
A Certified Extension of the Krivine Machine for a
Call-by-Name Higher-Order Imperative Language
Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano

Universidad Nacional de Córdoba, FaMAF
Córdoba, Argentina
{lrodrig2,fridlend,pagano}@famaf.unc.edu.ar

Abstract
In this paper we present a compiler that translates programs from an imperative higher-order
language into a sequence of instructions for an abstract machine. We consider an extension of
the Krivine machine for the call-by-name lambda calculus, which includes strict operators and
imperative features. We show that the compiler is correct with respect to the big-step semantics
of our language, both for convergent and divergent programs.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases abstract machines, compiler correctness, big-step semantics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.230

1 Introduction

Important advancements have been made during the last decade in the field of compiler
certification; the project CompCert [19, 20] being the most significant achievement, since it
deals with a realistic compiler for the C language. It is still an active research topic open for
new techniques and experimentation. In this work we report our experiments in the use of
known techniques to prove the correctness of a compiler for a call-by-name lambda calculus
extended with strict operators and imperative features.

Most compilers are multi-pass, meaning that the process of translation usually involves
successive symbolic manipulations from the source program to the target program. The
compilation of a source program is often carried as a sequence of translations through
several intermediate languages, each one closer to assembly code than the previous one. One
common intermediate language consists of the instructions for some abstract machine; they
are useful because they hide low-level details of concrete hardware, but also permit step-by-
step execution of programs. At this level one can discover possible sources of optimization in
the compilation.

Historically, several abstract machines have been developed and studied. Perhaps the
best known ones are the SECD [15] machine and the CAM [8] machine, both for the call-by-
value lambda calculus, and the Krivine machine [14] together with the G-machine [23], for
call-by-name. We refer to Diehl et al. [11] for a, slightly dated, bibliographical review about
different abstract machines. In this article we use the Krivine machine as the target of our
compiler.

The Krivine machine has a very strong property: each transition rule of the machine
corresponds directly to a reduction rule in the small-step semantics of the lambda calculus.
This property is very useful to prove the correctness of the machine, since there is a relation
of simulation between the machine and the calculus. This correspondence is, however,
very difficult to maintain when one extends the source language, for example, by including

© Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 230–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.230
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Rodríguez, D. Fridlender, and M. Pagano 231

imperative features. Indeed, the conventional small step semantics of the calculus and the
usual transitions of the machine might not correspond, as there can be transition sequences
which do not necessarily simulate reduction steps in the source language. However, when the
goal is to get a proof of correctness of the compiler, simulation is a property stronger than
the one we actually need.

A different way of proving the correctness of a compiler is by using big-step semantics [22];
in this setting one proves that if a term t evaluates to a value v, then, when the machine
executes the code obtained in the compilation of t, it must stop in a state related to v, for
some appropriate definition of the relation between the value and the final state. One benefit
of this approach is that it can be adapted to handle the correctness of divergent programs
by a coinductive definition of the big-step semantics and of the transition relation of the
machine.

In this paper we present a compiler which translates programs from an imperative higher-
order language into a sequence of instructions for an abstract machine. We consider an
extension of the Krivine machine for the call-by-name lambda calculus, which includes strict
operators and imperative features. We show that the compiler is correct with respect to the big-
step semantics of our language, both for convergent and divergent programs. We formalized
the compiler and the proof of its correctness in the Coq proof assistant; the source code is
available at http://cs.famaf.unc.edu.ar/~leorodriguez/compilercorrectness/.

Except for the absence of the type system, the programming language we consider in
this paper has all of the features that Reynolds [26] described as the essence of Algol-like
languages: deallocation is automatically done at the end of a block (stack discipline), only
the imperative fragment of the language can have side effects, and it includes a call-by-name
lambda calculus as a procedure mechanism. We consider this work to be a step towards
proving the correctness for a compiler designed by Reynolds [25] for Algol-like languages.

The paper is organized as follows: in Sec. 2 we analyze the calculus of closures and the
Krivine machine; and we revisit the proof of correctness of the compiler with respects to
the small-step semantics of the calculus. In the following sections, we gradually extend the
source language and the machine to cope with the extensions: first we add, in Sec. 3, strict
operators and then, in Sec. 4, imperative features. We also prove the compiler correctness
with respects to the big-step semantics of those languages.

2 Call-by-name lambda calculus

In this section we revisit the call-by-name lambda calculus, as a calculus of closures, and the
Krivine abstract machine. In this simple setting we briefly explain the methodology used
to prove the correctness of the compilation function. The proof exploits the fact that the
transitions of the machine simulate the small-step semantics of the calculus.

2.1 Calculus of closures

Our high-level language is the lambda calculus with de Bruijn indices, but the operational
semantics is given for an extension, proposed by Biernacka and Danvy [4], of Curien’s
calculus of closures [9]. This calculus is an early version of the lambda calculus with explicit
substitutions. The main difference of this calculus with respect to the usual presentation of
the lambda calculus is the way in which substitution are treated. In the latter, substitution
is a meta-level operation, which in zero steps solves a β-redex. In contrast, in the calculus of
closures substitutions are represented as terms equipped with environments – these pairs are

TYPES 2013

http://cs.famaf.unc.edu.ar/~leorodriguez/compilercorrectness/

232 A Certified Extension of the Krivine Machine

called closures – and new rules are added to perform the reduction of a simple redex. A closed
lambda term t can be seen as a closure just by pairing it with the empty environment: t [[]].

I Definition 1 (Terms and closures).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables

Closures C 3 c, c′ ::= t [e] | c c′
Environments E 3 e ::= [] | c :: e

Terms are the usual ones of the lambda calculus with de Bruijn indices representing variables.
We will use some notational convention for meta-variables, besides those used in the grammar
we use n ∈ N and the overline is just to see them as variables. In Curien’s work only the
first production for closures is present; the second one is Biernacka and Danvy’s extension
and allows to define a small-step operational semantics. An environment is a sequence of
closures, and represents a substitution for all of the free variables of a term. The reduction
rules for the calculus of closures are given by the following rewriting system. Notice that the
side condition in (Var) can be removed if one sticks to closed closures.

I Definition 2 (Reduction rules).

(β) (λ t) [e] c → t [c :: e]
(App) (t t′) [e] → t [e] t′ [e]
(Var) n [e] → e.n if n < |e|

(ν)
c1 → c′1

c1 c2 → c′1 c2

These reduction rules evaluate a closed term up to a weak head normal form; i.e. values are
closures of the form λ t [e]. The (β) rule associates the argument of the redex with the first
free variable of the body of the abstraction. The rule (App) just propagates the environment
inside the term. Finally, the rule (Var) performs a lookup inside the environment, and
reduces to the closure associated with the variable position. The (ν) rule allows the reduction
of the left part of an application until getting an abstraction.

It can be easily proved that the semantics is deterministic:

I Lemma 3 (Determinism). If c → c1 and c → c2, then c1 = c2, for all closures c, c1 and c2.

2.2 The Krivine machine
Now we turn to the target of our compiler: the Krivine abstract machine [14]. This machine
has three components: the code, the environment, and the stack. We also have machine-level
closures γ = (i, η), which are pairs of code i together with an environment η.

I Definition 4 (Abstract Machine). A configuration w is a triple i | η | s, where

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n

Environments: H 3 η, η′ ::= [] | (i, η′) :: η
Stacks: S 3 s ::= [] | (i, η) :: s

The environment and the stack are just a list of machine-level closures. We use the
following notation for lists: [] denotes the empty list, append is _ :: _ as in ML tradition;

L. Rodríguez, D. Fridlender, and M. Pagano 233

the length of the list xs is |xs| and if n < |xs| then projecting the nth-element from xs is
written xs.n. There are only three instructions, whose action is defined by the following
three transition rules.

I Definition 5 (Transition of the machine).
Grab . i | η | (i′, η′) :: s 7−→ i | (i′, η′) :: η | s

Push i′ . i | η | s 7−→ i | η | (i′, η) :: s
Access n | η | s 7−→ i′ | η′ | s if n < |η| and η.n = (i′, η′)

The instruction Grab . i takes a closure from the top of the stack, puts it in the environment,
and then continues with the execution of i. The instruction Push i′ . i pushes a closure
(i′, η) (where η is the current environment) in the top of the stack and continues with the
execution of i. Finally, the instruction Access n starts executing the closure associated with
the position n inside the environment.

2.3 Compilation and correctness
The next step is the definition of the translation of terms into code. The compiler function
is denoted with J_ K and it is easily defined by induction on terms. We also define a
decompilation function denoted ⦃_ ⦄ which is clearly the inverse of the compilation. This
function is useful to describe some properties of the machine which in turn are helpful to
prove the correctness of the compiler.

I Definition 6 (Compilation and decompilation of terms).

J_ K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n

⦃_ ⦄ : I → Λ
⦃Grab . i ⦄ = λ ⦃ i ⦄
⦃Push i′ . i ⦄ = ⦃ i ⦄ ⦃ i′ ⦄
⦃Access n ⦄ = n

We homomorphically extend the definition of the decompilation function to machine-level
closures and environments:

I Definition 7 (Decompilation of closures and environments).

⦃_ ⦄c : I ×H → C

⦃ (i, η) ⦄c = ⦃ i ⦄ [⦃ η ⦄e]

⦃_ ⦄e : H → E

⦃ [] ⦄e = []
⦃ (i′, η′) :: η ⦄e = ⦃ (i′, η′) ⦄c :: ⦃ η ⦄e

We also need to decompilate configurations of the machine into source-level closures. To
decompile a configuration (i | η | s) we successively apply the decompilation of the current
closure (i, η) to the decompilation of every closure in s.

I Definition 8 (Decompilation of configurations). Let s = γ1, . . . , γn, then

⦃ (i | η | s) ⦄ = (. . . (⦃ (i, η) ⦄c ⦃ γ1 ⦄) . . . ⦃ γn ⦄)

We now continue by presenting some well-known lemmas about the behaviour of the
machine with respect to the small-step semantics of the calculus. First, we state that every
transition of the machine simulates a reduction step in the calculus:

I Lemma 9 (Simulation). If w 7−→ w′, then ⦃w ⦄ → ⦃w′ ⦄.

TYPES 2013

234 A Certified Extension of the Krivine Machine

There is another useful property of the machine: if a configuration w decompiles to the
closure c, and c can reduce, then the machine does not stop but makes a transition from w.

I Lemma 10 (Progress). If ⦃w ⦄ → c′, then there exists a configuration w′ such that
w 7−→ w′.

We can use Lemma 9 to obtain a stronger version of the previous lemma that better
characterizes the configuration to which the machine makes the transition:

I Lemma 11 (Progress and simulate). If ⦃w ⦄ → c′, then there exists a configuration w′

such that w 7−→ w′ and ⦃w′ ⦄ = c′.

Proof. By the progress lemma we state the existence of w′, then by the simulation lemma we
know that ⦃w ⦄ → ⦃w′ ⦄ and then we conclude ⦃w′ ⦄ = c′ using the fact that the semantics
is deterministic. J

The Lemma 11 can be easily extended to the reflexive-transitive closure of the small-step
reduction and the machine transitions:

I Lemma 12. If ⦃w ⦄ →∗ c′, then there exists a configuration w′ such that w 7−→∗ w′ and
⦃w′ ⦄ = c′.

We are particularly interested in the case in which the reduction sequence of the previous
lemma reaches an irreducible closure c′. In this case, we expect the machine to stop in an
irreducible configuration w′ which decompiles to c′. We say that a configuration is irreducible
if the machine can not perform any transition from it.

I Lemma 13. If ⦃w ⦄ →∗ c′ and c′ is irreducible, then there exists a configuration w′ such
that w 7−→∗ w′, ⦃w′ ⦄ = c′ and w′ is irreducible.

Proof. It is a consequence of the Lemma 12 and the simulation lemma. It is important to
note that the proof of this lemma can be done constructively since the property of being
irreducible is decidable. J

Now we can use these results to prove the correctness of our compiler. The following
lemma states the correctness of the compilation of a closed term whose reduction sequence
reaches an irreducible closure:

I Lemma 14 (Correctness for convergent closed terms). If t [[]] →∗ c′ and c′ is irreducible,
then there exists a configuration w′ such that (J t K | [] | []) 7−→∗ w′, ⦃w′ ⦄ = c′ and w′ is
irreducible.

Proof. This lemma is an instance of Lemma 13 since we have ⦃ (J t K | [] | []) ⦄ = t [[]]. J

If the reduction sequence of a closed term does not terminate (it does not reach an
irreducible closure), then the execution of the compiled code must diverge. We can capture
the notion of divergence for both reduction and execution with the following coinductive
rules, the double line indicates that the rules are to be interpreted coinductively:

I Definition 15 (Divergence of reduction and execution).

c → c′ c′
∞→

c
∞→

===============
w 7−→ w′ w′ 7−→∞

w 7−→∞
=====================

L. Rodríguez, D. Fridlender, and M. Pagano 235

The following lemma states that the divergence of the reduction sequence forces the
machine to diverge:

I Lemma 16 (Progress forever). If ⦃w ⦄ →∞, then w 7−→∞.

Proof. The proof is obtained by coinduction and using Lemma 11. J

Finally, the correctness of the compilation of divergent closed terms can be stated as
follows:

I Lemma 17 (Correctness for divergent closed terms). If t [[]] →∞, then (J t K | [] | []) 7−→∞.

In general, obtaining a proof of compiler correctness with respect to the small-step
semantics of the source language is a very complicated task. In this section, we avoided some
of those complications due to the simplicity of the language, for example, we did not have to
define a bisimilarity relation as in [12, 27], but instead we used a decompilation function.

For more sophisticated languages, the big-step semantics leads often to simpler proofs of
compiler correctness [22]. In the following sections, we use big-step semantics to prove the
correctness of the compilation of two languages: a call-by-name lambda calculus with strict
operators and an imperative higher-order language. We follow an approach inspired in the
work of Leroy [22] (a proof of compiler correctness for the call-by-value lambda calculus).

3 Call-by-name lambda calculus with strict operators

In this section we extend the source language with constants and a strict binary operator;
the language is specified by a big-step semantics. Then we present the abstract machine and
the corresponding compiler. The correctness of the compiler for convergent terms is a ternary
relation involving terms, their values, and the execution of the abstract machine. Leroy
defined this relation by compiling values and proving that the execution of the compilation
of a term leads to the compilation of the value. Following the same path for our language
would impose an artificial set of transition rules for the machine; we avoid this by defining a
binary relation between values and configurations.

3.1 The calculus

We now extend the source language with integer constants and the addition operator.
Everything in this section can be straightforwardly extended to a language with several strict
binary operators, but for the sake of concreteness we restrict our exposition to addition.

I Definition 18 (Terms and closures).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables
| k Constants
| t + t′ Addition

Closures C 3 c ::= t [e]
Environments E 3 e ::= [] | c :: e
Values V 3 v ::= (λ t) [e] | k

TYPES 2013

236 A Certified Extension of the Krivine Machine

The new terms are constants k, for k ∈ N, and addition. Notice that there is no application of
closures, this is a consequence of passing from small-step reductions to a big-step semantics,
where intermediate computations steps cannot be observed. Values are the canonical forms
which are the result of the evaluation of a term: an abstraction with its environment, and a
constant. We define now the big-step semantics of the language. The evaluation of a term t

in the environment e to the value v is denoted by e` t⇒ v.

I Definition 19 (Big-step semantics).

(Abs)
e`λ t⇒(λ t) [e]

(Const)
e` k⇒ k

(App)
e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒ v

e` t1 t2⇒ v
(Var)

e′ ` t′⇒ v

e`n⇒ v
e.n = t′ [e′]

(Add)
e` t1⇒ k e` t2⇒ k′

e` t1 + t2⇒ k + k′

The rules for abstractions and constants are trivial, since canonical forms evaluate to
themselves. Notice that in the rule of the application the argument is not evaluated, but it
is used to extend the environment during the evaluation of the body of the abstraction. In
order to evaluate a variable one must do a lookup operation inside the environment, and
start the evaluation of the corresponding closure. The rule for addition is quite conventional:
one must first evaluate the two arguments and then obtain the final value by performing the
addition of the two constants.

Now we show two simple examples of evaluation of terms:

I Example 20. A term that evaluates to an abstraction (partial application).

e`(λλ t)⇒(λλ t) [e] t′ [e] :: e`λ t⇒(λ t) [t′ [e] :: e]
e`(λλ t) t′⇒(λ t) [t′ [e] :: e]

I Example 21. A term that evaluates to a constant.

e`λ (0 + 3)⇒λ (0 + 3) [e]

e` 2⇒ 2
2 [e] :: e` 0⇒ 2 2 [e] :: e` 3⇒ 3

2 [e] :: e` 0 + 3⇒ 5
e`(λ (0 + 3)) 2⇒ 5

3.2 A call-by-name machine with strict operations

The Krivine machine follows the call-by-name strategy, this implies that the argument of
an application is evaluated only when it is needed. But if we want to incorporate some
strict operation, like addition, we need a way to force the evaluation of the arguments before
computing the operation. A known solution, cf. [28], to this issue is a data structure called
frame, which is intended to store the code needed to compute the arguments along with the
temporal values generated in the computation. The different components of the machine are
defined as follows:

L. Rodríguez, D. Fridlender, and M. Pagano 237

I Definition 22 (Abstract machine).

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n
| Const k
| Add

Closures: Γ 3 γ ::= (i, η)
Environments: H 3 η ::= [] | γ :: η
Stack values: M 3 µ ::= γ | [+ • γ] | [+ k •]
Stacks: S 3 s ::= [] | µ :: s
Configurations: W 3 w ::= (γ, s)

As in the previous section, a closure is composed by a code together with its environment.
The environment is a list of closures and a stack is a list of stack values which may be closures
or frames. The frame [+ • γ] stores the code needed to compute the second argument of the
addition, this closure remains stored in the stack while the first argument is being computed.
On the other hand, the frame [+ k •] stores the computed value of the first argument while
the second argument is being computed. In the next section we generalize frames to support
n-ary operations.

The following are the transitions of the machine; they are the same from the previous
section and the new rules for operators and constants.

I Definition 23 (Machine transitions).
(Grab . i, η) | γ :: s 7−→ (i, γ :: η) | s

(Push i . i′, η) | s 7−→ (i′, η) | (i, η) :: s
(Access n, η) | s 7−→ η.n | s if n < |η|

(Add, η) | γ1 :: γ2 :: s 7−→ γ1 | [+ • γ2] :: s
(Const k, η) | [+ • γ] :: s 7−→ γ | [+ k •] :: s
(Const k, η) | [+ k′ •] :: s 7−→ (Const (k + k′), η) | s

The instruction Add expects in the top of the stack one closure for each of the arguments of
the addition. It pushes in the stack a new frame with the code of the second argument, and
starts executing the code of the first one. For the case of the instruction Const k there are
two transition rules, arising from two scenarios: k is the value of the first argument of an
addition, and k is the value of the second argument. In the first case, it executes the code γ
stored in the frame, and updates the frame with the constant k. In the second case, we can
take the value of the first argument k′ from the frame and execute Const (k + k′).

3.3 Compilation and its correctness

The compiler is defined by induction on the structure of the term, it maps source terms into
a sequence of machine instructions:

TYPES 2013

238 A Certified Extension of the Krivine Machine

I Definition 24 (Compilation of terms).

J K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n
J k K = Const k

J t1 + t2 K = Push J t2 K . (Push J t1 K . Add)

The compilation of a term k is just the instruction Const k. The code for an addition starts
with a Push instruction for each argument, and continues with the Add instruction. By the
time when the instruction Add is executed, the code for each argument is already stored in
the stack, ready to be inserted inside a frame. We now extend the definition of the compiler
for closures and environments:

I Definition 25 (Compilation of closures and environments).

J_ Kc : C → Γ
J t [e] Kc = (J t K, J e Ke)

J_ Ke : E → H

J [] Ke = []
J c :: e Ke = J c Kc ::J e Ke

Here the functions J_ Kc and J_ Ke are mutually recursive. The compilation of a source-level
closure is a machine-level closure which couples the code of the term and the code of its
environment. On the other hand, the compilation of an environment is obtained by compiling
each closure inside it.

In order to illustrate how the machine works, we take the same terms of the above
examples and show the step-by-step execution of the corresponding code:

I Example 26. Execution of the code J (λλ t) t′ K.

J (λλ t) t′ K = Push J t′ K . Grab . Grab . J t K

(Push J t′ K . Grab . Grab . J t K, η) | s
7−→(Grab . Grab . J t K, η) | (J t′ K, η) :: s
7−→(Grab . J t K, (J t′ K, η) :: η) | s

I Example 27. Execution of the code J (λ (0 + 3)) 2 K.

J (λ (0 + 3)) 2 K = Push (Const 2) . Grab . Push (Const 3) . Push (Access 0) . Add

(Push (Const 2) . Grab . Push (Const 3) . Push (Access 0) . Add, η) | s
7−→ (Grab . Push (Const 3) . Push (Access 0) . Add, η) | (Const 2, η) :: s
7−→ (Push (Const 3) . Push (Access 0) . Add, (Const 2, η) :: η) | s
7−→ (Push (Access 0) . Add, η′) | (Const 3, η′) :: s where η′ = (Const 2, η) :: η
7−→ (Add, η′) | (Access 0, η′) :: (Const 3, η′) :: s
7−→ (Access 0, η′) | [+ • (Const 3, η′)] :: s
7−→ (Const 2, η) | [+ • (Const 3, η′)] :: s
7−→ (Const 3, η′) | [+ 2 •] :: s
7−→ (Const 5, η′) | s

L. Rodríguez, D. Fridlender, and M. Pagano 239

Example 27 is, in fact, an instance of a more general behaviour of the machine: if a
term t evaluates to a constant k in an environment e, then, the execution of the code J t K
in the environment J e Ke and an initial stack s leads to the configuration (Const k, η′) | s
for some environment η′. In a similar way, Example 26 can be generalized as follows: if a
term t evaluates to a closure (λ t′) [e′] in an environment e, then, the execution of J t K in the
environment J e Ke leads to the configuration (Grab . J t′ K, J e′ Ke) | s. These facts can be
taken as evidence of the correctness of the compiler:

I Theorem 28 (Compiler Correctness). For any e ∈ E, t ∈ Λ and v ∈ V , if e` t⇒ v then
for all s ∈ S,

if v = k for some constant k, then J t [e] Kc | s 7−→∗ (Const k, η′) | s for some η′ ∈ H,
if v = (λ t′) [e′] for some t′ ∈ Λ and e′ ∈ E, then J t [e] Kc | s 7−→∗ (Grab . J t′ K, J e K) | s.

The statement of this theorem can significantly shortened by defining the relation
�⊆ W × V :

I Definition 29.

γ | s � k iff γ | s 7−→∗ (Const k, η′) | s for some η′ ∈ H
γ | s � (λ t) [e] iff γ | s 7−→∗ (Grab . J t K, J e Ke) | s.

The following property about this relation is expected and self-evident:

I Lemma 30. For any γ, γ′ ∈ Γ, s ∈ S and v ∈ V , if γ | s 7−→∗ γ′ | s and γ′ | s � v,
then γ | s � v.

The relation� leads to simpler proofs (both in paper and in Coq) and can be generalized
in the presence of more values, keeping the statement of correctness unchanged. Theorem 28
can be stated as follows:

I Theorem 31 (Compiler Correctness). For any e ∈ E, t ∈ Λ and v ∈ V , if e` t⇒ v then
for all s ∈ S, J t [e] Kc | s � v.

Proof. This theorem can be proved by induction on the derivation of e` t⇒ v. We illustrate
the proof with two cases: for rules (Const) and (App).

In the case of the rule e` k⇒ k, we have

J k [e] Kc | s = (Const k, J e Ke) | s 7−→∗ (Const k, J e Ke) | s ,

for any s ∈ S, and therefore J k [e] Kc | s � k.
Now we turn to application; let us recall the rule (App):

(App)
e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒ v

e` t1 t2⇒ v

We have one inductive hypothesis for each premise in the rule. In this case we have:

(i) for all s′ ∈ S, J t1 [e] Kc | s′ � (λ t) [e′]
(ii) for all s′ ∈ S, J t [t2 [e] :: e′] Kc | s′ � v.

Thus, by definition of � and (i), we get:

(iii) for all s′ ∈ S, J t1 [e] Kc | s′ 7−→∗ (Grab . J t K, J e′ Ke) | s′.

TYPES 2013

240 A Certified Extension of the Krivine Machine

Using Lemma 30, we can now start with the configuration J t1 t2 [e] Kc | s and try to reach
the configuration J t [t2 [e] :: e′] Kc | s, which we know by (ii) is related with v by the �
relation:

J t1 t2 [e] Kc | s = (J t1 t2 K, J e Ke) | s by definition of J_ Kc

= (Push J t2 K . J t1 K, J e Ke) | s by definition of J_ K

7−→ (J t1 K, J e Ke) | (J t2 K, J e Ke) :: s by the Push rule
= J t1 [e] Kc | (J t2 K, J e Ke) :: s by definition of J_ Kc

7−→∗ (Grab . J t K, J e′ Ke) | (J t2 K, J e Ke) :: s by (iii)
7−→ (J t K, (J t2 K, J e Ke) ::J e′ Ke) | s by the Grab rule
= (J t K, J t2 [e] Kc ::J e′ Ke) | s by definition of J_ Kc

= (J t K, J t2 [e] :: e′ Ke) | s by definition of J_ Ke

= J t [t2 [e] :: e′] Kc | s by definition of J_ Kc.

And that finishes the proof for (App). The remaining cases are similar. J

There is a third way to state the theorem of correctness that is a bit more intuitive and
closer as how Leroy [22] stated it: one defines a compilation for values and then proves that
the compilation of a term executes to the compilation of its value.

I Definition 32 (Compilation of values).

J_ Kv : V → Γ
J (λ t) [e] Kv = (Grab . J t K, J e Ke)

J k Kv = (Const k, [])

The alternative version of the correctness theorem can be formally stated as follows:

I Theorem 33 (Compiler Correctness, alternative). For any e ∈ E, t ∈ Λ and v ∈ V , if
e` t⇒ v, then, for all s ∈ S, J t [e] Kc | s 7−→∗J v Kv | s .

The proof also proceeds by induction on derivations of the evaluation. Notice however that
the compilation of a constant value pairs the constant with the empty environment, but the
compilation of the constant (as a term) is paired with the compilation of the corresponding
environment. So one needs to add a rule to discard the environment:

(Const k, γ :: η) | s 7−→ (Const k, []) | s

But this change introduces some non-determinism in the machine, so one is forced to change
the two rules for constants in Def. 23: those would require the environment to be empty. At
first sight, it could seem possible to avoid this issue by generalizing the function J_ Kv by
taking an extra argument for the top-level environment; however, this also fails in the proof
of the theorem for the case (Var).

3.3.1 Correctness for divergent terms
To complete the proof of correctness of the compiler, we need to ensure that, when the
evaluation of a term t diverges, the execution of J t K will never terminate. We use the
approach proposed by Leroy [22] of defining a coinductive big-step semantics to capture the
notion of divergence of a term. We write e` t⇒∞ to denote the divergence of a term t in
an environment e. The following are the rules of divergence for the high-level language of
this section:

L. Rodríguez, D. Fridlender, and M. Pagano 241

I Definition 34 (Coinductive semantics).

(App1)
e` t1⇒∞

e` t1 t2⇒∞
============ (App2)

e` t1⇒(λ t) [e′] t2 [e] :: e′ ` t⇒∞

e` t1 t2⇒∞
===================================

(Var)
e′ ` t′⇒∞

e`n⇒∞
========== e.n = t′ [e′]

(Add1)
e` t1⇒∞

e` t1 + t2⇒∞
=============== (Add2)

e` t1⇒ k e` t2⇒∞

e` t1 + t2⇒∞
=======================

There are two possible reasons for an application (t1 t2) to diverge. The first possibility is
that the function term t1 diverges. The second one is that, when the term t1 evaluates to an
abstraction (λ t) [e′], then the evaluation of the body t diverges. Note that, since we are in a
call-by-name setting, we do not make any claim about the evaluation of the argument t2.

The next step is to capture divergence in the abstract machine; again, we use coinduct-
ive semantics. The following rule captures the notion of an infinite sequence of machine
transitions:

I Definition 35 (Divergence of execution).

w 7−→w′ w′ 7−→∞

w 7−→∞
====================

Now we are able to state the following lemma that establishes that if a term t diverges, then
the machine makes infinitely many transitions.

I Theorem 36 (Correctness for divergent programs). If e` t⇒∞, then J t [e] Kc | s 7−→∞ .

4 Higher-order imperative language

In this section we extend the language of the previous section with imperative features,
namely we add the possibility to allocate, modify, and access memory locations. We adapt
the abstract machine to reflect this extension of the source language and prove the correctness
of the compiler with respect to a big-step semantics. For simplicity, the imperative variables
of our language can only contain integer values, and we only consider memory locations
storing integers.

4.1 The language

The imperative fragment of the language includes locations (natural numbers representing
positions in the store), a dereferencing operator, variable declarations, composition and
assignments. As in the previous section, we use de Bruijn indices to represent variables.

TYPES 2013

242 A Certified Extension of the Krivine Machine

I Definition 37 (Higher-order imperative language).

Terms Λ 3 t, t′ ::= λ t Abstraction
| t t′ Application
| n Variables
| k Constants
| t ⊕ t′ Binary operators
| ` Locations
| ! t Dereferencing
| newvar t Variable declaration
| t ; t′ Composition
| t := t′ Assignments
| skip Skip command

Closures C 3 c ::= t [e]
Environments E 3 e ::= [] | c :: e
Stores Σ 3 σ ::= [] | σ . k
Values V 3 v ::= (λ t) [e] | k | ` | σ

The initial configurations of the big-step semantics are triples (e, t, σ) and final configur-
ations are values; we write e σ̀ t⇒ v to denote that (e, t, σ) evaluates to v. Of course, the
values of commands are stores; moreover, since only commands can have side effects, the
rules of the big-step semantics of the language of the previous sections remain unchanged,
except that they propagate the state to each premise.

I Definition 38 (Big-step semantics).

(Abs)
e`σ λ t⇒(λ t) [e]

(Var)
e′ σ̀ t′⇒ v

e`σ n⇒ v
e.n = t′ [e′]

(App)
e σ̀ t1⇒(λ t) [e′] t2 [e] :: e′ σ̀ t⇒ v

e σ̀ t1 t2⇒ v

(Const)
e σ̀ k⇒ k

(Bop)
e σ̀ t1⇒ k e σ̀ t2⇒ k′

e σ̀ t1 ⊕ t2⇒ k ⊕ k′

(Loc)
e`σ `⇒ `

` < |σ| (Deref)
e σ̀ t⇒ `

e`σ! t⇒σ(`)

(Skip)
e σ̀ skip⇒σ

(Newvar)
` [e] :: e σ̀ . 0 t⇒σ′ . k

e σ̀ newvar t⇒σ′
` = |σ|

(Assign)
e σ̀ t⇒ ` e σ̀ t′⇒ k

e`σ t := t′⇒σ[` 7→ k]
(Comp)

e σ̀ t⇒σ′ e σ̀′ t′⇒σ′′

e`σ t ; t′⇒σ′′

Here we use some conventional notations to access and modify stores. We consider
locations to be a position (an index) of the store. Thus, the store σ[` 7→ k] contains the same
values as σ except perhaps in the position `, in which the value is k. We denote by σ(`) the

L. Rodríguez, D. Fridlender, and M. Pagano 243

constant allocated in the position ` of the store. Extension of the store σ with value k in the
new location is written σ . k.

In the rule of the term newvar we observe that, in order to evaluate the inner command
t, we need to extend the store and the environment. The store is extended with the value 0,
which is the default value we chose for newly created locations. The environment is extended
with the location ` = |σ| which points to the new (and last) position of the extended store.

It is worth noting that, since the access to a location could be done exclusively through
the use of a variable bound by newvar , we can “hide” to the user the existence of explicit
locations as terms. In other words, the user does not need to know that he can write explicit
locations, since all of them are created by newvar and bound to variables. This kind of
explicit locations have been used before, for example in [13, page 3].

Another observation to make is that it is impossible for a location created by newvar
to leave its lexical scope. In the assignment command t1 := t2 the term t2 must evaluate to a
constant, and not to a location. The store is also restricted to contain integer constants only.

A distinct feature of Algol-like languages is that the execution of a command should not
leave inaccessible locations in the store; as the following lemmas show, our semantics respects
that condition.

I Lemma 39 (Store size preservation). If e σ̀ t⇒σ′ then |σ| = |σ′|.

I Lemma 40 (Safe locations). If e σ̀ t⇒ ` then ` < |σ|.

4.2 A Krivine abstract machine with store
In order to cope with the extensions in the source language we need to make some changes
to the abstract machine of Sec. 3. We generalize the treatment of the binary operator of the
previous section so as to capture at once addition, dereferencing, and assignment; in order to
do so, some instructions carry the arity of the operator. Besides that generalization, we need
two instructions for allocating and deallocating memory cells; and yet another one to signal
the end of the execution of the current command.

I Definition 41 (Abstract machine).

Code: I 3 i, i′ ::= Grab . i

| Push i . i′
| Access n
| Const V
| Op 	n

| Frame 	n

| Alloc . i
| Dealloc
| Cont

Closures: Γ 3 γ ::= (i, η)
Environments: H 3 η ::= [] | γ :: η
Operators: Ops 3 	n ::= ⊕2 | !1 | :=2

Operator Arguments: N 3 ν ::= k | `
Stack values: M 3 µ ::= γ | [n ν • γ]
Stacks: S 3 s ::= [] | µ :: s
Stores: Σ 3 σ ::= [] | σ . k
Configurations: W 3 w ::= (γ, σ, s)

TYPES 2013

244 A Certified Extension of the Krivine Machine

Here, a frame [n ν • γ] is a data structure that contains: (a) an operator 	n, which
is always associated with an operation supported by the machine, (b) a list ν with the
arguments of the operation which have been already computed, and (c) a list γ with the
code required to compute the rest of the arguments.

The transitions of the machine are given in the following definition. Notice that the
execution of code corresponding to expressions will, eventually, finish with a numeric value
in the closure part; while the execution of an imperative command will finish with Cont.

I Definition 42.
(Grab . i, η) | σ | γ :: s 7−→ (i, γ :: η) | σ | s
(Push i . i′, η) | σ | s 7−→ (i′, η) | σ | (i, η) :: s
(Access n, η) | σ | s 7−→ η.n | σ | s if n < |η|
(Frame 	n, η) | σ | γ1 :: γ :: s 7−→ γ1 | σ | [n • γ] :: s if |γ| < n

(Op ⊕, η) | σ | [⊕ k, k′ •] :: s 7−→ (Const k̂, η) | σ | s where k̂ = k ⊕ k′

(Op :=, η) | σ | [:= `, k •] :: s 7−→ (Cont, η) | σ′ | s where σ′ = σ[` 7→ k]
(Op !, η) | σ | [! ` •] :: s 7−→ (Const k, η) | σ | s where k = σ(`)
(Alloc . i, η) | σ | s 7−→ (i, γ :: η) | σ . 0 | s where γ = (Const |σ|, η)
(Dealloc, η) | σ . k | s 7−→ (Cont, η) | σ | s
(Cont, η) | σ | γ :: s 7−→ γ | σ | s
(Const ν, η) | σ | [n ν • γ1, γ] :: s 7−→ γ1 | σ | [n ν, ν • γ] :: s
(Const ν, η) | σ | [n ν •] :: s 7−→ (Op 	n, η) | σ | [n ν, ν •] :: s

The instruction Frame 	n expects n closures in the top of the stack. Then it executes
the code of the first argument, and creates a frame containing the rest of them.

As in the previous section, the instruction Const k updates the frame with the constant k
– which is the value of an argument – and executes the next closure stored in the frame, if
there is any. When all the arguments have been computed, the instruction Op 	n is executed.
This instruction expects a frame with all the arguments computed and applies the built-in
operation associated with 	n. For example, if 	n is the assignment operator (:=), then
Op (:=) expects a frame [:= `, k •] and then updates the store in the location ` with the
constant value k.

4.3 Compilation and correctness
The compilation of the applicative part of the language remains unchanged with respect to
the previous section. The translation of an n-ary operator 	 consists in compiling all its
operands and putting the instruction Frame 	n after their code. Notice, however, that the
code for the operands will be executed after constructing the appropriate frame in the stack.
To compile the allocation of a new variable, we prepare the deallocation of the new location
–to be executed after the body of the block–, then we generate an allocation instruction
followed by the code of the body.

I Definition 43 (Compilation of terms).

J_ K : Λ→ I

Jλ t K = Grab . J t K

J t t′ K = Push J t′ K . J t K

Jn K = Access n
J k K = Const k
J ` K = Const `

J t1 ⊕ t2 K = Push J t2 K . Push J t1 K . Frame (⊕)
J ! t K = Push J t K . Frame (!)

J newvar t K = Push (Dealloc) . Alloc . J t K

J t1 ; t2 K = Push J t2 K . J t1 K

J t1 := t2 K = Push J t2 K . Push J t1 K . Frame (:=)
J skip K = Cont

L. Rodríguez, D. Fridlender, and M. Pagano 245

The following is the definition of compilation functions for closures and environments. Note
that these functions are mutually recursive:

I Definition 44 (Compilation of closures and environments).

J_ Kc : C → Γ
J t [e] Kc = (J t K, J e Ke)

J_ Ke : E → H

J [] Ke = []
J c :: e Ke = J c Kc ::J e Ke

As in the previous section, we use a relation � between configurations and values to
state the correctness theorem. We extend Definition 29 as follows:

I Definition 45 (�⊆ W × V).

γ | σ | s � k iff γ | σ | s 7−→∗ (Const k, η′) | σ | s for some η′ ∈ H
γ | σ | s � (λ t) [e] iff γ | σ | s 7−→∗ (Grab . J t K, J e Ke) | σ | s
γ | σ | s � ` iff γ | σ | s 7−→∗ (Const `, η′) | σ | s for some η′ ∈ H
γ | σ | s � σ′ iff γ | σ | s 7−→∗ (Cont, η′) | σ′ | s for some η′ ∈ H.

Now we can state the theorem of correctness for convergent terms:

I Theorem 46 (Correctness for convergent terms). For any e ∈ E, t ∈ Λ, σ ∈ Σ, v ∈ V , if
e σ̀ t⇒ v then, for all s ∈ S, J t [e] Kc | σ | s � v.

Proof. The proof is by induction in the derivation of e σ̀ t⇒ v. We illustrate the proof for
the case of the assignment command. Let us recall the rule for assignment:

(Assign)
e σ̀ t⇒ ` e σ̀ t′⇒ k

e`σ t := t′⇒σ[` 7→ k]

We have an inductive hypothesis for each premise of the rule:

(i) for all s′ ∈ S, J t [e] Kc | σ | s′ � `

(ii) for all s′ ∈ S, J t′ [e] Kc | σ | s′ � k.

Therefore, by definition of �, we get:

(iii) for all s′ ∈ S, J t [e] Kc | σ | s′ 7−→∗ (Const `, η1) | σ | s′ for some η1 ∈ H

(iv) for all s′ ∈ S, J t′ [e] Kc | σ | s′ 7−→∗ (Const k, η2) | σ | s′ for some η2 ∈ H.

TYPES 2013

246 A Certified Extension of the Krivine Machine

Now we can make the following sequence of transitions:

J t := t′ [e] Kc | σ | s
= (J t := t′ K, J e Ke) | σ | s by definition of J_ Kc

7−→ (Push J t′ K . Push J t K . Frame (:=), J e Ke) | σ | s by definition of J_ K

7−→ (Push J t K . Frame (:=), J e Ke) | σ | (J t′ K, J e Ke) :: s by the Push rule

7−→ (Frame (:=), J e Ke) | σ | (J t K, J e Ke) :: (J t′ K, J e Ke) :: s by the Push rule

7−→ (J t K, J e Ke) | σ | [:= • (J t′ K, J e Ke)] :: s by the Frame rule

= J t [e] Kc | σ | [:= • (J t′ K, J e Ke)] :: s by definition of J_ Kc

7−→∗ (Const `, η1) | σ | [:= • (J t′ K, J e Ke)] :: s by (iii)

7−→ (J t′ K, J e Ke) | σ | [:= ` •] :: s by a Const rule

= J t′ [e] Kc | σ | [:= ` •] :: s by definition of J_ Kc

7−→∗ (Const k, η2) | σ | [:= ` •] :: s by (iv)

7−→ (Op :=, η2) | σ | [:= `, k •] :: s by a Const rule

7−→ (Cont, η2) | σ[` 7→ k] | s by the Op (:=) rule .

Thus, we have proved J t := t′ [e] Kc | σ | s � σ[` 7→ k]. The remaining cases are similar. J

4.3.1 Correctness for divergent terms
We continue with the definition of the coinductive big-step semantics. In the following
definition we present the rules for the imperative fragment of our language, since the rules
for the other terms are similar to those in Definition 34, except for the propagation of the
store through the premises:

I Definition 47 (Coinductive semantics).

(Deref)
e`σ t⇒∞

e`σ! t⇒∞
========== (Newvar)

` [e] :: e`σ . 0
t⇒∞

e`σ newvar t⇒∞
==================

(Comp1)
e σ̀ t1⇒∞

e`σ t1 ; t2⇒∞
============== (Comp1)

e σ̀ t1⇒σ′ e σ̀′ t2⇒∞

e`σ t1 ; t2⇒∞
==========================

(Assign1)
e σ̀ t1⇒∞

e σ̀ t1 := t2⇒∞
=============== (Assign2)

e σ̀ t1⇒ ` e σ̀ t2⇒∞

e σ̀ t1 := t2⇒∞
=========================

We can prove, by coinduction, that if the machine executes the code of a divergent term,
then it never stops:

I Theorem 48 (Correctness for divergent terms). If e σ̀ t⇒∞, then J t [e] Kc | σ | s 7−→∞
for all s ∈ S.

4.4 About the formalization
In Coq, most of the definitions above are represented using inductive types. For example, the
following is the definition of the evaluation rules for abstractions, applications and variables:

L. Rodríguez, D. Fridlender, and M. Pagano 247

Inductive eval (e : env) (q : store) : term → value → Prop :=
| eval_abs : forall t, eval e q (term_abs t) (value_abs t e)
| eval_app : forall t1 t2 t e’ v,

eval e q t1 (value_abs t e’) →
eval (t2 [e] :: e’) q t v →
eval e q (term_app t1 t2) v

| eval_var : forall n t’ e’ v,
lookup e n = Some (t’ [e’]) →
eval e’ q t’ v →
eval e q (term_var n) v

[...]

Here, each constructor corresponds to one of the rules of evaluation. For example, the
constructor eval_abs corresponds to the rule (Abs) of Definition 38.

We rely on an important feature of Coq that is its built-in support for coinductive
definitions and proofs, which allowed us to handle proof involving infinite sequences of
transitions or coinductive evaluation in a simple manner. For example, the following is the
definition of the coinductive evaluation rules for the case of the application:

CoInductive diverges (e : env) (q : store) : term → Prop :=
| diverges_app_fst :

forall t1 t2,
diverges e q t1 →
diverges e q (term_app t1 t2)

| diverges_app_snd :
forall t1 t t2 e’ ,

eval e q t1 (value_abs t e’) →
diverges (t2[e] :: e’) q t →
diverges e q (term_app t1 t2)

[...]

The constructor diverges_app_fst covers the case when the application diverges due to its
operator (the term t1), and diverges_app_snd covers the case when the operator evaluates to
an abstraction but the divergence occurs after the contraction of the redex. The correctness
lemma for divergent terms is proved using the cofix tactic that permits proofs by coinduction:

Lemma correctness_for_divergent :
forall e q t,

diverges e q t →
forall s,

let g := closure_code (compile t) (compile_env e) in
infseq (plus trans) (g, q, s).

Proof.
cofix.
[...]

Qed.

We have used Coq’s Ltac tactic language to define tactics useful to automate some of the
proofs of the formalization. For example, the following tactic is used in the proof of compiler
correctness for convergent terms to make as many machine transitions as possible:

Ltac progress_until_possible :=
repeat

match goal with

TYPES 2013

248 A Certified Extension of the Krivine Machine

| [|− star trans _ _] ⇒
first [

eassumption
| apply star_refl
| eapply star_step ; [econstructor | eauto]
| eapply star_trans ; [eassumption | eauto]
]

| [|− _] ⇒ simpl ; progress eauto
end

Here, the inductive type star trans represents a sequence of machine transitions. This
tactic tries to prove a goal where the conclusion has the form star trans _ _. First, it tries
to use an assumption to prove the goal, but if it is not possible, it will try to make zero, one
or more steps (in that order) to reach the desired configuration.

We have measured the size of the formalization using the tool coqwc that prints the
number of lines of code designated to specifications or proofs. The next table shows the
results for the formalization of each of the three languages we considered in the paper:

Language Specifications Proofs
Call-by-name lambda calculus 345 531

Call-by-name lambda calculus with strict operators 336 199
Imperative higher-order language 468 272

The formalization of the first section has larger proofs scripts than the others. This is due to
the fact that the use of small-step semantics requires to prove more results to capture the
notion of correctness of the compiler and to a less extensive use of the Ltac mechanism.

5 Conclusion

In this paper we used well-known techniques [21, 22, 2] to mechanize in Coq the correctness
of a compiler for a higher-order imperative language to a variant of the Krivine abstract
machine. As far as we know, this is the first proof of correctness of a compiler combining
call-by-name lambda calculus extended with a store and strict operators.

This formalization is also one of our first steps towards proving the correctness of a
compiler for an Algol-like language [25]. Our next steps towards that goal involve (i) to
add booleans with non-strict binary operations, (ii) to impose a type system on the source
language, and (iii) to add a recursion operator.

Most of those changes planned for the language also entail modifications in the design of
the compiler or the machine. For example, if we impose a type system in the language, the
compiler might be designed to compile typing derivations instead of raw terms, as we do in
this paper. The type system should also enable us to eliminate the need for a dereferencing
operator, since we can detect during type-checking the different roles of the occurrences of a
variable.

We plan to make some improvements in the abstract machine and also consider the use of
the refocusing technique [10] to derive an abstract machine for the imperative language. One
downside of our machine is the overhead incurred by the use of frames to implement strict
operators; one possible remedy for this is the use of stack markers as in the ZAM machine
[18]. Since we are using call-by-name evaluation, we could get some improvements in the
execution by also considering sharing as in [17, 16].

L. Rodríguez, D. Fridlender, and M. Pagano 249

Related work. Leroy [22] defined an abstract machine for a call-by-value lambda calculus,
and used coinductive big-step semantics to describe the behavior of divergent programs.
He also used Coq to prove the correctness of the compiler and some additional semantic
properties like evaluation determinism and progress. A similar approach has been used by
Leroy [21] and Bertot [3] for the simple imperative language.

Danvy and Nielsen [10] introduced the refocusing technique, that allows to systematically
derive abstract machines from reduction semantics, by applying successive program trans-
formations. Sieczkowski et al. [29] formalized in Coq and proved correct the technique for
some applicative languages. We have taken Sieckzowski’s formalization and adapted it for the
language in Sec. 3; the resulting formalization is longer than our original mechanization. This
happens because that method requires to prove several technical lemmas for each language;
it could be interesting to investigate the possibility of stating refocusing more abstractly in
order to prove some of those lemmas in a more general setting. It is not immediate if this
technique can be applied to imperative languages, like the one in Section 4.

Chlipala [5, 6, 7] and Benton [1] used denotational semantics and logical relations to
structure the proof of correctness of compilers for several programming languages, including
typed lambda calculus and impure functional languages. Peter Selinger [28] derived extensions
of the Krivine machine from the CPS translations of the λµ-calculus. Piróg et al. [24] derived
a lazy abstract machine for an applicative language and formalized that derivation in Coq.

Acknowledgements. We would like to thank three anonymous reviewers for their comments
and suggestions on an earlier version of this article.

References
1 Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correctness.

SIGPLAN Not., 44(9):97–108, August 2009.
2 Yves Bertot. A certified compiler for an imperative language. Technical Report RR-3488,

INRIA, September 1998.
3 Yves Bertot. Theorem proving support in programming language semantics. CoRR,

abs/0707.0926, 2007.
4 Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.

ACM Trans. Comput. Log., 9(1), 2007.
5 Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly

language. SIGPLAN Not., 42(6):54–65, June 2007.
6 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. SIG-

PLAN Not., 43(9):143–156, September 2008.
7 Adam Chlipala. A verified compiler for an impure functional language. In POPL, pages

93–106, 2010.
8 G. Cousineau and P.-L. Curien. The categorical abstract machine. Sci. Comput. Program.,

8(2):173–202, April 1987.
9 Pierre-Louis Curien. An abstract framework for environment machines. Theor. Comput.

Sci., 82(2):389–402, 1991.
10 Olivier Danvy and Lasse Nielsen. Refocusing in reduction semantics. Research report

BRICS RS-04-26, DAIMI, Department of Computer Science, Aarhus University, Aarhus,
Denmark, November 2004.

11 Stephan Diehl and Peter Sestoft. Abstract machines for programming language implement-
ation. Future Gener. Comput. Syst., 16(7):739–751, May 2000.

12 Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems within the
lambda-sigma calculus. J. Funct. Program., 8(2):131–176, March 1998.

TYPES 2013

250 A Certified Extension of the Krivine Machine

13 Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-
order imperative programs. In J. Gregory Morrisett and Simon L. Peyton Jones, editors,
POPL, pages 141–152. ACM, 2006.

14 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Symbol. Com-
put., 20(3):199–207, September 2007.

15 P. J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal, 6(4):308–
320, January 1964.

16 John Launchbury. Lazy imperative programming. In ACM Sigplan Workshop on State
in Programming Languages, pages 46–56, 1993. (available as YALEU/DCS/RR968, Yale
University).

17 John Launchbury. A natural semantics for lazy evaluation. In POPL, pages 144–154, 1993.
18 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.

Technical report 117, INRIA, 1990.
19 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,

2009.
20 Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–446,

December 2009.
21 Xavier Leroy. Mechanized semantics – with applications to program proof and compiler

verification. In Logics and Languages for Reliability and Security, pages 195–224. IOS Press
BV, 2010.

22 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf. Comput.,
207(2):284–304, February 2009.

23 Simon L. Peyton Jones. The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1987.

24 Maciej Pirog and Dariusz Biernacki. A systematic derivation of the STG machine verified
in Coq. SIGPLAN Not., 45(11):25–36, September 2010.

25 John C. Reynolds. Using functor categories to generate intermediate code. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL’95, pages 25–36, New York, NY, USA, 1995. ACM.

26 John C. Reynolds. The essence of Algol. In Peter W. O’Hearn and Robert D. Tennent, ed-
itors, ALGOL-like Languages, Volume 1, pages 67–88. Birkhauser Boston Inc., Cambridge,
MA, USA, 1997.

27 M. Rittri and Institutionen för informationsbehandling (Göteborg). Proving the Correctness
of a Virtual Machine by a Bisimulation. Department of computer sciences, 1988.

28 Peter Selinger. From continuation passing style to Krivine’s abstract machine. Manuscript,
2003. Available in Peter Selinger’s web site.

29 Filip Sieczkowski, Małlgorzata Biernacka, and Dariusz Biernacki. Automating derivations
of abstract machines from reduction semantics: A generic formalization of refocusing in Coq.
In Proceedings of the 22Nd International Conference on Implementation and Application
of Functional Languages, IFL’10, pages 72–88, Berlin, Heidelberg, 2011. Springer-Verlag.

	Introduction
	Call-by-name lambda calculus
	Calculus of closures
	The Krivine machine
	Compilation and correctness

	Call-by-name lambda calculus with strict operators
	The calculus
	A call-by-name machine with strict operations
	Compilation and its correctness
	Correctness for divergent terms

	Higher-order imperative language
	The language
	A Krivine abstract machine with store
	Compilation and correctness
	Correctness for divergent terms

	About the formalization

	Conclusion

