42 research outputs found

    Krivine realizability for compiler correctness

    Get PDF
    We propose a semantic type soundness result, formalized in the Coq proof assistant, for a compiler from a simple functional language to SECD machine code. Our result is quite independent from the source language as it uses Krivine's realizability to give a denotational semantics to SECD machine code using only the type system of the source language. We use realizability to prove the correctness of both a call-by-name (CBN) and a call-by-value (CBV) compiler with the same notion of orthogonality. We abstract over the notion of observation (e.g. divergence or termination) and derive an operational correctness result that relates the reduction of a term with the execution of its compiled SECD machine code

    The Journey of Biorthogonal Logical Relations to the Realm of Assembly Code

    Get PDF
    Logical relations appeared to be very fruitful for the development of modular proofs of compiler correctness. In this field, logical relations are parametrized by a high-level type system, and are even sometimes directly relating low level pieces of code to high-level programs. All those works rely crucially on biorthogonality to get extensionality and compositionality properties. But the use of biorthogonality in the definitions also complicates matters when it comes to operational correctness. Most of the time, such correctness results amount to show an unfolding lemma that makes reduction more explicit than in a biorthogonal definition. Unfortunately, unfolding lemmas are not easy to derive for rich languages and in particular for assembly code. In this paper, we focus on three different situations that enable to reach step-by-step the assembly code universe: the use of Curry-style polymorphism, the presence of syntactical equality in the language and finally an ideal assembly code with a notion of code pointer

    10351 Abstracts Collection -- Modelling, Controlling and Reasoning About State

    Get PDF
    From 29 August 2010 to 3 September 2010, the Dagstuhl Seminar 10351 ``Modelling, Controlling and Reasoning About State \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    Modular, Fully-abstract Compilation by Approximate Back-translation

    Full text link
    A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourally-equivalent source-level contexts. However, constructing such a back- translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from STLC to ULC, the lack of recursive types in the former prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from STLC to ULC. The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. The proof extends easily to common compiler patterns such as modular compilation and it, to the best of our knowledge, it is the first compiler full abstraction proof to have been fully mechanised in Coq. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction

    FunTAL: Reasonably Mixing a Functional Language with Assembly

    Full text link
    We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such a multi-language is bridging the gap between assembly, which is staged into jumps to continuations, and high-level code, where subterms return a result. We present a compositional stack-based typed assembly language that supports components, comprised of one or more basic blocks, that may be embedded in high-level contexts. We also present a logical relation for FunTAL that supports reasoning about equivalence of high-level components and their assembly replacements, mixed-language programs with callbacks between languages, and assembly components comprised of different numbers of basic blocks.Comment: 15 pages; implementation at https://dbp.io/artifacts/funtal/; published in PLDI '17, Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 18 - 23, 2017, Barcelona, Spai

    The Journey of Biorthogonal Logical Relations to the Realm of Assembly Code

    Get PDF
    Logical relations appeared to be very fruitful for the development of modular proofs of compiler correctness. In this field, logical relations are parametrized by a high-level type system, and are even sometimes directly relating low level pieces of code to high-level programs. All those works rely crucially on biorthogonality to get extensionality and compositionality properties. But the use of biorthogonality in the definitions also complicates matters when it comes to operational correctness. Most of the time, such correctness results amount to show an unfolding lemma that makes reduction more explicit than in a biorthogonal definition. Unfortunately, unfolding lemmas are not easy to derive for rich languages and in particular for assembly code. In this paper, we focus on three different situations that enable to reach step-by-step the assembly code universe: the use of Curry-style polymorphism, the presence of syntactical equality in the language and finally an ideal assembly code with a notion of code pointer

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Step-Indexing: The Good, the Bad and the Ugly

    Get PDF
    Over the last decade, step-indices have been widely used for the construction of operationally-based logical relations in the presence of various kinds of recursion. We first give an argument that step-indices, or something like them, seem to be required for defining realizability relations between high-level source languages and low-level targets, in the case that the low-level allows egregiously intensional operations such as reflection or comparison of code pointers. We then show how, much to our annoyance, step-indices also seem to prevent us from exploiting such operations as aggressively as we would like in proving program transformations

    Logical Relations for Session-Typed Concurrency

    Full text link
    Program equivalence is the fulcrum for reasoning about and proving properties of programs. For noninterference, for example, program equivalence up to the secrecy level of an observer is shown. A powerful enabler for such proofs are logical relations. Logical relations only recently were adopted for session types -- but exclusively for terminating languages. This paper scales logical relations to general recursive session types. It develops a logical relation for progress-sensitive noninterference (PSNI) for intuitionistic linear logic session types (ILLST), tackling the challenges non-termination and concurrency pose, and shows that logical equivalence is sound and complete with regard to closure of weak bisimilarity under parallel composition, using a biorthogonality argument. A distinguishing feature of the logical relation is its stratification with an observation index (as opposed to a step or unfolding index), a crucial shift to make the logical relation closed under parallel composition in a concurrent setting. To demonstrate practicality of the logical relation, the paper develops an information flow control (IFC) refinement type system for ILLST, with support of secrecy-polymorphic processes, and shows that well-typed programs are self-related by the logical relation and thus enjoy PSNI. The refinement type system has been implemented in a type checker, featuring local security theories to support secrecy-polymorphic processes.Comment: arXiv admin note: text overlap with arXiv:2208.1374

    A Certified Extension of the Krivine Machine for a Call-by-Name Higher-Order Imperative Language

    Get PDF
    In this paper we present a compiler that translates programs from an imperative higher-order language into a sequence of instructions for an abstract machine. We consider an extension of the Krivine machine for the call-by-name lambda calculus, which includes strict operators and imperative features. We show that the compiler is correct with respect to the big-step semantics of our language, both for convergent and divergent programs
    corecore