a r d i n g  t h e  h i g h  f r e q u e n c y  

c o e f f i c i e n t s  h a s  t h e  e f f e c t  o f  l o w - p a s s  f i l t e r i n g .
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l
I

3

• ■ c h n  n i r t u r e  o f  s i z e  9 6 x 9 6  w i t hF i q .  6 . 3 . 8 :  T h e  o r i g i n a l  Shu p i c t u r
a m p l i t u d e  r e s o l u t i o n  o f  5 b i t s / p i x e l



F i g .  6 . 3 . 9 : ( a )  R e c o n s t r u c t e d  im a g e  b y  r e t a i n i n g  o n l y  t h e  
f i r s t  16 t r a n s f o r m  c o e f f i c i e n t s .

( b )  R e c o n s t r u c t e d  im a g e  b y  r e t a i n i n g  o n l y  t h e  
f i r s t  64  t r a n s f o r m  c o e f f i c i e n t s .

( c )  R e c o n s t r u c t e d  im a g e  b y  r e t a i n i n g  o n l y  t h e  
f i r s t  144 t r a n s f o r m  c o e f f i c i e n t s .
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I n  o r d e r  t o  i n v e s t i g a t e  t h e  e f f e c t  o f  o v e r l a p p i n g ,  

t h e  t e s t  im a g e  wa s  f i r s t  e x t e n d e d  t o  ( 1 1 2 x 1 1 2 )  b y  p a d d i n g  

z e r o e s  t o  e n e r g y  d i r e c t i o n  o f  t h e  i m a g e ;  e a c h  b l o c k  o f  1 6 x 1 6  

w as  t h e n  e n l a r g e d  t o  a n  o v e r l a p p e d - b l o c k  s i z e  o f  3 2 x 3 2 .  T h i s  

w as  a c h i e v e d  b y  o v e r l a p p i n g  e a c h  b l o c k  w i t h  i t s  e i g h t  n e i g h ­

b o u r i n g  b l o c k s  b y  8 p i x e l s .

F i g .  6 . 3 . 1 0  r e p r e s e n t s  t h e  p r o c e s s e d  im a g e s  o b t a i n e d  

b y  o v e r l a p p i n g  t h e  b l o c k s  e i g h t  p i x e l s  i n  e a c h  d i r e c t i o n  a n d  

r e t a i n i n g  o n l y  t h e  f i r s t  1 6 ,  6 4 ,  1 4 4  c o e f f i c i e n t s .

C o m p a r i n g  t h e  r e s u l t s  i t  i s  s e e n  t h a t  b y  o v e r l a p p i n g  

t h e  b l o c k s  b y  a c e r t a i n  n u m b e r  o f  p i x e l s ,  s u b j e c t i v e l y  

b e t t e r  c o d e d  im a g e s  c o u l d  b e  o b t a i n e d .

N e x t  t h e  e f f e c t  o f  q u a n t i z i n g  t h e  o v e r l a p p e d - b l o c k s  

was  c o n s i d e r e d .  T h e  e x p e c t e d  v a r i a n c e  a n d  b i t  a s s i g n m e n t  

m a t r i c e s  f o r  o v e r l a p p e d - b l o c k s  a r e  s h o w n  i n  F i g .  6 . 3 . 1 1 .

F i g .  6 . 3 . 1 2  s h o w s  t h e  c o d e d  im a g e s  f o r  o v e r l a p p e d - b l o c k s  a t  

s e v e r a l  t r a n s m i s s i o n  r a t e s  R w i t h  t h e i r  c o r r e s p o n d i n g  NMSE.

C o m p a r i s o n  o f  t h e  r e s u l t s  i n , F i g s .  6 . 3 . 7  a n d  6 . 3 . 1 2  

s h o w  t h a t  b y  o v e r l a p p i n g  t h e  b l o c k s  we c a n  t r a n s m i t  t h e  im a g e  

a t  a l o w e r  b i t  r a t e  t h a n  f o r  t h a t  o f  t h e  n o n - o v e r l a p p e d  

b l o c k s ,  w i t h  t h e  same d i s t o r t i o n .  T h e  r e a s o n  i s  t h a t  b y  

o v e r l a p p i n g  t h e  i n t e r - b l o c k  c o r r e l a t i o n  i s  t a k e n  i n t o  a c c o u n t  

a n d  e a c h  b l o c k  i s  made  m o r e  i n d e p e n d e n t  o f  t h e  o t h e r s  t h a n  

b e f o r e .  A l s o  t h e  l a r g e r  t h e  b l o c k  s i z e  t h e  m o r e  s t a t i o n a r y  

w i l l  t h e  d a t a  b e  b e c a u s e  t h e  l a r g e r  t h e  b l o c k ,  t h e  m o r e  

l i k e l y  w i l l  a r e a s  o f  l i t t l e  v a r i a t i o n  b e  i n c l u d e d  w i t h  a r e a s  

o f  g r e a t  v a r i a t i o n .  T h e  n u m b e r  o f  m u l t i p l i c a t i o n s  n e e d e d  f o r  

c o s i n e  t r a n s f o r m i n g  a n o n - o v e r l a p p e d  b l o c k  a n d  a n  o v e r l a p p e d  

b l o c k  o f  s i z e  M-^xM^ a n d  2M ^ x 2M2 b y  t h e  p r o p o s e d  t e c h n i q u e  i n  

C h a p t e r  4 a r e  g i v e n  b y  e x p r e s s i o n s



Reconstructed image by retaining only the 
first 16 transform coefficients of the 
overlapped block.
Reconstructed image by retaining only the 
first 64 transformed coefficients. 
Reconstructed image by retaining only the 
first 144 transform coefficients.

(a)

(b)

(c )
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207 55 17 1 1 1 1 6 5 6 3 3 3 2 3 2 2 2
59 1 1 6 4 3 2 2 1 1 1 1 1 1 1 1 1
37 7 4 3 2 2 1 1 1 1 1 1 1 1 1 1
18 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1
3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
10 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
6 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Fig. 6.3. 11a: The vqriance matrix for overlapped block of size
(16, 16) of the image in Fig. 6.3.2

7 5 4 3 3 2 2 2 1 2 2 1 1 1 1 1
5 6 2 2 1 1 1 0 0 0 0 0 0 0 0 0
5 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0
4 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 0 (J u 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. £.3.lib: Bit assignment matrix for overlapped block of 
size (16,16) of the image in Fig. 6.3.2 at 
bit rate of R = 0.4 with distortion D = 0.9
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1 18 52 20 12 1 3 7 9 5 5 5 3 4 3 3 3
39 7 4 3 2 2 1 1 1 1 1 1 1 1 1
30 5 2 2 1 1 1 1 1 1 1 1 1 1 1
16 4 2 1 1 1 1 1 1 1 1 1 1 1 1
6 3 2 1 1 1 1 1 1 1 1 0 0 1 1
10 3 2 1 1 1 1 1 1 1 1 0 0 1 1
10 3 2 1 1 1 1 1 1 1 1 0 0 1 1
7 2 1 1 1 1 1 1 1 1 0 0 0 1 0
3 2 2 1 1 1 1 1 1 1 0 0 0 0 1
5 2 1 1 1 1 1 1 1 1 0 0 0 0 1
6 2 1 1 1 1 1 1 1 1 0 0 0 0 1
4 1 1 1 1 1 1 1 0 0 0 0 0 0 1
2 1 1 1 1 1 1 1 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 0 0 0 0 0 0 1
5 1 1 1 1 1 1 1 0 0 0 0 0 0 0
4 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Fig. 6.3.11c: The variance matrix for overlapped block of
size (16x16) of the image in Fig. 6.3.3

6 5 4 3 3 2 3 3 2 2 2 1 2 1 1 1

5 3 2 1 1 1 1 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F i g . 6.3. 1 Id: T he bit a s s i g n m e n t  m a t r i x for ove r  lapped block of
size ( 16x16) of the image in F i g . 6.3., 3 at bit rate
for R = 0.5 w i t h d i s t o r t i o n  D = 0..9



Fig. 6.3.12: (a) The coded image of Fig. 6.3.2 at bit rate-3of R = 1.9 bits/pixel, NMSE = 5.1 x 10 
with distortion parameter DX = 0.07.

(b) The coded image of Fig. 6.3.3, R = 2.25, 
NMSE = 1.02 x 10"2, DX = 0.03.

(c) The coded image of Fig. 6.3.2, R = 1.37, 
NMSE = 6.09 x 10"3, DX = 0.1.

(d) The coded image of Fig. 6.3.3, R = 1.0,
= 1.54 x 10"2, DX = 0.2.NMSE
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MU 1 = 2MlM2 (2 + i° g2 -V
MU 1; 4 M M )= 8MlM2 (3 + log2 Mj)

Thus by overlapping the computational complexity is 
increased four-fold.

6.3.2.2 A New Adaptive Overlapped-block Technique with
Computer Simulations[64B ]
In order to reduce the computational cost of 

overlapped-block coding technique, an adaptive overlapping 
method is implemented. The basic idea is to find the dependency 
of each block on its four neighbouring blocks, and if it is 
highly dependent on its neighbouring blocks it is enlarged 
by overlapping it with its neighbouring blocks. In this way 
an overhead information matrix is formed with elements of 1 
and 0, where one and zero denote whether the block is overlapped 
or not, respectively.

The correlation or the dependency between the blocks 
is based upon the conditional entropy H(X/Y) or the mutual 
entropy I(X,Y) between two neighbouring blocks X and Y.

Consider a block X with M possible levels each with 
probability of occurrence P^, then the entropy or the average 
information conveyed by block X,if successive pixels are 
independent, is given by [17B]:

M
H (X ) = - I P. log. P.

i=i 1 2 1
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where log„ P. is the amount of self-information contained 
in each level. The maximum possible entropy occurs when the 
levels are equally likely

M
H = - I i log0 i = log M max M ^2 M ^2

If we consider two neighbouring blocks X with gray 
levels {x^} and Y with gray levels {y^}, then the average 
information that may be obtained from viewing one block 
element,given that we have observed another element,is given 
by average conditional entropy of the element X with respect 
to Y as defined by

Y (X / Y )
n n x . x .
E E Ply.) P( — > log. p(-i-) 
i=l j=l 3 yj ' 2 yj

and the average joint information or joint entropy between 
two blocks X and Y is given by

n m
H (X ,Y ) = - I I P (x . ,y . ) log0 P(x.,y.) (6.3.5)l j 2 l ji=l j=l

This joint information is always less than or equal to the sum 
of the entropies of the two block elements and equal only when 
the two gray levels are statistically independent as given by 
the expression below

H(X,Y) = H(X) + H(Y) - I(X,Y)
H ( X ) + H ( Y / X ) ( 6 . 3 . 6 )
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where I(X,Y) is known as the mutual information given by 
I(X,Y) = H (X ) - H (X/Y) = H(Y) - H(Y/X) the mutual information
I (X ,Y ) between two neighbouring blocks X,Y may be interpreted
as the information transmitted over a communication channel, 
since H(X) is the information at the input of the channel 
and equivocation H (X/Y) is the information about the input X 
given that the transmitted block Y is known. Now if block Y 
is totally correlated with block X, then H(X/Y) = 0 and 
I(X,Y) = H(X). However if block Y is independent of X, then
H(X/Y) = H(X) and I(X/Y) = 0. Thus in order to find the
dependency between the blocks the conditional entropies 
between the neighbouring blocks have to be calculated.

The proposed algorithm will find the first-order 
conditional entropies between each block and its four 
neighbouring blocks, as shown in Fig.. 6.3.13. Then the

Fig. 6.3.13: Conditional entropies between neighbouring blocks
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summation K of the four conditional entropies is obtained 

K = H(X/A) t H (X/B) + H (X/C) + H(X/D)

This value K will give a measure of correlation between 
block X and its four neighbouring blocks. Only the blocks 
with a K value below a threshold are overlapped.

Fig. 6.3.14 shows the coded image by the above 
technique, where overlapping is chosen to be only four pixels 
in every direction. Since not all the blocks are overlapped 
the computational complexity is reduced compared with that 
of non-adaptive overlapped-block technique, with marginally 
the same subjective quality. Also since the entropy of each 
block is a measure of activity or variability in that block, 
the above technique could be made adaptive by classifying 
the blocks into disjoint classes with respect to their 
activity and then coding at different bit rates.

6.4 A New Zonal-coding Technique using a Vector
Quantization Algorithm [64B]
To achieve a low bit rate in standard Zonal transform 

coding techniques, a large number of the high frequency 
coefficients are usually discarded. But this could result 
in a distorted image especially at very low bit rates. Here 
these high frequency coefficients are coded by a vector 
quantization algorithm (discussed in detail in chapters eight 
and nine), which exploits the dependency between these 
coefficients. Here the vector quantization algorithm will 
arrange the high frequency coefficients into vector patterns 
of dimension four, and each vector pattern is compared with
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a code-book of standard vector templates of the same
dimension, and is represented by its nearest (in a mean
square sense) matching vector-template and transmitted.
At the receiver these high frequency coefficients are
reconstructed using the corresponding vector-templates in
place of the original vectors. In practice this reconstruction
can be done very rapidly by using the code-words to address a
Read only Memory (ROM), in which the standard vector-templates
are stored. The code-book, consisting of the most probable
vector-templates, is formed in an ad hoc manner, by employing
a training set of several transformed images, using the
algorithm in [18B]. Fig. 6.4.1 shows the coded image by the
above technique at a bit rate of R = 1.1 bits per pixel and

-3NMSE = 5.9 x 10 . The transform used was cosine transform
and blocks of size 8 x 8  pixels were.used. The low frequency 
coefficients are coded by using a bit assignment matrix as 
shown in Fig. 6.4.2.

Fig. 6.4.2: The- new bit assignment matrix
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Fig. 6.3.14: Coded image by the adaptive overlapping
technique at bit rate of R = 1.1 bits/pixel 
NMSE = 7.0 x 10"2.

Fig. 6.4.1: Coded image by the proposed Zonal-coding
technique at bit rate of R = 1.1 bits/pixel 

= 5.9 x 10"3.NMSE
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6.5 Conclusions
In this chapter image coding is introduced. In section 6.2 

a simple digital transmission system is introduced and each of 
of its components explained. The statistical and psychovisual 
redundancies in the image data are also discussed. In section 6.3 
a simple transform coder is introduced which consists of a 
two-dimensional transform, quantizer and a coder. The purpose 
of each component is explained. In section 6.3.1 block transform 
coding systems are discussed. Several techniques are discussed. 
Adaptive an^ non-adaptive block transform coders are explained.
In section 6.3.1.1 conventional block transform coders are 
reviewed. Derivation of the bit assignment matrix and the 
expected variance matrix are also given in section 6.3.1.1. 
Finally, simulation results are given for several coded images.
In section 6.3.2 the effect of overlapping blocks are considered. 
In 6.3.2.1 several coded images are given by overlapping blocks 
and compared with that of non-overlapping blocks. In 
section 6.3.2.2 a new adaptive overlapping block transform coder 
is explained. In this coder only highly correlated blocks are 
overlapped. The correlation measure between the blocks is based 
upon the conditional entropies between the blocks. In section 6.4 
a new zonal coding strategy is developed where the bit 
assignment matrix is a combination of zonal and vector coding 
techniques.

The adaptive techniques which are based upon the 
directionality of the bit assignment matrix [19B], [20B] are
not discussed in detail or simulated in this chapter. The 
expected variance of the transformed coefficients are evaluated 
for each image and transmitted. It is possible to use a recursive 
technique to estimate the variance matrix from the transformed 
coefficients.
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CHAPTER SEVEN

PREDICTIVE CODING TECHNIQUES

7.1 Introduction

In this chapter, predictive coding techniques that 

take advantage of the picture signal statistics, such as 

differential pulse code modulation (DPCM) are introduced. 

Extended differential pulse-code modulation systems with 

adaptive predictors and adaptive quantizers are explained in 

Section 7.2. In general, the sample values of spatially 

neighbouring picture elements are correlated. Correlation 

or linear statistical dependency indicates that a linear 

prediction of the sample values based on sample values of 

neigbouring picture elements will result in prediction•errors 

that have a smaller variance than the original sample values. 

One-dimensional prediction algorithms make use of the 

correlation of adjacent picture elements within the scan 

line [21B], other more complex schemes also exploit line-to- 

line [22B] and frame-to-frame [23B] correlation and are 

denoted as two-dimensional and three-dimensional predictions 

respectively. In Section 7.3 a new adaptive DPCM algorithm 

is introduced which employs Fuzzy Concepts [24B]. Only 

intraframe predictive coding techniques are introduced. In 

Section 7.4 we will give a comparison of the adaptive 

DPCM algorithms with transform coding techniques. The 

predictors used are linear since a non-linear predictor 

involves conditional expectation values which are difficult to 

implement.
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7.2 Differential Pulse Code Modulation

A block diagram of a digital DPCM system is shown 

in Fig. 7.2.1. For every picture element x , the linear

predictor generates a prediction value which is calculated 

from N-l preceding samples accord/7M to the relation

A N-l
E

i=l
xN-i

Only preceding transmitted samples are used for prediction, 

so that the receiver is also able to calculate x.T. The 

coefficients a^ are optimized to yield a prediction error 

dx, = x..-xXT with minimum variance. Usually the difference 

signal is quantized to eight levels and coded with a 3-bit 

code, since the probability of occurrence of the quantized 

difference signal is not uniform (Fig.. 7.2.2). It is possible 

to employ a variable-length statistical code, such as a 

Huffman code [14B], rather than a 3-bit constant length code, 

and achieve a greater coding compression.

In order to take the full advantage of DPCM systems, 

several authors [25B], [26B] have investigated adaptive

predictors and quantizers. The aim of adaptive prediction 

algorithms is to reduce the prediction error and then the 

variance and thus to decrease the quantization error at picture 

contours, where invariant predictors generally produce the 

largest prediction error. There are several ways to make the 

predictor adaptive, but the main two types of adaptive 

predictors are, one that uses an adaptive coefficient in which 

the predictor coefficient is changing with respect to the 

incoming signal, and a more complicated so-called contour
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channel

Fig. 7.2.1: A conventional DPCM system

Fig. 7.2.2: Histogram of the difference signal



- 101 -

predictor which aims at selecting the neighbouring picture 

element that is most similar in amplitude to the actual 

picture element to be coded [22B].

Adaptive quantizers are used in order to eliminate 

the impairments (such as slope overhead, granularity noise, 

contouring patterns and edge busyness) caused by finite-level 

quantizers. Adaptivity could be based on using a non-uniform 

quantizer which could be designed to take into account the 

human visual system [27B].

The conventional DPCM system in Fig. 7.2.1 was 

simulated for uniform 32 level Gaussian, Laplacian and Gamma 

quantizers. The DPCM signal was Huffman coded. The predictor 

was a fixed previous picture element predictor. Fig. 7.2.3 

shows the coded images with a 32-level Laplacian quantizer.

From extensive simulation it was found that the error’signal 

probability distribution is very close to a Laplacian 

distribution as reported by other authors [2133].

7.3 A New Adaptive DPCM Coding [31B], [32B]

In the previous section the redundancies, such as 

correlation in the picture data or non-uniform probability 

density of the data were removed by DPCM and entropy coding 

techniques respectively. In this section the DPCM system of 

Fig. 7.2.1 is made adaptive in order to take full advantage of 

these two redundancies. The proposed hybrid DPCM system (HDPCM) 

is shown in Fig. 7.3.1. In the system we use transformation 

T(d^) on the difference signal d ^ . This transformation will 

make the probability density distribution of the difference

signal which is highly peaked into a much more highly peaked one, 

as shown in Fig. 7.3.2. Such a highly peaked density
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-Fig. 7.2

(a)

[ b)

3: (a) DPCM coded
bits/pixel

(b) DPCM coded
bits/pixel

image at bit rate of R = 

with NMSE = 1.7 x 10~3 . 

image at bit rate of R = 

with NMSE = 3.6 x 10_ 3 .

3.1

3.1
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Fig. 7.3.1: Proposed hybrid system (HDPCM)

Fig. 7.3.2: Histogram of difference signal with and 
without transformation



- 1 0 4 -

distribution is very suitable for entropy coding, thus the 
purpose of the transformation T(d^) is to make full use of 
redundancy of non-uniform probability distribution of the 
signal. In the system simulated, a Huffman entropy coder is 
used, which is very suitable for such a probability distribution.

The transform T(d^) consists of three-operations [28B]:
(a) transformation from spatial d-domain to fuzzy

p-domain (0 ,< p ^ 1) using the standard S function 
shown in Fig. 7.3.3

where dmax/2 
P . = 0 . 5 ;l

2(Id.I/d1 i 1 max
1-2((dmax d L ) / d

d. >l

is the crossover

 ̂^max/2
>2max '

^max/2

point at which

(b) enhancing the contrast in the p-domain using 
the fuzzy intensification operator [29B] 
given by,

P. = A (P .) = 2(P .)2 , 0 < P. < 0.5i l l N l v

= P- , 0.5 P .  <  1i l x

which decreases the values of P̂  that are 
below 0.5 and leaves the rest unchanged.
The degree of enhancement can further be 
increased by making successive use of this
A-operator;
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X

Fig. 7.3.3: Standard S-function
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A - 1  A(c) inverse transformation = G (P̂ ) i-s
applied in order to obtain the enhanced
spatial domain d^ from the intensified
fuzzy p-values. The transformation 
T~1 ^  ) consists of the above operation
in reverse order.

7.3.1 Implementation and Results
The designed system was simulated on a digital computer 

CDS 6900 for two digitized pictures of 128 x 128 quantized 
to 8 bits. Figs. 7.3.1.1a and b show the processed pictures 
of a man without and with the transformation block T(d^) coded 
at 2.5 bits per pixel and 3.1 bits per pixel, respectively.
Fig. 7.3.1.2a and b demonstrate the coded 'telephone box' under 
the same processing condition. The corresponding normalized 
mean-square errors of the processed images are also given.
From the above result it appears that the use of a T(d^) block 
can easily save about 0.5 bit with an insignificant degradation 
over the standard DPCM system.

7.4 Nth-order DPCM versus Block Transform Coding [3QB]

The DPCM system that was simulated in section 7.2 used 
a first order linear predictor. If the order of the predictor 
is increased, that is a larger number of previous pixels are 
considered for prediction, the difference signal distribution 
is more highly peaked compared with that of a first order 
predictor. Bit rates of 1-2 bits per pixel are believed to be 
achieved with highly adaptive DPCM systems. This bit rate is 
comparable with that of transform coders discussed in chapter 
six. The DPCM systems are very sensitive to errors so they are
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>
Fig. 7.3.1.1: (a) DPCM coded image R = 3.1 and

NMSE = 1.7 x 10”3.
(b) Coded image by the proposed hybrid

system at bit rate of R = 2.5 bits/pixel 
with NMSE = 1.9 x 10~3.

( a )

Fig. 7.3.1.2: (a)
( b )

DPCM coded image R = 3.1 and-3NMSE = 3.6 x 10
(b) Coded image by the proposed hybrid

system at bit rate of R = 2.5 bits/pixel 
with NMSE = 3.9 x 10~3.

s
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not suitable for noisy transmission mediums. However, 
transform coders are not very sensitive to the noise introduced 
during transmission. The transform coders require a larger 
storage memory compared to that of DPCM since transformation 
is performed on a large sequence of pixels.

7.5 Conclusions
Predictive coders are introduced in this chapter.

Linear predictors are discussed in section 7.2. The linear 
predictors were only simulated, although non-linear predictors 
where the edge variation is incorporated are believed to.be 
much more efficient than linear predictors. The complexity of 
the predictor will increase the cost of the system as well as 
the time required to do the prediction. Most of the DPCM 
systems use an adaptive quantizer. Several adaptive quantizers 
have been mentioned in section 7.2. Simulation results with a 
Gaussian, Laplacian and Gamma quantizer are given in section 7.2. 
It is found that the error signal probability distribution is 
very close to that of Laplacian probability distribution. In 
section 7.3 a hybrid DPCM is introduced. A non-linear function 
is used to transform the error signal into a signal with a 
highly peaked distribution. Entropy coders are employed to 
exploit the non-uniformity of the error signal. A Huffman 
coder was employed in our simulations. 0.5 bit per pixel
can be saved by the proposed technique compared to conventional
DPCM systems.
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CHAPTER EIGHT

INTRAFRAME HYBRID IMAGE CODING

8.1 Introduction

In the previous two chapters two-dimensional transform 

and predictive image coding DPCM systems were introduced.

These systems had comparative advantages and disadvantages.

With transform image coding, higher image fidelity 

reconstruction can be achieved at low bit rates. Also, the 

transform techniques are not so sensitive to variations in 

image statistics and are less vulnerable to channel error 

effects than DPCM systems. DPCM systems have superior coding 

performances at high bit rates with less complex hardware 

implementation, and greatly reduced storage requirements.

The hybrid coding systems considered in this chapter 

are: hybrid transform/DPCM system [33B] and hybrid transform/ 

vector coding [34B ]. These two systems combine the attractive 

features of both transform and DPCM or vector quantization 

techniques respectively.

In sections 8.2 and 8.3 one- and two-dimensional 

hybrid transform/DPCM systems are discussed. Sections 8.4 

and 8.5 illustrate two proposed hybrid transform/vector 

quantization coding systems.

8.2 One-dimensional Hybrid Transform/DPCM System

A one-dimensional hybrid system exploits the correlation 

of the image data in the horizontal direction by taking a one­

dimensional transform of each line of the picture data 

x(n^,n^), and operating on each column of the transformed data 

Ptn^rr^) using a bank of DPCM systems. The DPCM systems
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quantize the signal in the transform domain taking advantage 

of the vertical correlation of the transformed data to reduce 

the coding error. In practice, a single adaptive DPCM code 

could be time-shared between columns. A simplified block 

diagram of the intraframe hybrid coder is presented in 

Fig. 8.2.1.

The general forms of the one-dimensional forward 

and inverse transforms along the image rows are:

P(n.,m_) = £ x(n1,n2) AR (n2,m ) (8.1)
n 2 = °

V 1
x(n^,n2 ) E P(n ,m2 ) BR (n2 ,m2 ) (8.2)

m 2=0

where An (n„,m ) and B (n ,m ) are the 1-D transform forward 

and inverse kernels respectively with m 2 as transform domain 

rows coordinate. Many different types of unitary transforms, 

for use in hybrid coding, including the Fourier, Sine, Cosine, 

Hadamard, slant and Karhumen-Loeve have been investigated.

[ IB ,1 6B ] .

Each DPCM coder forms the difference signal

D (nl , m 2 ) = P ( n]_m 2 ̂ “ P(n1 ,m2 ) (8.3)

with the transformed coefficient estimate P(n^,m2 ) being formed 

by a weighting of the coefficient from the previous line 

according to the equation

n r m 2 a1 (m2) P(n1-l,m2) (8.4)
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The weighting coefficient a ^ n ^ )  is chosen to minimise the
2

mean-square prediction difference E{D (n^rr^)}.

The difference signal is quantized and coded for 

transmission to the receiver. A zonal bit allocation 

strategy is used in which the number of code bits assigned to 

each difference signal is set in proportion to the logarithm 

of its variance [35B].

8.2.1 Experimental Performance of 1-D- Transform/DPCM System

Computer simulations have been performed on two test 

images, as shown in Figs. 6 , 3 .  and <£".3.3 of Chapter 3 ' *

to evaluate the performance of the one-dimensional hybrid 

coder. Because of its implementation simplicity a one­

dimensional Hadamard-transform (H T ) was employed on each 

line of the image data, followed by a first order predictive 

coder.

Fig. 8.2.3 illustrates hybrid one-dimensional HT/DPCM 

coder reconstructions of the Fig. <£".3.2 at average bit rates of 

1.5-3.0 bits per pixel. Application of the same system to 

the telephone box data gives subjectively poorer coding results 

owing, in part, to the higher spatial frequency content of 

the source image as shown in Fig. 8.2.4. The corresponding 

NMSE values, as a measure of image fidelity, are also given 

for each processed image. Better quality coded-images could 

have been obtained if adaptive DPCM coders were used.

Since the unitary transformation involved is a one­

dimensional HT of individual lines of the pictorial data, 

the equipment complexity and the number of computational 

operations is considerably less than that which is involved

i n  a  t w o - d i m e n s i o n a l  H T .



- 114 -

>■

Fig. 8.2.3: Coded images by hybrid transform/DPCM:

(a) At bit rate of R = 2.6 bits/pixel and
-2NMSE = 1.89 x 10

(b) At bit rate of R = 1.9 bits/pixel and
-2NMSE = 2.0 x 10

Fig. 8.2.4: Coded images by hybrid transform/DPCM:

(a) At bit rate of R = 1 . 9 bits/pixel and
, „-3NMSE = 1.19 X 10 .

(b) At bit rate of R = 1.5 bits/pixel and

NMSE = 1 .21 X 10"3.
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8.3 Two-dimensional Transform/DPCM Coding

In block-transform coding,illustrated in Chapter Five, 

an image was divided into smaller blocks in order to reduce 

computational complexity. Since the elements of various blocks 

remain correlated in the transform domain the efficiency of 

the system will be reduced.

Habibi [33B ] introduced the two-dimensional hybrid 

coding system that utilizes two-dimensional transformation 

of each block followed by bank of DPCM systems that would 

exploit the inter-block correlation, thus improving the coding 

efficiency of the system.

The block diagram of the system is shown in Fig.8.2.2.

8.4 A New One-dimensional Hybrid Coding Technique

using Vector-quantization

In this section a new hybrid coding technique has 

been proposed [34B ]. where one-dimensional transforms are 

taken along image rows and a vector-quantization process [18B, 

36B] is applied on the columns of the transformed image data, 

exploiting the inter-row correlation.

Fig. 8.4.1 shows the block diagram of the proposed 

hybrid transform-vector quantization coder. In operation, a 

one-dimensional transform is taken along each image line of 

the x image block, K ( n ^ , n ^ ) , yielding a sequence of 

transform coefficients,

P (n! 'm 2 ) =
N 2-l

n 2=0
x (n^ , n AR (n2'm2 8.5

where A_(n ,mK Z 2 i s  t h e  o n e - d i m e n s i o n a l  t r a n s f o r m  k e r n e l .



Fig. 8.4.1: The proposed one-dimensional hybrid/vector
quantization system.

-9
TT
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Each transformed row P(n^,m ) is normalized by the square 
root of the expected variance given by the expression

a (m2)
V 1

nl=0
[P( n^m ) ] - [y(m0 )] for m2=0,1,...N2~l

where y(m2) is the mean variance.
Then a large number of the high frequency coefficients 
are discarded as in the zonal coding process of Chapter bix, 
section 6.3.1.1, where the high frequency coefficients with 
small expected variance are discarded.

The neighbouring rows of the transformed image are 
highly correlated. This inter-row correlation can be 
exploited by constructing a set of K-dimensional vectors, 
where each vector consists of the K ."column-wise" corresponding 
samples taken from K neighbouring rows. Each vector is 
subsequently compared with a code-book of standard vector- 
templates, and is represented by its nearest matching vector- 
template in a Euclidean sense as given by the expression

dE
2I (x^-u) (8. 7)

where (x̂ ) and (u) are the image and vector template points 
respectively. Then the set of permissible vector templates 
is Huffman-coded and transmitted. At the receiver the 
transformed image is reconstructed using the corresponding 
vector-templates in place of the original vectors. In practice 
this reconstruction can be done very rapidly by using the 
code-words to address a Read-Only-Memory (ROM) in which the 
standard vector-templates are stored. The above vector
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quantization process can be done in parallel by several 
code-words addressing a bank of parallel code-books at the 
same time. This would increase the throughput of the system, 
but copies of the same code-book have to be stored in several 
ROM's.

The vector quantization process is a vector (or 
block) quantizer consisting of a code-book of possible 
reproduction vectors and a minimum distortion encoding rule. 
An N-level K-dimensional quantizer is a mapping, q, that 
assigns to each input vector, x = (xq, . . .x ^) a reproduction 
vector, x = q(n), drawn from a finite reproduction alphabet,
AA = y^, i = 1, ... N . The quantizer q is completely

Adescribed by the reproduction alphabet (or code-book) A 
together with the partition, S = {S^; i = 1, ...N}, of the 
input vector space into the sets = {x; q(n) = y^} of input 
vectors mapping into the ith reproduction vector.

The problem of generating an optimal code-book with 
respect to a distortion measure has been considered recently 
by Linde, et al [18B]. The approach is to define a reasonable 
distortion measure [37B], [38B] and attempt to create an
optimal (code-book) given an initial estimate of the code­
book. This is done by an iterative algorithm suggested by 
Lloyd's Method I [37B ] that employs a long training sequence 
to optimize the code-book.

The code-book used in the proposed system is formed 
by the algorithm in [18B], using the low sequency samples 
of the transform domain with Mean Square Error as a distortion 
measure. After complete decoding, denormalisation of the 
coefficients is effected and an inverse transform is performed 
on the rows to retrieve the picture.
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8.4.1 Some Experimental Results for 1-Dimensional Transform-
Vector Coding
The proposed one-dimensional system in Fig. 8.4.1 was 

simulated for the test image in Fig. 6.3.2; the unitary 
transforms used for this system were the one-dimensional 
Hadamard transform (HT) because of its computational 
simplicity.

Fig. 8.4.2 shows coded images at bit rates of 
R = 0.8 - 1.1, using the designed code-books of size 
(N,K) = (42-230,4).

Processed images were compared with those using 
one-dimensional hybrid coding of Habibi [33B] which are 
shown in Fig. 8.2.3 of section 8.2. The results showed that 
the coded images by our technique had much lower NMSE than 
the Habibi technique; in addition their visual qualities 
were marginally better. We believe that this was due to 
code-book design using NMSE as a distortion measure. Better 
results could be obtained if the code-book design is based 
upon a more complex distortion measure which is subjectively 
better. However, this proposed hybrid technique is much 
simpler and faster than that of Habibi, since at the receiver 
the code-words will address a code-book, or several code-books 
in parallel, stored in ROM, where a large block of date is 
reconstructed. The simplicity of the proposed hybrid 
technique is very attractive for interframe coding of TV 
images for real time processing.

The code-books for the above simulations consisted 
of the most probable vector-templates in the low sequency 
region of the HT domain, which were formed in an ad hoc manner
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Fig. 8.4.2: Coded images by the proposed one-dimensional
hybrid system:
(a) At bit rate of R = 1.1 bits/pixel,_3NMSE = 4.9 x 10 with codebook size of 

CB = 230.
(b) At bit rate of R = 0.95 bits/pixel,-3NMSE = 7.37 x 10 with codebook size of 

CB = 193.
(c) At bit rate of R = 0.847 bits/pixelr-3NMSE = 7.56 x 10 with codebook size of 

CB = 42.
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by employing a training set of several transformed images.

8.5 A New 2-Dimensional Hybrid Coding Technique using a
Vector-Quantization Technique [39B]
In standard two-dimensional zonal coding (Chapter 6, 

section 6. 3.1.1), as a consequence of the computational 
complexity involved, an image array xln-^/n^) is divided into 
small blocks £°r  ̂ = !'••• B(the number of the
blocks), where each block i is coded as a unit, independent 
of all other clocks. This, unfortunately, reduces the 
efficiency of the coder since the elements of the various 
blocks remain correlated in the transform domain. Here we 
introduce a new two-dimensional hybrid coder, where the 
vector-quantization scheme in the previous section is used 
to exploit the correlation between the blocks.

Fig. 8.5.1 shows the proposed system, where a two- 
dimensional unitary transformation of each block i is obtained, 
given by the expression (8.8)

W V  =
N r i  n 2 - x

n =0 n2= 0
fi(nl,n2 ) AR (n1 ,n2

for m^ = 0,1,2, . ..^-1 
m2 = 0,1,2, ...N2~l

8 .8 )

where A (nn,n0) is the forward transform kernel. Then a zonal 
sample selection process is used where the coefficients with 
the largest variance, given by expression (8.9) are 
selected [19B]

ak {ml'm2
K

= Z [Fi(m1 ,m2 )] 
i=l (8.9)
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c h a m e l

Fig. 8.5.1: Elock diagram of the proposed two-dimensional
hybrid system.
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where K is the number of blocks. Since the elements of 
various neighbouring blocks are highly correlated, this inter­
block correlation can be exploited by clustering the 
corresponding transformed samples of each K neighbouring 
block into vectors of dimension K. The vector quantization 
process, illustrated in the previous section, is applied on 
the vectors and the corresponding code-words transmitted.
At the receiver these code-words will address the code-book 
stored in ROM to reconstruct the transformed blocks by 
substituting the corresponding vector-templates in place of 
the original vectors.

An inverse two-dimensional unitary transform is 
applied on each block as given by eqn.(8.10).

fi (ni
V 1 V 1Z I F .(m..,m ) Bn(m ,m )

r\ **+ r\ 1. Jl l\ _L ^m.. =0 m =0
(8.10)

for n^ = 0,1,2,...N^-l 
n2 = 0,1,2,...N2~l

where BR (m^,m2) is the inverse transform kernel.

8.5.1 Experimental Results for the Proposed 2-dimensional 
Hybrid Coder
The proposed hybrid coder was simulated on a digital 

computer. The experimental data were the two pictures 
displayed in Chapter Six, Figs. 6.3.2 and 6.3.3. A block 
size of 8x8 with two-dimensional Hadamard transform as our 
unitary transform were used.
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Fig. 8.5.2 shows the processed images at bit rates 
of R = 0.51 - 1.89 bits/pixels, using the designed code­
books of: size (N,K) = (70-255,4).

Comparing the processed images with that of standard 
zonal coding in Fig.6.3.7, Chapter Six, Section 6.3.1 
the proposed system performs better.

The code-book used in the simulation was formed by 
the algorithm in section 8.4 using mean-square-error as 
the distortion error.

8.6 Conclusions

This chapter is devoted to hybrid image coders. A 
short comparison between DPCM and Transform coders is given 
in section 8.1. Also the concept of the hybrid coders is 
explained. In section 8.2 one-dimensional hybrid transform 
DPCM systems are reviewed. A one-dimensional Hadamard 
transform was combined with a first order predictor. One­
dimensional transform is performed on each line of the image 
and a DPCM on the transformed coefficients, no adaptivity was 
introduced in the simulated system, which is discussed in 
section 8.2.1. Two-dimensional transform/DPCM coders are 
introduced in section 8.3. Full details of the applications of 
these coders are given in chapter nine.

In section 8.4, a new one-dimensional hybrid coder is 
introduced. This coder consists of a one-dimensional Hadamard 
transform and a vector quantization scheme. The vector 
quantization scheme is a look-up table procedure, where each 
vector of transformed coefficients is compared with a set of 
vectors (codebook). A distance measure, such as Euclidean
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Fig. 8.5.2: Coded images by the proposed two-dimensional
hybrid system:
(a) At bit rate of R =1.7 bits/pixel,

- 3NMSE = 2.05 x 10 with codebook size of 
CB = 255.

(b) At bit rate of R = 1.52 bits/pixel,_3NMSE = 2.05 x 10 with codebook size of 
CB = 193.

(c) At bit rate of R = 1.33 bits/pixel,_3NMSE = 4.3 x 10 with codebook size of 
CB = 103.
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distance, is used to find the best match. Other more 
complicated distance measures can be employed.

Codebook design is investigated in section 3.4. The 
codebook is formed by employing a long training sequence.
Fixed codebook sizes were used throughout the simulation, 
although adaptive codebooks could be used. One adaptive 
scheme could be to start with a codebook and modify it as 
image coding is performed. So some vectors have to be 
transmitted. The effect of noise is not investigated in this 
chapter, but , it is believed that it will perform much better 
than hybrid transform/DPCM coder, since channel noise only 
affects each vector; no more noise is introduced in the 
neighbouring vectors. However, in DPCM coders any noise is 
carried to the next sample because of the predictor. No 
adaptivities are introduced in the proposed system. In 
chapter nine codebook adaptation is explained. Experimental 
simulations are given in section 8.4.1. In section 8.5 the 
two-dimensional Transform/Vector quantization coding system 
is introduced. Simulations are given in section 8.5.1. 
Applications of the proposed coders to moving images are 
considered in chapter nine.

A large number of the high frequency coefficients 
are zonally discarded in the proposed coders. An adaptive 
coder would discard a number of these coefficients with 
respect to the energy content of each block of rows. Also 
the transform coefficients are normalised by the square root 
of expected variance, which was calculated from the transformed 
rows. It is also possible to estimate the variance recursively 
from the transformed coefficients.
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CHAPTER NINE

INTERFRAME CODING OF MOVING IMAGE SEQUENCE

9 . .1 Introduction
Transmission of moving images is an exciting 

application for pictorial data compression. An analog TV the 
signal usually has a bandwidth of 4.3 MHz. The digital TV 
signal is formed by sampling at about 10.76 MHz and digitizing 
into an 8-bit PCM signal, for which, in turn, a bitrate of 
86 M bits/sec. is required. Thus, the essential problem in 
digital TV coding is to reduce the bandwidth at the expense 
of bit error rate and an acceptable picture quality. In 
this chapter we shall review some digital image source inter­
frame coding techniques for several applications and then 
propose two new techniques.

Section 9.2 will introduce some specific applications 
where coding is required to achieve the bit rate. In 
Section 9.3 the response of the human visual system to moving 
images is discussed. A review of the interframe coding 
techniques is given in Section 9.4. In Section 9.5 the new 
techniques are introduced and simulated and the conclusion 
is given in Section 9.6.

9.2 Application of Digital Moving Images
(1) One of the major applications of digital TV transmission
is in Cable-TV network. Coaxial cable (or optical) networks 
seem to be suitable for TV transmission because of their 
large bandwidth. The Cable-TV network systems all use 
principles that have been developed for local-area networks
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(LAN's) whereby a number of users share a data highway. LAN's 
are conceived as networks connecting together a number of nodes 
normally using a bus or ring topology. They must cater for 
the fact that the independently initiated transfers will 
occasionally demand more bandwidth than the network has 
available and also that they must continue to operate when 
one or more nodes fail. The data transfer is done by circuit, 
message or packet switching. For example in packet switching, 
data is assembled into packets with a leader and a tail, and 
flow of packets is controlled by contention or collision-control 
strategies in the case of buses, and by daisy-chain, token or 
register strategies in the case of rings. Other services that 
TV network could offer are data services, video-tax services, 
individual video services, such as customer access to a video 
library.
(2) Another application is in Picturephone or
Teleconferencing where cameras are stationary and scend^ 
consist mainly of small areas moving in front of a relatively 
large stationary background. A considerable saving in 
transmission rate can be achieved by coding techniques such 
as Frame replenishment, motion compensated predictive and 
adaptive hybrid Transform/Vector Quantization coding techniques. 
In the above applications, the image resolution is very small 
and it is nearly a face to face communication. Picturephone 
is very valuable for distance communication between deaf 
people since the movements of J.ips or hand will convey the 
necessary information.
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(3) Satellite TV transmission whereby European TV
broadcasts can be received is another application for image 
coding. Here users receive transmission from satellites either 
with their own small disks or through optical-fibre cables 
from central receivers. Recently digital TV sets have been 
developed; such TV sets are able to receive digital 
transmissions from other countries.

The bandwidth and the coding techniques required for 
transmission of moving images are application-dependent.
For example in commercial TV images the usual quality as well 
as the image resolution should be very high, thus a large 
bandwidth is required. However in video conferencing or 
picturephone the movement is low to moderate and a large 
degradation is tolerable, thus a smaller bandwidth can be 
achieved.

9.3 Response of the Human Visual System to Moving Images
In order to exploit the redundancies in moving images 

by interframe coding techniques a knowledge of the psychophysics 
of vision is required. Studies have been made to obtain a 
linear system model for the human visual system. It is found 
that the visual system can be represented by a three- 
dimensional bandpass filter [40B], [41B]. Other features of
the human visual system are that at high temporal frequencies 
the spatial contrast sensitivity is reduced, and similarly 
at high spatial frequencies there is an overall decrease in 
flicker sensitivity. The behaviour of the human visual system 
has also been investigated in tracking and non-tracking modes. 
For example, if an image can be tracked the retinal integration
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is minimized and the spatial resolution requirement in 
the moving area is high. However, if an object cannot be 
easily tracked, then the human visual system can tolerate 
a loss of spatial resolution [42B].

Seyler and Budrikis [43B] have found that the human 
observer does not perceive a temporary reduction of spatial 
detail after scene changes. In the following sections several 
coding techniques are introduced,some of which will employ 
psychophysical redundancy of human visual behaviour.

9.4 Interframe Coding Techniques Review
In the following sub-section some interframe coding 

techniques are introduced and a new technique is proposed.

9.4.1 Subsampling Techniques in Spatial and Temporal Domain
and Frame Repeating
The types of subsampling generally employed are 

horizontal, vertical, field (which is vertical-temporal sub­
sampling) and frame subsampling (temporal only) [44B]. Pease 
and Limb [45B] investigated the effect of spatial and temporal 
subsampling on television signals by dividing the picture into 
stationary and moving areas which are'appropriately subsampled. 
They found, due to psychophysical integration of moving objects 
that it is possible to reduce the spatial sampling rate in 
moving areas (non-stationary areas) of a television picture 
without degrading the picture quality. Also temporal sub­
sampling can be employed in stationary areas. At the receiver 
the unsampled picture elements were replaced by interpolating 
between the sample elements.
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In slow moving pictures such as teleconferencing 
temporal resolution can be greatly reduced without impairing 
picture quality. A simple method of achieving this is by 
frame repearing, in which one new frame of information out 
of n is transmitted and for the remaining (n-1) frames this 
one frame is just repeated. As would be expected if the object 
moves fast enough, the perceived motion is very jerky. If 
repeating is done on sub-image blocks of the picture, the 
object will appear broken at fast motion. The subsampling 
technique can be done also in the transform domain.

9.4.2 3-dimensional Differential Pulse Code Modulation
and its Adaptivities

Predictive coding techniques of Chapter seven mav 
also be used to decorrelate the samples for interframe coding. 
Early work with interframe predictors was based on using the 
frame difference for each picture element [46B], [47B], but
frame difference prediction will be effective only for stationary 
sections of a picture. In moving areas it is advantageous to 
use a predictor combining elements from both the actual and 
previous frame [48B]. Simplest predictors are first order 
linear predictors which assume images are samples of a. 
stationary random process. Since this is in general not the 
case, adaptive linear predictors and non-linear predictors 
can head to better results. The number of previous pels 
used in the predictor is called the order of the predictor and 
if prediction is based on the previous horizontal, vertical 
and field elements it is known as a 3-D predictor.
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Haskell [23B ] studied the performance of a number 
of such fixed predictors on scenes with varying amount of 
motion. It was found that frame difference performs well 
in areas with little motion or stationary areas, while 
intrafield predictors such as element difference do better 
when there is greater motion. The reason is that as the speed 
of motion in a television picture increases, the spatial 
correlation between moving-area picture element will also 
increase owing to the integrating effect of the television 
camera. Moreover, the temporal correlation among such picture 
elements will decrease. The combination intra- inter-field 
schemes were found to be better than either of these and 
tended to be less sensitive to the amount of motion.

The fact that images are not stationary and, in fact, 
contain many edges and contours has led to the use of non­
linear predictors. These predictors attempt to determine the 
direction of contours in the image and choose the prediction 
accordingly.

Most interframe coders have used a fixed quantizer; 
greater improvement is possible over fixed quantizers by the 
use of adaptive quantizers. The adaptation can be based on 
statistical and on psychovisual criteria, and can involve 
switching between a number of fixed quantizers, or changing 
the basic step size of a given quantizer. For example, in 
areas of the picture where there is very little activity, a 
fine quantizer can be used, and in areas with more activity 
the quantization can be coarser [49B ].

Entropy coding is used to reduce the bit rate from the 
DPCM coder since the output levels of the quantizer are not
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equiprobable, but this will in return produce a variable 
data rate, and hence the system will require a buffer memory.

9.4.3 Movement-Componsated Predictive Coding Techniques
A time-varying image to be transmitted consists in 

general of a number of objects with different motions super­
imposed on a background. If the camera is fixed, the background 
is stationary while in the case of panning it moves with 
approximately uniform velocity. In either case, with the 
exception of newly exposed background and foreground caused 
by motion, each pel is present in the previous field, displaced 
by an amount dependent on the motion of the given object.
Hence, if the displacement of the object is known, a picture 
element on the same position of the moving object in the 
previous frame becomes a better sample for prediction in 
predictive interframe coding. This forms the basis for the 
schemes known as movement-compensated predictive coding [50B],
[51B].

The technique will first estimate the displacement 
vector for the image; a simplified approach is to segment 
the image into fixed background and objects and then estimate 
the displacement. The displacement estimates are then used to 
generate the movement-compensated prediction, and finally the 
prediction errors are quantized.

Motion displacement estimation usually involves 
considerable calculations. There are two main classes of 
methods for estimating translational displacements; correlation 
or matching techniques and differential methods. Recently 
NPtravali and Robbins [5IB] developed simple and practical 
algorithms for estimating the motion displacement, utilizing
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the relation between the spatial differential and temporal 
differential signals. Their algorithm is called the "pel 
recursive" method, which minimizes recursively the motion 
estimation error on the basis of a steepest descent algorithm. 
The other method of motion estimation is an extension of 
pattern matching used in scene analysis. The displacement 
estimate is done on a block-by-block basis. Constant 
translation is assumed within a block of picture elements.
A present frame is divided into small sub-blocks and each 
sub-block is compared with its previous frame picture by 
changing the relative spatial position. The displacement vector 
is determined by searching for the best-matched picture in 
the previous frame [52B].

In teleconferencing use,pictures to be transmitted are, 
typically, scenes with a few people sitting behind a table 
or an overview picture of all the attendees in the conference 
room. Motions are usually translational and little rotation 
or scaling happens. Thus the above algorithms can be used.
But for other movements such as rotation and zooming and panning 
more complicated techniques are required [5IB] . Further work 
in this field will be to estimate other motions such as 
rotation.

9.4.4 Conditional Frame Replenishment Coding Technique

In digital application such as video-telephone or 
teleconferencing where typical cameras are stationary and 
scenes consists mainly of small areas moving in front 
of a relatively large stationary background, a considerable 
saving can be achieved with PCM by sending the parts of the 
picture that are changed between frames [53B]. The location
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as well as the intensity level of each pixel has to be 
transmitted. Thus for a high moving image sequence a lot of 
overhead information is required. Since the moving-area 
picture elements are highly correlated the bit rate can be 
reduced if these elements are predictively coded. The 
differential signal is then transmitted and location of pixels 
are transmitted by a clustering method [54B]. The above 
technique is a variable bit rate coding technique since the 
bit rate is dependent upon the change in movements between 
the frames. A buffer is required to smooth the data bit rate 
for transmission through a fixed bit rate channel. A great 
deal of study has been carried out on segmentation of the 
picture into moving areas that have changed significantly since 
the previous frame and into stationary background areas that 
have not changed significantly [55B]. Study on the adaptivity 
of the linear predictor,, subsampling of the moving areas when 
buffer overflow occurs and buffer and channel sharing by 
several frame replenishment coders, have also been investigated.

9.4.5 Hybrid Transform/DPCM Coders
The concept of hybrid transform/DPCM coding was 

introduced in the previous chapter for still pictures. This 
concept can easily be extended to a three-dimensional moving 
image sequence [56B ]. In the interframe hybrid coder, a 
two-dimensional transform is performed on each block, and 
predictive coding (DPCM) is applied in the temporal direction. 
The two-dimensional transform on the image array u(i^,i2 >i-̂  
is given by

Nx-1 n2-i
U(Kl'K2'i3) = T n

1l”°
z

i 9=0 U ( i 1,12,13 ) A(K]_, i]_, K2 ' i 2
for = 0, ... N]“1
for K2 = 0, ... N?-2
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where A( , i^,K3/i3 ) represents the two-dimensional transform 
kernel. At each spatial frequency ( , K ) a prediction
A

U ̂ K1' K2 ' ̂ 3 ̂ Per ôrmec -̂ The prediction error is given by

P(KirK 2 ,i3 ) = U(K1 ,K2 ,i3 ) - U (K x ,K 2 ,i3 ) (9.1)

This prediction error is quantized by zonal coding strategy 
where each error prediction is quantized using a number of bits 
dependent on the energy of the prediction error at frequency 
(Ki,K ). In general a portion of the high frequency coefficients 
need not be coded by DPCM.

In the transform domain the correponding low 
frequency coefficients of each block are more correlated than 
those of the high frequency coefficients, thus adaptive predictors 
can be designed. Roese [56B] showed that an improvement 
in coding performance can be obtained by spatially adapting 
the hybrid coder to use the temporal statistical measures of 
the transform coefficients temporal difference signal in 
each block. Local adaptation to the measured statistics of 
each sub-block will normally produce improved coding results 
when compared with non-adaptive implementations. However, 
adaptation does result in increased coder complexity.

Another adaptation is to use as prediction the 
transform coefficients for a block in the previous frame 
shifted by the estimate of the local velocity [51B ]. This is 
similar to the movement-compensated prediction technique.
Here the displacement estimation technique recursively 
estimates the displacements from the previously transmitted 
transform coefficients; alternatively the algorithm, due to 
Limb and Murphy, estimates displacements by taking ratios of
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accumulated frame difference and spatial difference signals 
in a block.

9.4.6 3-dimensional Transform Coding
In order to incorporate inter-frame redundancy 

reduction, three-dimensional transform coders are employed.
A sequence of image frames U(l|, 1 2 /1 3 ) undergoes a three- 
dimensional transform in blocks of size x x pixels 
according to the general formula

N2 -1 N3~ 1
E Z U ( i . , i  , i  ) A(K , i . , , K0 ,

i =0 i =0 1 1 5 1 1 2
i 2 , K3 , i 3 ) 

(9.2)
for K. = 0 , . . . 1^-1

k2 = 0,... n2-i

K = 0,... Nj-l

U ( K 1 ' K 2 ' K 3

N.-l

il = °

where U(K]_'K2 'K3  ̂ is the transformed block and A ( , i ^ , i^ • ^3 < i3 ) 
the forward unitary transform kernel. The transform coefficients 
are then quantized and coded for transmission. Zonal sampling 
or zonal coding quantization and coding strategies are usually 
employed, Roese [56B]. At the receiver the coefficients are 
decoded and an inverse transform process is performed to 
reconstruct the frame sequence.

Adaptive three-dimensional transform coding has 
also been investigated with adaptation based on the bit 
assignment matrix and local unitary transforms which are 
currently used as Fourier, Cosine, Hadamard, Harr, etc.
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Recently study has shown that the performance of 
three-dimensional transform interframe coders greatly exceeds 
that of two-dimensional transform coders. However, the main 
disadvantage of such coders are requirement of excessive 
storage and computation. Although cheap memory and array 
processors have solved the problem to some extent.

9.4.7 Other Techniques
(a ) Two-dimensional vector quantization technique [58B,59B]:

Here each frame is divided into blocks of size 
2x2 and block vector quantized. The above technique can be 
extended to three-dimensional vector quantization easily.
But the size of the code-book will increase as the number of 
frames is increased.

(b) Interpolative Coding [16B ]:
Here the image intensity variation is approximated 

by a polynomial.

(c ) Contour or Feature Coding [16B]:
The image is first segmented and classified and 

contours are represented (polygon approximation).
(d ) Two-component Image Coding [1 6B] :

The statistics of the image signal are not well 
defined but by converting the signal into components of 
different classes a better result can be obtained.

(e) Block Truncation Image Coding [60B,61B]:
This method divides an image into small pixel blocks,

each of whose pixels are individually quantized to two levels,
2Yq and Y^, such that the block sample mean n and variant a
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are preserved. Thus the block is represented by a two-tone 

bi tplane.

9.5 A New Interframe Coding Technique using Vector

Quantization

In the previous section it was shown that coding 

techniques that exploit spatial as well as temporal correlation 

have higher performance than interframe coders. Thus in this 

section we introduce a new hybrid interframe coder [62B], 

where the spatial redundancy is exploited by performing a 

two-dimensional transform on each frame (block) and a vector 

quantization scheme on the transformed coefficients to exploit 

the temporal redundancy. The vector quantization scheme is 

similar to that used for the proposed intraframe coder in 

the previous chapter.

The block diagram of the proposed coding system is 

shown in Fig. 9.5.1.

In the proposed coding technique:

(1) Image sequence is sub-divided into three- 

dimensional block arrays each of size

J x K x L pixels.

(2) A two-dimensional transform is performed on 

each spatial (horizontal and vertical 

directions) block of size J x K pixels, 

given by the expression

J- l  K-l
F (v , u , Z ) - £ £ 

j=0 k=0
f (j ,k , i :) A ((v,j,u,k) (9.3

for u = 0 , 1, . .

i—1i

v = 0 , 1/ . ■

i—1i



channel

fi(j.k .1 ) 
f.( j.k .2 )  
fi (j,k ,3 )

Fig. 9.5.1: The proposed interframe coding system
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where f(j,k,&) denotes a three- 
dimensional block array of amplitude 
values for a digital image sequence, 
and A(v,j,u,k) represents the forward 
two-dimensional transform kernel.

(3) Since most of the energy is clustered 

at low frequency coefficients a large 

number of hich frequency coefficients 

are zonally discarded, and the remaining 

coefficients are normalized by their 

corresponding expected variance.

(4) Each spatial frequency (v,u) of L 

temporally adjacent blocks are clustered 

into vectors of dimension L. Each 

vector is then compared with a code­

book of standard vector templates, and

is represented by its nearest (in a mean- 

square error sense) matching vector-template. 

A binary code-word (Huffman code-words) is 

then assigned to each permissible vector 

template and transmitted.

(5) At the receiver the transmitted code-words 

will address a look-up table code-book

to reconstruct the three-dimensional 

block array as shown in Fig. 9.5.2.
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(b)

Fig. 9.5.2: (a) Shows the clustering of four frames

(b) Look-up table at the receiver
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(6) A two-dimensional inverse transform is 

then applied on each block, as given by

J-l K-l
f(j,k,&) = Z Z F(v,u,&) B(v,j,u,k) (9.4) 

u=0 v=0

for j = 0,1,..., J-l 

k = 0,1,..., K-l

where B (v ,j ,u ,k ) is a two-dimensional inverse 

transform kernel

9.5.1 Simulation and Results

The proposed system was simulated on a digital 

computer for an image sequence shown in Fig. 9.5.1.1 where 

each frame has a low spatial resolution of 128 x 128 and 

is quantized to 8 bits per pixel, but displayed with only 

16 quantization levels.

Fig. 9.5.1.2 shows the coded frames at bit rate 

of R = 0.37 bits/pixel/frame with code-book of size and 

dimension (N,M) - (31,4) respectively. The block array 

size used was 8x8x4 and the transformation applied was 

two-dimensional Hadamard Transform. About 62.5% of the 

high frequency coefficients, having a variance above a 

specified threshold, were discarded. The processed images 

were distorted at this bit rate especially at the edges 

since a large number of high frequency coefficients were 

discarded.

Fig. 9.5.1.3 shows the processed image sequence at 

R = 0.48 bits/pixel/frame where only 25% of the high frequency 

coefficients were discarded. Edges appear smoother and the



- 1 4 5 -

image sequence has a better visual quality. NMSE for all 

the processed frames was evaluated as a criterion for image 

quality. Since the energy of the transformed images is 

conveyed by the low frequency coefficients, the code-book 

was formed of the most probable vector-templates in the low 

frequency region of the Hadamard transform domain by the 

algorithm reported in the previous chapter. The processed 

images in Figs. 9.5.1.2 and 9.5.1.3 were reconstructed 

with only 31 vector templates, these being the most probable 

low frequency vector templates. The effect of the size of the 

code-book was investigated; Fig. 9.5.1.4 shows the processed 

images with code-book size of (134,4 ) and(285,4 jat bit rate of 

R = 0.69 and R = 0.8 bit/pixel/frame respectively. Thus 

increasing the size of the code-book will allow the inclusion 

of a number of high frequency vector-templates, which may 

be used to reconstruct the edges. The code-book was formed 

with the method explained in the previous chapter.

The number of frames clustered together was fixed at 

four. A better technique would be to make the vector- 

quantizer adaptive to movement of the objects within the image 

sequence, such that in image frames with little movement a 

large number of frames are clustered; this is a consequence 

of the high temporal correlation of frames, the vectors being 

quantized with the appropriate code-book. However, with a 

high density of moving objects within the image sequence a 

smaller number of frames have to be clustered, since the 

scene changes considerably from one frame to another. The 

image sequence is then coded by switching to the appropriate 

code-book. In this adaptive technique several code-books of
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Fig . 9.5.1.1: The input image sequence of resolution (128 x 128)
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Fig. 9.5.1.2: Interframe coded image sequence at bit rates
of R = 0.3 bits/pixel/frame with codebook -3size of CB = (31,4) with NMSE = 3.2...3.6x10 .

Fig. 9.5.1.3: Processed image sequence at R = 0.48 bits/pixel/
frame with codebook size CB = (31,4), and-3NMSE = 2 . 8 x 1 0
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Fig. 9.5.1.4: (a) Processed image sequence at R = 0.69
bits/pixel/frame with codebook size-3CB = (134,4), and NMSE = 2.3 x 10 .
Processed image sequence at R = 0.8
bits/pixel/frame with codebook size-3CB(285,4) and NMSE = 1.9 x 10 .
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different dimensions can be employed to adapt to the 
motion of the moving object. However, in normal commercial 
TV images there are several objects in the image sequence 
each moving with a different velocity. Thus in order to 
exploit the local movements within the image sequence the 
above adaption technique will be employed on the basis of 
three-dimensional sub-block arrays; this is proposed in the 
next section.

9.5.2 An Adaptive Vector-Quantization Coding Technique [65B] 
The proposed system is shown in Fig. 9.5.2.1 (a), (b).

(1) In thij> system frames of an image sequence are 
stored in buffer memory and sub-divided into 
three-dimensional block arrays f(j,k,&) each of 
size J x K x L pels.

(2) Two-dimensional unitary transform is performed on 
the spatial blocks as in the previous section.

(3) A large number of the high frequency coefficients 
are discarded and the remaining coefficients are 
normalized by their expected variance.

(4) An adaptive vector quantization scheme is then 
applied in the temporal direction by using two 
code-books (vector quantizer) of different 
dimensions, say L/2, L,in a manner whereby each 
block array is first classified as belonging to 
an area of slow (Cg) or rapid (C ) motion. The 
classification is based on a temporal activity 
index which is a measure given by the difference 
between the sum of the A.C. coefficients of each 
sub-image sequence. The current block array
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Fig 9.5.1.2(a): The proposed adaptive interframe coder



Fig. 9.5.1.2(b) the simulated adaptive interframe coder with 
only two codebooks
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f(j,k,&) is classified by specifying 
suitable thresholds for the two classes.

(5) The transformed block array F(v,u,£) is 
coded by switching to the corresponding 
vector-quantizer. Each vector-quantizer 
will cluster each spatial frequency (v,u) 
of L temporally adjacent spatial blocks 
into vectors of dimension L or L/2 
corresponding to each class. Then code-words 
representing their nearest matching vector- 
templates from the corresponding code-books 
are transmitted.

(6) At the receiver each transformed block 
U(v, u,n^) is reconstructed using the 
corresponding vector templates in place of 
the original vectors. The reconstruction is 
done very rapidly by code-words addressing 
the Read Only Memory's (ROM's) (look-up 
tables) as shown in Fig. 9.5.2.2.

(7) The coded image sequence is then formed by 
applying the inverse two-dimensional transform.

The overhead information is minimized by transmitting 
the encoded block as a packet where each packet will have 
a header which specifies which vector-quantizer is used, as 
well as any adaptivity and addition of error-correcting 
redundancy. The code-books or the vector quantizers were 
formed by the algorithm discussed in the previous chapter.
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(4)

Fig. 9.5.2.2 (a) Shows the clustering of six frames and
three frames.

(b) Look-up tables at the receiver.
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Si nee the proposed technique resultsin a variable bit 
rate, a buffer is required for smoothing the data transmission 
over a fixed bit rate channel. Further improvement on the 
bit rate can be achieved by adaptive bit sharing through 
plural channels similar to that of the TASI technique [63B ].

9.5.3 Simulation and Results
The adaptive system was simulated for a typical image 

sequence of resolution (136,200) quantized to 8 bits per 
pixel as shown in Fig. 9.5.3.1. The coded frames at average 
bit rate of R = 1.6 bits/pixel/frame are shown in Fig. 9.5.3.2 
with block array of size (8x8x6) and code-books, of size and 
dimension(M^ , L/2) = ( 285,3 ) and (^^L) = (111,6), and the
number of blocks coded by each code-book was T^ = 294,
T2 = 131 respectively. Fig. 9.5.3.-3 shows the coded image 
sequence at R = 0.84 bit/pixel/frame with the same code-books 
but discarding a larger number of high frequency coefficients 
than in Fig. 9.5.3.2.

Fig. 9.5.3.4 shows the coded images at R = 0.6 bits/ 
pixel/frame with code-books of size (M^, L/2) = (313,4) and 
(N^/L) = (203,8), and the number of blocks coded by each 
code-book was T^ = 282, = 143 respectively.

The visual quality of the processed image sequence 
is much better than that of the non-adaptive technique in 
section 9.5.1. Using more code-books of different dimension 
could improve the quality of the image sequence and reduce the 
bit rate significantly. The only disadvantage of this 
technique is the requirement for storage of several frames. 
Adaptivity is based upon the movements within the image
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Fig. 9.5.3.1: Original input image sequence of resolution
(136,200) with amplitude resolution of 8 bits.
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Fig. 9.5.3.2: Processed image sequence at bit rate of R = 1.6
bits/pixel/frame with codebooks of size CB1 = 
(285,3) and CB2 = (111,6) with NMSE = 9.2...
9.5 x 10-3.
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9.5.3.3: Processed image sequence at bit rate of R = 0.84
bits/pixel/frame with codebooks of size CB1 = 
(285,3 ) , CB2 (111,6), with NMSE = 1.0 ...
1.3 x 10-3.
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Fig. 9.5.3.4: Processed image sequence at bit rate of R = 0.6
bits/pixel/frame with codebooks of size CB1 = 
(313,4) and CB2 = (203,8) with NMSE = 1.8 ...
2.0 x 10~3.
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sequence, where the local movements are exploited by the 
proposed vector quantization scheme.

9.6 Conclusion
In this chapter the applications and coding techniques 

for image sequence are discussed. In section 9.2 some recent 
applications of digital moving images are mentioned. The 
Human Visual System is introduced in section 9.3, where the 
features of the human visual system are investigated. A 
three-dimensional bandpass filter is believed to be 
representative of the visual system. Section 9.4 reviews 
some of the interframe coding techniques. Three-dimensional 
subsampling techniques are treated in subsection 9.4.1. These 
techniques are very simple to implement; however when there 
is a large movement between the frames, subsampling is not 
a desirable technique. The unsampled pixels
at the receiver are reconstructed by interpolating between the 
sample elements. The bit rate achieved by these coding 
techniques is not significant, although a large number of 
adaptations can be employed. In section 9.4.2 three- 
dimensional DPCM were explained. The effect of adaptive 
predictors a*'d quantizers were discussed. These coders 
are believed to be very simple to implement with very little 
memory requirement. The bit rate^achieved with DPCM coders 
is about 1-2 bits/pixel/frame. More complicated versions of
DPCM systems are discussed in section 9.4.3 and 9.4.4. The 
effect of motion is considered in these coders in order to. 
improve the predictor. Better results are obtained, but 
to estimate the motion as a number of pixels is computationally 
very inefficient. Adaptive DPCM coders are believed to be
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very effective where the temporal variation is small.
If the movement in the image sequence is very large 

the DPCM coders do not reduce the bit rate enough. Thus 
more complicated techniques were considered in sections
9.4.5, 9.4.6 and 9.4.7. First hybrid transform/DPCM coders 
are considered for a moving image sequence; adaptivity is 
also considered. Three-dimensional coders are considered 
in section 9.4.6, these coders are believed to produce very 
low bit rates. However, the computational cost for 
implementation is very high. Thus real time image coding cannot 
be done with these coders. Also in order for the three- 
dimensional transformation to be effective several frame 
stores are required. Thus a large memory storage is required 
although it is not that important because the price of memory 
is coming down; large memory chips are now available. In 
section 9.4.7 a number of techniques are just mentioned.

In section 9.5 a new hybrid coder was developed which 
incorporates a two-dimensional transform and a vector 
quantization scheme. The vector quantization scheme is similar 
to that introduced in chapter eight, but it was performed in 
the temporal direction. The simulation results show that 
coding bit rates of R = 0.37 bits/pixel/frame can be achieved.
In section 9.5.2 the adaptive coding system is considered 
where several codebooks of different dimension are employed.
The simulation coded images show that better results are 
obtained with the adaptive coder. Coding bit rates of 
R = 0.6 bits/pixel/frame are achieved. A more adaptive version 
of this technique would be to vector quantize the high 
frequency coefficients with a codebook that is optimised only
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for high frequency coefficients. The proposed technique can 
also be applied to multi-spectral images where the vector- 
quantization is performed in the spectral domain. Coding of 
colour images is another application of the proposed technique. 
Here the vector quantization is performed along the three 
components of the coded image.

The codebooks used were des igned by the algorithm 
explained in section 8.4. The codebook could be designed with 
more complicated algorithms such as those that will take into 
account the human visual ŝ t-prn. Hadamard transform was used 
because of the computational simplicity. Other transforms, 
such as cosine transform, can be used which is believed to 
have a better compression ability than Hadamard transform.
The resulting bit rats, R, for the coded images for a codebook 
of size (N,M) and a discarding ratio C' is given as

log^N

The above hybrid coding algorithm is believed to be more 
efficient than the conventional hvbrid coders. The proposed 
algorithm can be implemented in parallel since the algorithm 
operates on a block of the image sequence at a time.
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CHAPTER TEN

CONCLUSIONS AND COMMENTS

The implementation of digital signal processing algorithms 
in the transform domain has been investigated for many years. 
Conventionally the discrete Fourier transform is employed to 
transform the image data into the frequency domain, where the 
signal processing algorithms are performed on the transformed 
samples. Implementation of digital circular convolution is 
usually performed in the transform domain. The input signal 
is transformed and then a point by point multiplication of the 
transformed data with the impulse response of the filter is 
carried out. One orthogonal transform which has the circular 
convolution property is the discrete Fourier transform (DFT) which 
is implemented by fast algorithms such as fast Fourier transform 
(FFT). The problem with DFT is that complex arithmetic has to 
be performed for real input data which is usually encountered 
in digital image processing. Also round off error and the 
quantization error due to twiddle factors (Ŵ ) have prevented 
implementation of DFT on short length processors.

Recently, a number of new transforms have been introduced 
in the integer domain. These transforms are defined in a 
ring or a field of integers are are known as Number theoretic 
transforms. They are orthogonal and have circular 
convolution properties. Since arithmetic is performed in a 
finite field there is no round off-error. The only disadvantage 
of these integer transforms are that the transform length is 
limited by the processor word length, also a large dynamic range
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is required since only integer arithmetic is performed. These 
limitations have led us to define new orthogonal transforms 
in other algebraic fields.

In chapter three P-adic transforms are introduced. They 
are found to have circular convolution properties. Thus they 
can be used to implement digital convolution. They have a 
much larger dynamic range compared with those of NTT. Other 
advantages of P-adic transforms are that rational numbers can 
be implemented exactly. The arithmetic is performed in a 
field of integers. No simulation was performed to implement 
digital convolution by P-aaic transform. However, it is 
believed to be interesting to implement digital convolution 
by P-adic transform and compare the result with that of DFT, 
in order to investigate the round off error that is introduced 
by DFT. Fast transform algorithms, such as polynomial transform, 
Winograd's algorithm and prime factor algorithm can be used to 
implement P-adic transforms.

Hardware implementation of P-adic transforms on micro­
processors is still to be investigated. The hardware implemented 
NTT and P-adic transforms are believed to be very efficient 
compared to discrete Fourier transform. A number of algorithms 
have recently been developed for hardware implementation of NTT 
in a field of integers, where arithmetic is performed residue 
a prime integer such as Fermat or Mersenne primes. The 
only disadvantage of P-adic transforms is that the input data 
has to be converted into P-Adic. form. However, if data is 
in P-adic form and the processor is a P-adic processor,that 
is,it performs hardwired P-adic arithmetic, the transforms 
are believed to be very efficient.
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In some applications complex data has to be transformed. 
Complex P-adic transform is defined in chapter four, where 
complex data are transformed to implement complex convolution 
Comparison is made between the complex P-adic transform and 
complex Number theoretic transform (CNTT) as is discussed 
in chapter four. Finally, P-adic transform in extension 
fields of P-adic field is defined. Only quadratic extension 
fields were considered. It is attractive to consider higher 
extension fields. In chapters three and four only Fermat and 
Mersenne primes were chosen for the P-adic field. However, 
other primes with some attractive properties can also be used 
P-adic arithmetic is performed over a segmented P-adic field 
since P-adic representations of numbers is infinite. This 
segmentation only introduces a limitation over the dynamic 
range. Finally a P-adic transform over a g-adic ring is 
introduced, since a g-adic ring consists of the algebriac 
summation of several P-adic fields, the P-adic transform has 
to satisfy every P-adic field component of the g-adic ring. 
Further work is needed to investigate simulation of these 
extension field transforms for implementation of digital 
convolution. Only one-dimensional P-adic transforms were 
treated here. Further study is needed to define a two- 
dimensional P-adic transform and its implementations.

In chapter five several orthogonal transforms are 
introduced. Some of these transforms do not have circular 
convolution properties, thus they cannot be used to implement 
digital convolution. However, they can be used in some other 
signal processing applications. One major application of 
orthogonal transform is in digital image coding. Discrete 
cosine transform (DCT), Hadamard transform (HT), and finally
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polynomial transform are discussed in chapter five.
Applications of DCT and HT in image coding are studied in 
chapter six.

Polynomial transform algorithms are discussed in detail, 
since any multi-dimensional transform can be implemented by 
polynomial transform algorithms. Several polynomial transform 
algorithms are discussed in chapter five. Some of these 
transforms can be implemented by radix-2 fast Fourier transform. 
Further work is needed to investigate polynomial transforms 
and their implementation on general computers. Hardware 
implementation of polynomial transforms is still to be 
investigated. In chapter five a new algorithm was introduced 
to implement discrete cosine transform by using a polynomial 
transform algorithm.

One major property of some of these orthogonal transforms 
is their ability to concentrate the energy around some low 
frequency coefficients. In chapter six this property of the 
discrete cosine transform is used in image coding systems.
Block Transform coding is introduced in chapter six and its 
adaptive versions are also considered. Conventional block 
transform coding such as zonal and threshold coding are discussed. 
Only zonal coding technique was simulated since it is believed 
to be more efficient than threshold coding because the 
location of the discarded coefficients are not transmitted as 
in that of threshold coding. In block transform coding each 
block is assumed to be independent of the neighbouring blocks 
and coded independently. However this assumption is not valid 
because the pixels on the border of adjacent blocks are correlated. 
In chapter six, section 6.3.2, overlapping blocks are considered
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for zonal coding. The simulation results are compared with 
that of non-overlapping zonal block coding. It is found that 
on average a lot of the adjacent blocks are highly correlated. 
Due to a large increase in the computational time of the 
overlapping block coding system, an adaptive overlapping block 
coding system is then introduced. In this system only those 
neighbouring blocks that are highly correlated are overlapped 
by a five number of pixels. The computation cost is decreased 
■̂ nd the inter-block correlation is taken into account. Finally 
in chapter six, section 6.4, a new zonal-coding technique is 
introduced. In conventional zonal coding systems a large number 
of the high frequency coefficients are discarded. In the 
proposed zonal coding system these high frequency coefficients 
are vector quantized. That is the bit assignment matrix which 
consists of a zonal quantizer and a vector quantizer. The 
proposed system is simulated for only one vector quantizer and 
no adaptivity is considered. More study is suggested to be 
done in improving this zonal coding technique and comparing it 
with a coding system that is a combination of zonal and 
threshold coding.

In chapter seven predictive coders are introduced. 
Differential pulse code modulation is explained, where only a 
first order predictor is considered. In the simulations several 
quantizers are considered. It is found that a quantizer with 
Laplacian uistribution performs better than other quantizers, 
such as Gaussian or Gamma distribution quantizers. An entropy 
coder, such as the Huffman coder, is employed to exploit the 
non-uniform distribution of the difference signal. Higher order 
predictors are also discussed. Adaptive quantizers where the
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quantization level is dependent upon the amplitude variation 
in the difference signal are mentioned, but no simulation is 
given. In section 7.3 a new adaptive DPCM system is introduced 
where a non-linear function is employed to change the distribution 
of the difference signal to a highly peaked one, so the entropy 
coder will be more efficient. The proposed system is simulated 
and results show that a saving of 0.5 bits per pixel can be 
achieved compared with those of a conventional DPCM system. 
Hardware implementation of DPCM systems are still to be 
investigated since DPCM systems are very simple to implement. 
Finally, in section 7.4, a short- comparison of DPCM systems and 
transform coders is given.

In chapter eight hybrid/DPCM systems are discussed.
These systems combined the attractive features of both transform 

and DPCM coding systems. In section 8-2 one-dimensional hybrid 
transform/DPCM are reviewed. Hadamard transform is employed 
because of its computational simplicity. First order predictor 
is also employed for prediction of the transformed coefficients. 
Simulation for the one-dimensional hybrid system is performed 
in chapter eight, section 8.2.1. No adaptive hybrid systems are 
simulated although better results can be obtained by adaptive 
systems. In section 8.3 two-dimensional hybrid systems are 
discussed. These systems could be configured to exploit 
inter-block or interframe correlations. In section 8.4 a new 
hybrid coding system is introduced. This system uses the -ector 
quantization scheme to exploit the inter-row correlation. The 
vector quantization scheme consists of a codebook where the most 
probable vectors are stored. The vector quantization algorithm 
extracts the most probable vector template in the codebook and 
transmits a codeword to represent the corresponding vector. The
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proposed coder is simulated for the test images and it is found 
that a better result is obtained with the new coder than the 
one-dimensional hybrid coder. If the proposed coder is 
hardware implemented the computational time is believed to be 
much less, since at the receiver the codewords have only to 
access the codebook in memory to reconstruct the vector 
templates. In section 8.4.1 formation of the codebook is 
considered. To find the nearest vector template in the codebook 
during the coding process a criteria has to be chosen. In our 
simulation Euclidean distance was chosen. Better criteria 
measures could have been used which still have to be investigated. 
Use of several codebooks is also investigated but this is not 
reported in detail. This one-dimensional hybrid system is 
believed to be very efficient for applications such as remote 
sensing and teleconferencing, etc. In. section 8.5 two-dimensional 
hybrid transform/vector quantization is discussed. In this 
system inter-block correlation is exploited by vector 
quantization. The proposed system was simulated for the test 
images at several bit rates. In the proposed systems a fixed 
number of high frequency coefficients are discarded before the 
vector quantization scheme is introduced. These coding systems 
could be made more adaptive by discarding a number of coefficients 
with respect to the activity in the image line or block.

In chapter nine interframe coding techniques are discussed. 
Applications are considered where interframe coding is required. 
Several interframe coding techniques are reviewed in section 9.4. 
In section 9.5 a new interframe hybrid coder is introduced. In 
this new hybrid system temporal correlation is exploited by 
the vector quantization scheme. This is very similar to the
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proposed hybrid intrafield coder in chapter eight. The 
proposed system is simulated for an image sequence and 
results are compared with other techniques. In section 9.5.2 an 
adaptive version of the proposed coding technique is discussed. 
Here use of several codebooks is suggested to exploit the 
temporal changes due to movement of the objects within the 
image sequencers well as panning. The simulation results are 
reported and it is found that the adaptive coder performs as 
well as the three-dimensional transform coders. Adaptivity 
is considered by using several codebooks. It is possible to 
base the adaptivity upon the design of the codebooks or zonal 
discarding of the high frequency coefficients.

A detailed comparison of the proposed technique with other 
interframe coders is still needed. Hardware implementation 
was only superficially discussed; detailed consideration is 
needed for its hardware implementation. Only Hadamard transform 
was considered, however other transforms can also be used.
The number of codebooks can be increased such that the low 
frequency and high frequency coefficients are coded by different 
codebooks, where each codebook is optimised for a particular 
region.

The vector quantization techniques have not yet been applied 
to medical image processing. For example, one-.or two-dimensional 
projections obtained in Computer-Aided Tomographic images can be 
coded by the proposed vector quantization algorithms. Finally, 
the vector quantization algorithms still remain to be applied 
to the colour TV images as well as the filtered images obtained 
in sub-band coding.
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APPENDIX A

INTRODUCTION TO ELEMENTARY NUMBER THEORY

In this appendix the basic concepts of number theory 
and modular arithmetic are presented.

1. DIVISIBILITY OF INTEGERS
Considering two integers a and b, with b positive, the 

division of a by b is defined by:

a = bq + r 0 ^ r v< b  (A. 1)

where q is called the quotient and r is called the remainder. 
If the latter is equal to zero, then b is said to be a divisor 
of a, and this operation is denoted by bja. The integer a is 
prime if it has no other divisors than 1 and itself, otherwise 
a is composite.

The fundamental theorem of arithmetic states that any 
composite number, a, can be uniquely factorised as:

m .
a = It P. 1 (A.2)

i

where P̂  is a prime number and m^ is a positive integer.

2. CONGRUENCES AND RESIDUES
If two integers, â  and a . ^ , give the same remainder 

when divided by an integer b (the modulus), i.e.

â  = bq1 + r 
a^ = bq2 + r

(A.3)
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then and a^ are said to be "congruent modulo b", and this 
is denoted as:

= a2 modulo b (A.4)

Alternatively, this can be expressed as:

b|(a1 - a2) (A.5)

The remainder, r, is called the residue and is our main 
inter* st. It can be expressed as:

r = < a>k (A.6)

As can be seen from eqn. (A.3), addition, subtraction 
and multiplication can be performed directly on residues, or:

< a 1 +  a 2 > = < < V + < a 2 >> ( A . 7 a )

< a 1 '  a 2 > = < < a f < a 2 > > ( A . 7 b )

< a 1 ‘ a 2 > = << a 1> . < a 2 >> ( A . 7 c )

3. GROUPS AND ABELIAN GROUPS
A group, G, is a non empty set of elements which, with 

a binary operation ®, satisfies the following postulates:

(i) Closures: For every a and b in G, a©b
is also in G.

(ii) Associativity: For every a,b,c in G, (aob) gc = a©(b©c )

(iii) Identity: There is a unique element e
in G, called the identity 
element, such that a©e = e©a = a 
for all a's in G .
For every a in G there is a unique 
inverse b in G, such that a®b=b©a=e.

(iv) Inverse:
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A group G is called an Abelian group if every pair of 
elements commute, i.e. a©b = b©a for all a's and b's in G.

4 . RINGS AND FIELDS
Rings and Fields are sets of integers whose elements obey 

certain properties.
A ring, Z, is defined if its elements adhere to the 

following conditions:

(i) a.b is a legitimate element of the set.
(ii) (Z, + ) is an Abelian group.
(iii) Associativity.
(iv) Distributivity of (x,.l).

If multiplication is commutative, then Z is a commutative ring.
In a ring, Z^ = {0,1,2,..., M-1}, all integers are 

congruent modulo M, to some integer in Ẑ . If in Ẑ , each 
integer has a unique multiplicative inverse, then the ring 
becomes a field. It can be shown [Al6] that a ring is 
a field if and only if M is a prime number.

5. MODULAR ARITHMETIC
The following arithmetic operations can be performed with 

modular arithmetic:

(a) Addition: Arithmetic modulo some arbitrary modulus can
be performed as ordinary arithmetic, followed by a 
division of the result by the modulus. The remainder 
is the answer.

Example: 7 + 14 = 21 4 (mod 1.7)
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(b) Negation : To negate a number, a, it is subtracted 
from the modulus M as follows: -a = -a + M (mod M).

Example: -8 = -8 + 1 7 = 9  (mod 17)

(c) Subtraction: This consists of negating a number as in
(b) and then adding it according to (a).

Example: 7 - 8 = 7  + (-8) = 7  + 9 =  16 (mod 17)

(d) Multiplicative Inverse: A multiplicative inverse of an
integer p exists in if and only if p and M are 
relatively prime. The inverse, p is then given by:

p. p = 1 (mod M )

Example: 4 1 = 13 (mod 17)

Since
4 x 1 3 = 5 2 = 1  (mod 17)

From (a), (b), (c) and (d) it can be deduced that due to
the nature of modular arithmetic, numbers do not have sizes 
or magnitudes, unless the quotient used in calculating the 
number modulo M is known.

6. CHINESE REMAINDER THEOREM
One of the techniques often used is to map an M-point one­

dimensional data sequence xn into a K-dimensional data array. 
This is done by noting that if n is defined modulo M, with 
n = 0,...,M-1, we can redefine n by the Chinese theorem as

K Mn = I (— ) n.T. modulo M,
-  . , m .  l  i
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where the index along dimension i takes the values 

0,..., rru-1. This mapping, which is possible only when M 

is the product of relatively prime factors nr, is very 

important for the computation of discrete Fourier transforms 

and convolutions.

7. FERMAT EULER'S THEOREM AND EULER'S TOTIENT FUNCTION

Euler's totient function is defined as the number (M) 

that gives the number of positive integers less than or equal 

to M that are relatively prime to M. With M = P a prime 

integer then <p (P ) = P-1. If M = Pc , c an integer, P a prime, 

then cp (Pc ) = Pc 1(P-1). Also cp(a.b) = cp (a ) cp (b ) , where a and b 

are just two integers.

Fermat-Euler's theorem is given by

a ^ ^  = 1 modulo M (A.8)

where (a,M) = 1 which denotes a and M are relatively prime, 

a is said to belong to exponent (M) modulo m, a is also 

known as primitive roots in modulo M. The number of primitive 

roots is given by cp(cp(M)). If M = P is a prime then expression 

(A.8) becomes

a P  ̂ = 1 modulo P (A.9)T

a^ is the primitive roots which will generate all the elements

in I = (0,1,2,... P-1), a is said to be of order (P-1). It p cp

is possible to obtain roots of order r from primitive roots

a .w
a^ = 1 modulo P (A.10)

if r|P— 1. Thus the order of a^ , r must divide the maximum

order P-1. The roots a of order r can be evaluated fromr
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primitive root given by:

r
p- I

ar = aQ (A.11)

8. QUADRATIC RESIDUES
2

Quadratic equations x = a (Mod M)is said to be a 

quadratic residue or a non-residue modulo M if it is 

soluble or non-soluble respectively. If M = P denotes an 

odd prime and (a,P) = 1, the Legendre symbol (— ) is defined to

be 1 if a is a quadratic residue -1, if a is a quadratic non-

residue modulo P. Then

<£)p
(P - 1 1/2= a 1 u  (Mod P) (A.12)

(*)p = + 1 if a is a quadratic residue of P

ip' = -1 if a is a quadratic non-residue of P

9. EXTENSION FIELDS OF INTEGER FIELDS I

Let Ip represent an integer field of P elements,

Ip = (0,1,2,...P - 1 ). Extension fields of I can be represented

by Ip(/a), where a is a quadratic non-residue in Ip . So 
2

x = a Mod P has no solution. The elements of the extension 

fields are represented by

where

A = a + / a  6 (A.13)

A , / a e I p ('-/a) and a, 8 e Ip

If a = -1 then complex extension fields are considered.

If a is an integer value then quadratic extension fields are

considered.
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The theory of residue polynomials is closely related to 

the theory of integer residue classes. A polynomial P(z) 

divides a polynomial H(z) if a polynomial D(z) can be 

found such that H(z) = P(z) D(z). H(z) is said to be 

irreducible if its only divisors are of degree equal to 

zero. If P(z) is not a divisor of H(z), the division of 

H(z) by P(z) will produce a residue R(z),

H(z) = P(z) D(z) + R(z)

where the degree of R(z) is less than the degree of P(z).

All polynomials having the same residue when divided by P(z) 

are said to be congruent modulu P(z) and the relation is 

denoted by

1 0 . RESIDUE POLYNOMIALS

R(z) = H(z) modulo P(z)

All the concepts in integer fields and rings can be applied 

to polynomial residues.
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APPENDIX B
INTRODUCTION TO , P-ADIC FIELD

In this appendix P-adic fields are introduced and their 

properties are investigated.

1. P-adic Sequence

Let P be a fixed prime. A sequence of integers <xn > with 

the property that xn_^ e xn mod P n , n = 1,2,3,..., is called a 

P-adic sequence of a.

Example 1: Let P = 5 , a = 221

<xn > = 1, 21,96, 221,221,221,...

Example 2: Let P = 10, a = -222

P-adic representation is

<xn > = 8,78, 778, 9778, 99778,...

2. Canonical Representation of P-adic Sequence

Consider a P-adic sequence <x^> and let xn be the unique

rational integer sequence such that x^ = x^ mod Pn + ”* and

O £ x £ pn +  ̂ for n = 1 2,3,..., then <x > is the canonical n n

sequence that represents a.

Example 1: Let y = <Zn > , where <Zn > = -1,-1,-1,...

the canonical sequence that determines y with P = 5 is given 

by <Zn > = 4,24,1 24,624, . . .

3. P-adic Series

We can write the canonical sequence associated with a,. an integer 

in series form given as

CO

Z a. p 1 for 0 .< a. c P (B. 1 )
• n  l  i1= 0

(Mod P)

a =
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To investigate e q n . (B.l) in more detail, consider a P-adic

sequence representation of an integer a, xn = x n_-̂  mod P ,

x = x , + a Pn , and because 0 s x < Pn+\  the integer a n n-1 n n  ̂ n

must satisfy the inequality 0 < an < P.
>:> 0

= ao
A
X1 - ao + aip
A
x 2

= ao + aiP + a2P

a 2 nx — a + a nP + a~P + ... + a P n o 1 2 n

Then a P-adic integer is represented as

CL

w  •

Z a.PD ~ i 0 £ a^ < P ( B . 3  )

where its sequence of partial sum is a canonical sequence for 

some P-adic integers.The P-adic integers have finite series 

representation.

The P-adic series can be evaluated from the canonical 

P-adic representation given by relation

ao

A Ax - x n_____rr
_ n

(B . 4 )

for n = 1,2,3,...

where <xn> is the canonical representation of a and a^ its 

P-adic series coefficients.
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E x a m p l e  1: a  =  2 2 1  , P  -  5

A< x > n = 1,21,96,221,.

, _ 21-1 
1 ' a1 5 4 ' a 2 =

96-2 I 
25 = 3

221-96
125 1, a = 0 , = 0 ,

221 1 + 4.5 + 3.52 + 1.53

4. P-Adic Series Representation of Rational Numbers
Let a = a/b be a non-zero rational number such that 

b#0. Then it is clear that a can be expressed in a unique 
way as

where P is a given prime number and c, d are integers such 
that P does not divide c and d. Then the P-adic expansion 
of a is obtained by the following algorithm

(a) Find n such that 8 = c/d Pn .
(b) Solve the congruence dx = 1 (Mod P). If x is

a solution, then a = c x (Mod P).n n
(c) Set y  = B- anpI1‘ If Y = 0, set a^ = 0 for

i > n and stop, otherwise set B = y and continue 
the procedure from step (b).

Example:
1/2 and 1/5, respectively have the 

five-adic expansion

3
0.231313 ... and JL

15 2.313. ..
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5. Segmented P-adic Codes or Hensel Codes
The P-adic series representation of rational numbers 

is infinite. However, to be able to do P-adic arithmetic 
a segmented P-adic field has to be introduced.

Let .x be a rational number with P-adic expansion, 
a ' a a a ... av, where r = n + k + 1. This
is called Hensel code of a and is denoted by H(p,r,a). For 
convenience H (p,r,a) is denoted as an ordered pair in the 
mantissa-exponent form thus: (m̂ , e^). Since we keep the
length of H(p,r,a) constant (r digits), e^ is permitted to 
be zero or to be only negative values. When e^ = -n, the 
radix point is placed n digits to the right of the left most 
digit of m . Accordingly, the mantissa is an integer and 
we can always assume that m is of the form

and

m — . a , a m , , ,  a . a o 1 r-1

e £ 0 a

Example:

H(5,4, 3 3 ) = (0.43.3, - 1 )

H ( 5,4 , -i|) = (0.0402, 0)

H (5,4,15) = (0,0300, 0)

Conversion of Hensel codes into rational numbers is 
possible by several algorithms. One method is by using a look­
up table where all the rational numbers are stored. Another
method is, since every rational number (a/'b) is represented

— 1 rin the form (a.b ) Mod p , it is possible to determine a as
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well as b if some common multiple of all the denominators 
involved in a given algorithm is known. For instance, if 
we assume kb is known, then the rational number corresponding 
to (a.b ^) Mod Pr is

^kE ’ "'•kb)] Mod Pr

- 1Therefore, as long as (ab .kb) and kb are representable 
uniquely as H(p,r) codes, the conversion is straightforward.

6 . Arithmetic in P-adic Field 
(a ) Addition and subtraction

Let A and B be P-adic numbers, and let their P-adic series 
be

00 OD

A ' = £ a pn , B = £ b Pn (B . 5 )n _ nn=-m n— m

for 0 a , b < P n n

It can be shown that
n

(A ± B) = £ (an ± bn ) P (B .6 )

(b) Multiplication and division
Multiplication of two P-adic numbers

00 oo

A = £ a Pn and B = £ a Pn* n 0 nn=-f n=-x

is given by
oo

A.B = r u Pn (B .7 )•p ft n n=-f-x-
for 0 < u < P n

where un is evaluated by multiplying the series term by term and 
rearranging the terms. Division is more detailed as given inf j A # 2 3  ’
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7• Units in P-adic Field
(a ) Definition o£ unit

An element of a ring is called a unit if it has a 
multiplicative inverse. In the ring of integers, Zm the 
only units are 1 and -1. The units in a field or ring of 
integers Z^ is given by cp ( )  where cp is the Euler function.

(b ) Units in P-adic Field
(i) A P-adic integer a = <xn> is a unit if and

Aonly if x # 0 Mod P and since a has a P-adic J o CO

series representation a = Z a.P, a is a
i=0 1

unit if and only if aQ # 0 .

IT(ii) A rational number of the form — , (r,s) = 1,
is a unit if and only if (S,P) = 1, (r,P) = 1.

(iii) Every P-adic integer that is not zero has a 
unique representation in the form a = Pm C, 
where C is a unit and m is a non-negative 
integer.

Proof for the above statements is given in [A42],

8. The Quadratic Extension Fields of QP
A quadratic extension field of is obtained by

adjoining to Q a root of some quadratic equation with P
coefficients in Q .Without loss of generality, this equationP
has the form

x^ - d = 0 (B. 8 )

where d # 0 is a P-adic number which is not the square of a 
P-adic number. As a consequence, the equation (B.8 )cannot be
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solved in Q itself. P
by /d, the quadratic 
from 0^ by adjoining

On denoting a formal solution of (B.8) 
extension field, say, is then derived

K = Q (-/d)P P

The elements of can be written as

(B. 9 )

where
A = a + b/d 

a,b e Q .
Sr

9. Definition of g-adic Field
Any rational number can be represented as a g-adic

series;

-f -f+1 -1 2a = a_f g + a_f + 1 g + ... + a_ 1 g + aQ + ^ g + a2 g + ..
(B.10)

where the coefficients a^ are digits 0 ,1 ,..., g-1 .
Thus a has the canonic series

CO

a = Z an gR (B.ll)n=-f

Any g-adic number can be decomposed into its distinct P-adic 
fields, so

,Q = Q p ® Q p ©
9 *1 *2

where
g = p1p2 ... Pn

n
(B .12)

10. Newton's Approximation Method in p-adic Fields
Newton's method for obtaining the real zeros of a real, 

values function f(x) is a well know iterative method which 
generates the approximations;
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x . , 1i  + 1 =  x i -

f ( X . )1
f' (x. ) 1

for i > 0 ( B . 1 3  )

where xQ is an initial approximation to a zero of f(x), and 
f'(x) r  0 is computable.

Consider f(x) e Z [x] to be a polynomial with coefficientsir
in the ring of P-adic integers, if the first coefficient of a 
P-adic sequence is known A , then the P-adic sequence (An) 
defined by

An kn- 1
(B.14)

where 0 £ A < pn+  ̂n
is a P-adic sequence of the form

An = A , + a P n- 1 n
n (B.15)

where a e I_.n P
It is possible to get expression in (B.14) in

terms of P-adic series. Suppose f(n) = 0 has a P-adic integral
2root a = a  + a.P + a0 P +... where a. e i_.o 1 z 1 P

Let A_ = a + a.P + ... a Pn, then clearly a is a solution n o 1 n J

of f(x) = 0 in Qp is ind only if

f(a) = 0 (Mod Pn) (n=1,2,3,...)

if and only if

f(A ) = 0 (Mod Pn+1) (n=0,1,2,...)

By substituting (B.15) in (B.14) 
we get

A - + a P n-1 n
n A = A . n n- 1

f(An-1 5 
f’(An-1 )
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or

a Pn = - ---2— !—  (Mod Pn+1) for (n s 1)
E ' ( An - 1 >

Since f(A can be represented as

f(A .) = h Pn (Mod Pn+^) for (n > 1)n-1 n-1

a f' (A -) + h . = 0 (Mod P) for (n > 1)n n-1 n-1

Example:
2Solve the equation f(n) = x + 1 = 0 in Q^. Since -1

is a quadratic residue modulo 13 with Xq = 5 or xq = 8 then
choosing A = a = 5, we can calculate the other P-adic o o
series coefficients from Newton’s approximation method.

2Since f(n) = x +1 and f'(n) = 2x, f(A ) = 26, expression
f(A -) = h -Pn (Mod Pn+^) becomes n-l n-l

26 = 13 h (Mod 169) o
whose solution in 1 ^  is hQ = 2. Then expression
a f' (A .) + h . e O (Mod P) becomes n n-1 n-1

10 a1 + 2 = 0 (Mod 13)

So â  =5, the solution can be shown to be a = .5510 ...., 
if Newton’s approximation is iterated.
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