682 research outputs found

    New developments in prosthetic arm systems

    Get PDF
    Absence of an upper limb leads to severe impairments in everyday life, which can further influence the social and mental state. For these reasons, early developments in cosmetic and body-driven prostheses date some centuries ago, and they have been evolving ever since. Following the end of the Second World War, rapid developments in technology resulted in powered myoelectric hand prosthetics. In the years to come, these devices were common on the market, though they still suffered high user abandonment rates. The reasons for rejection were trifold - insufficient functionality of the hardware, fragile design, and cumbersome control. In the last decade, both academia and industry have reached major improvements concerning technical features of upper limb prosthetics and methods for their interfacing and control. Advanced robotic hands are offered by several vendors and research groups, with a variety of active and passive wrist options that can be articulated across several degrees of freedom. Nowadays, elbow joint designs include active solutions with different weight and power options. Control features are getting progressively more sophisticated, offering options for multiple sensor integration and multi-joint articulation. Latest developments in socket designs are capable of facilitating implantable and multiple surface electromyography sensors in both traditional and osseointegration-based systems. Novel surgical techniques in combination with modern, sophisticated hardware are enabling restoration of dexterous upper limb functionality. This article is aimed at reviewing the latest state of the upper limb prosthetic market, offering insights on the accompanying technologies and techniques. We also examine the capabilities and features of some of academia’s flagship solutions and methods

    Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation

    Get PDF
    This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future

    Development of Sensory-Motor Fusion-Based Manipulation and Grasping Control for a Robotic Hand-Eye System

    Get PDF

    Estimation of Phantom Arm Mechanics About Four Degrees of Freedom After Targeted Muscle Reinnervation

    Get PDF
    The intuitive control of bionic arms requires estimation of amputee's phantom arm movements from residual muscle bio-electric signals. The functional use of myoelectric arms relies on the ability of controlling large sets of degrees of freedom (>3 DOFs) spanning elbow, forearm, and wrist joints. This would assure optimal hand orientation in any environment. As part of this paper we recorded high-density electromyograms with >190 electrodes from the residual stump of a trans-humeral amputee who underwent targeted muscle reinnervation. We employed clustering to determine eight spatially separated sub-sets of channels sampling electromyograms associated to the actuation of four phantom arm DOFs. We created a large-scale musculoskeletal model of the phantom arm encompassing 33 musculo-tendon units. For the first time, this enabled the accurate electromyography-driven simulation of complex phantom joint rotations about elbow flexion-extension, forearm pronation-supination, wrist flexion-extension, and radial-ulnar deviation. These results support the potential for a new class of bionic limbs that are controlled as natural extensions of the body, an important step toward next-generation prosthetics that mimic human biological functionality and robustness

    EMG SIGNALS FOR FINGER MOVEMENT CLASSIFICATION BASED ON SHORT-TERM FOURIER TRANSFORM AND DEEP LEARNING

    Get PDF
    An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data representations are investigated: different window segmentation lengths and reduction of the measured channels. The overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains more than 90% by reducing channels from four to three

    Co-Adaptive Control of Bionic Limbs via Unsupervised Adaptation of Muscle Synergies

    Get PDF
    Objective: In this work, we present a myoelectric interface that extracts natural motor synergies from multi-muscle signals and adapts in real-time with new user inputs. With this unsupervised adaptive myocontrol (UAM) system, optimal synergies for control are continuously co-adapted with changes in user motor control, or as a function of perturbed conditions via online non-negative matrix factorization guided by physiologically informed sparseness constraints in lieu of explicit data labelling. Methods: UAM was tested in a set of virtual target reaching tasks completed by able-bodied and amputee subjects. Tests were conducted under normative and electrode perturbed conditions to gauge control robustness with comparisons to non-adaptive and supervised adaptive myocontrol schemes. Furthermore, UAM was used to interface an amputee with a multi-functional powered hand prosthesis during standardized Clothespin Relocation Tests, also conducted in normative and perturbed conditions. Results: In virtual tests, UAM effectively mitigated performance degradation caused by electrode displacement, affording greater resilience over an existing supervised adaptive system for amputee subjects. Induced electrode shifts also had negligible effect on the real world control performance of UAM with consistent completion times (23.91 +/- 1.33 s) achieved across Clothespin Relocation Tests in the normative and electrode perturbed conditions. Conclusion: UAM affords comparable robustness improvements to existing supervised adaptive myocontrol interfaces whilst providing additional practical advantages for clinical deployment. Significance: The proposed system uniquely incorporates neuromuscular control principles with unsupervised online learning methods and presents a working example of a freely co-adaptive bionic interface.Peer reviewe
    corecore