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Co-Adaptive Control of Bionic Limbs via
Unsupervised Adaptation of Muscle Synergies

Dennis Yeung , Irene Mendez Guerra , Ian Barner-Rasmussen , Emilia Siponen ,
Dario Farina , Fellow, IEEE, and Ivan Vujaklija , Member, IEEE

Abstract—Objective: In this work, we present a myoelec-
tric interface that extracts natural motor synergies from
multi-muscle signals and adapts in real-time with new user
inputs. With this unsupervised adaptive myocontrol (UAM)
system, optimal synergies for control are continuously co-
adapted with changes in user motor control, or as a func-
tion of perturbed conditions via online non-negative matrix
factorization guided by physiologically informed sparse-
ness constraints in lieu of explicit data labelling. Meth-
ods: UAM was tested in a set of virtual target reaching
tasks completed by able-bodied and amputee subjects.
Tests were conducted under normative and electrode per-
turbed conditions to gauge control robustness with com-
parisons to non-adaptive and supervised adaptive myocon-
trol schemes. Furthermore, UAM was used to interface an
amputee with a multi-functional powered hand prosthesis
during standardized Clothespin Relocation Tests, also con-
ducted in normative and perturbed conditions. Results: In
virtual tests, UAM effectively mitigated performance degra-
dation caused by electrode displacement, affording greater
resilience over an existing supervised adaptive system for
amputee subjects. Induced electrode shifts also had negli-
gible effect on the real world control performance of UAM
with consistent completion times (23.91±1.33 s) achieved
across Clothespin Relocation Tests in the normative and
electrode perturbed conditions. Conclusion: UAM affords
comparable robustness improvements to existing super-
vised adaptive myocontrol interfaces whilst providing addi-
tional practical advantages for clinical deployment. Signifi-
cance: The proposed system uniquely incorporates neuro-
muscular control principles with unsupervised online learn-
ing methods and presents a working example of a freely
co-adaptive bionic interface.
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I. INTRODUCTION

U PPER limb loss caused by an accident, underlying disorder
or a genetic condition can result in a reduction of function

that impacts almost all aspects of daily living. In severe cases
where clinical reconstructive techniques cannot provide suffi-
cient functional improvement, technology-driven alternatives
may be considered. With bionic restoration of human motor
function, patients are fitted with robotic prostheses designed to
mimic the capabilities of a missing extremity. In order to ensure
the successful embodiment of these devices, the user’s motor
intentions must be reliably and faithfully interpreted [1].

Surface electromyography (EMG) from residual muscles is
usually employed for establishing this human-machine inter-
facing [2], [3]. The most basic and common form of myocontrol
being the direct coupling between a single prosthetic function,
typically hand open and close, and two recording sites. Whilst
robust and effective in simple control tasks, conventional direct
control no longer facilitates an interface that can efficiently
engage the multiple grip patterns and wrist articulations that
modern hand prostheses offer. However, by employing more
sophisticated machine learning-based methods such as multi-
channel pattern recognition, users can directly access different
degrees-of-freedom (DoFs) of their device [4].

Meanwhile, regression-based techniques establish a con-
tinuous mapping between EMG signals and prosthesis com-
mands [5]–[8]. These interfaces are essentially an extension of
neuromotor control, involving model-specific transformations
from muscle activation patterns to controller output [9]. Indeed,
the modular recruitment of muscle synergies observed in con-
ventional motor tasks is also present during myoelectric con-
trol [10]. Here, muscle synergies pertain to locally time-invariant
weights associated to groups of muscles whose coordinated
activity is driven by time-varying motor command primitives.
Evidence exists that sparsity is an inherent attribute of the
synergy framework, in both synergy composition and coordi-
nation [11], [12]. Indeed, the latter property has been leveraged
in establishing physiologically-inspired myocontrol [13]. In ad-
dition to providing multi-functional control, these approaches
promote motor learning by users since the enabled mapping is
continuous and associated to natural motor modules [14]–[16].
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Despite the possibility for the user to adapt to non-stationary
signal characteristics [17], [18], some changes in signal features
require an adaptation by the control algorithm. For example, the
electrode displacement that occurs when redonning a prosthesis
corresponds to a sudden change in signal properties that cannot
be compensated by the user [17], [19]. Multiple adaptive algo-
rithms have thus been proposed to address the issue of control
degradation where the system itself may be updated with new
data if it becomes defective, as opposed to a full recalibration
of the interface which is more disruptive and time-consuming.
Here, incremental learning techniques are employed which can
be categorized as either supervised (requiring data labels) or
unsupervised (label-free adaptation). Many of these operate with
designated offline data collection phases for model adaptation,
where the resultant systems often exhibit higher robustness
when compared to their non-adaptive counterparts [20]–[23].
Furthermore, system adaptation can be implemented as an online
procedure with the machine and user concurrently adapting in
a cooperative manner during virtual target reaching tasks [24]–
[26]. These co-adaptive schemes can remedy defective function
mappings by utilizing novel input data generated during online
control. They leverage this new data to refine function spaces
where no training samples were provided during system ini-
tialization. Currently, only one commercial myoelectric control
system supports machine adaptation, and this is implemented as
a user-initiated offline data gathering sequence [27].

Several drawbacks remain with current adaptive myocontrol
solutions. First, offline data gathering interrupts continuous
use and requires focused effort from the user throughout the
procedure [20], thereby diminishing the convenience of these
devices. Second, offline methods provide no feedback regarding
model changes until the end of the procedure and the user is
uninformed as to whether the new data they provide is bene-
ficial. Third, adaptation schemes based on supervised learning
require meticulous data labels. This can lead to complications
associated with data mislabeling which may occur with users
who cannot reproduce consistent muscle activation patterns to
match provided cues [13]. Lastly, in the case of online supervised
co-adaptive methods, specialized equipment is required [24],
making them more cumbersome to incorporate in commercial
packages.

To address the aforementioned limitations, we propose an un-
supervised adaptive myocontrol system with an online learning
algorithm that is automatically administered in real-time. This
approach forgoes disruptive re-training protocols and allows
users to respond instantly to the evolving forward dynamics of
the interface during device operation. Here, system adaptation
is driven by an online extension of the non-negative matrix
factorization (NMF) algorithm [28] which blindly identifies and
refines basis functions analogous to muscle synergies. Thus,
complications regarding data label obtainment and mislabeling
are circumvented. While current unsupervised solutions operate
on confidence-based acceptance of new data [20], [29], [30],
our proposed solution leverages the physiological parallels of
the control model and applies a-priori knowledge regarding the
sparsity of motor command primitives [13] to guide the evolution
of the interface, whereas the detection of conflicting command

primitives, which may indicate a defective model, is used to
trigger system adaptation.

We hypothesized that the proposed co-adaptive scheme would
improve myocontrol performance and robustness by learning
from the novel activation patterns produced by users during
online operation. Furthermore, the system should exhibit capa-
bilities of adapting its internal representations of motor synergies
such that effects of signal non-stationarities can be alleviated. To
test this, a series of virtual target reaching tasks were conducted
with both able-bodied and amputee participants. The tests were
done under the influence of different setup perturbations, where
the proposed unsupervised adaptive myocontrol (UAM) scheme
was compared with its non-adaptive counterpart (NAM) and a
supervised adaptive myocontrol (SAM) scheme. Subsequently,
to demonstrate the feasibility of employing UAM in real-world
settings, the algorithm was integrated into the control of a
commercial robotic hand prosthesis and operated by an amputee
while performing standardized clinical tests. In both evaluation
setups, the systems were tested under different conditions of
electrode displacement to gauge their effectiveness in compen-
sating for signal perturbations associated with the redonning of
myoelectric interfaces.

II. METHODS

A. NMF for Simultaneous and Proportional Myocontrol

Both UAM and NAM rely on an underlying myocontrol model
based on NMF in which a series of muscle activation patterns,
X, can be considered as an instantaneous linear mixture of
command primitives, F, and their basis functions, W, which
are analogous to muscle synergies [5], [13].

X
n×k
≈ W

n×2m
× F

2m×k
(1)

where n is the number of channels, k is the number of samples
recorded for model initialization and m is the number of DoFs
supported by the controller. Here, each DoF corresponds to a
pair of motor tasks (i.e. flexion/extension) and is encoded by
two opposing command primitives to satisfy the non-negativity
constraint of NMF, hence F = [f+1 , f−1 , . . . f

+
m, f−m]ᵀ.

Given a set of activation patterns pertaining to a set of con-
strained motions, the latent variables W and F are extracted by
iterating a pair of multiplicative update rules in equations (3) and
(4), which optimize the cost function (2) in a block coordinate
descent manner [31].

D =
1

2
‖X−WF‖2Fro =

1

2

n∑
i=1

k∑
j=1

(
xij − (WF)ij

)2
(2)

Faj ← Faj

(WᵀX)aj
(WᵀWF)aj

(3)

Wia←Wia
(XFᵀ)ia

(WFFᵀ)ia
(4)

The procedure for controller initialization thus follows that
in [5] and [32] where multi-DoF control models are constructed
from combining independently extracted single-DoF synergy
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pairs. During online control, the estimated command primitives
f̂(t) are obtained by iterating (5) with the current activation
pattern x(t). The estimation is then scaled with subject-specific
gains [5], [32] and smoothened with a seven point moving
average filter [25] to give the controller output f̂ ′′(t).

f̂(t)a← f̂(t)a

(
Wᵀx(t)

)
a(

WᵀWf̂(t)
)
a

(5)

B. Unsupervised Online Adaptation

To effectively update model basis vectors from user input
in real-time, an online extension of the NMF algorithm must
be employed as simply appending new data to the existing set
of training samples and resolving the batch algorithm would
lead to increasing computation times. Therefore, UAM is driven
by an incremental approach to NMF which assumes that the
optimality of command primitives factorized from past data is
approximately unchanged when incremental changes are ap-
plied to model bases with each block of new data [28]. Equation
(6) shows this approximation in the cost function accounting for
the first k samples from data of length k + l, where l is the size
of the new samples.

Dk =
1

2

n∑
i=1

k∑
j=1

((
Xk+l

)
ij
− (Wk+lFk+l

)
ij

)2

∼= 1

2

n∑
i=1

k∑
j=1

((
Xk+l

)
ij
− (Wk+lFk

)
ij

)2
(6)

Here, Wk+l and Fk+l represent optimal matrices from the
factorization of Xk+l while Fk is the previously optimal en-
coding factorized from the first k columns of Xk+l. As the
cost function is separable by columns, its expression for the
full set of input data, with the inclusion of the aforementioned
approximation, can now be written as (7).

Dk+l =
1

2

n∑
i=1

k+l∑
j=1

((
Xk+l

)
ij
− (Wk+lFk+l

)
ij

)2

∼= Dk +
1

2

n∑
i=1

l∑
j=1

(
(Xl )ij −

(
Wk+lFl

)
ij

)2
(7)

The introduced approximation is appropriate if k�l such that
the effect of new samples at each increment of adaptation is
small. Hence, upon the arrival of a new block of samples, Xl,
the first k columns of Fk+l are approximately equal to Fk and
only the last l columns, Fl, need to be updated in conjunction
with obtaining the new basis matrix Wk+l.

Under normative conditions of the synergy-inspired position
control paradigm, the command primitives decoded from muscle
activations should have some degree of sparseness. That is, each
column of Fl should mainly consist of near-zero elements with
only a few strongly non-zero elements. While the L0 norm
directly relates to sparseness, its penalization is inconvenient to
implement and, typically, theL1 norm has been used to achieve a
similar effect [13]. Here,L1/2 regularization was chosen as it has

been shown to produce sparser solutions than L1 regularization
and can be efficiently incorporated to the multiplicative update
scheme [19], [33]. Adding this constraint to (7) results in (8).

Dk+l = Dk +

l∑
j=1

(
1

2

n∑
i=1

(
(Xl )ij −

(
Wk+lFl

)
ij

)2

+ λ

2m∑
a=1

(Fl )
1/2
aj

)

= Dk +Dl (8)

where λ > 0 is the sparsity-promoting parameter imposed on
the new block of command primitives.

Based on (8), the influence of new samples on model adap-
tation would diminish as data accumulates. This characteristic
is undesired as the adaptation would become less effective
over time. Therefore, the updating scheme requires a scaling
mechanism such that older samples are gradually discounted as
new data becomes available.

Dk+l = αoDk + αfDl (9)

Dk+l1+···+lR = αR
o Dk + αf

R∑
r=1

αR−r
o Dlr (10)

Here, 0 ≤ αo, αf ≤ 1 weigh the importance of old and new
samples respectively such that successive applications of the
adaptation algorithm R times will result in an exponentially de-
caying contribution from older sample blocks. This allows new
synergies to be gradually learned and past works on co-adaptive
simultaneous and proportional myocontrol have implemented
similar concepts of ‘forgetting’ older data [24]–[26].

From the cost function in (9), the update rules for Wk+l and
Fl may be derived under a gradient descent framework to yield
(11) and (12) (detailed derivations in Appendix A).

(Fl )aj ← (Fl )aj

(
Wᵀ

k+lXl

)
aj(

Wᵀ
k+lWk+lFl + λ

2F
−1/2
l

)
aj

(11)

(
Wk+l

)
ia
← (

Wk+l

)
ia

×

(
αoXkF

ᵀ
k + αfXl F

ᵀ
l

)
ia(

αoWk+lFkF
ᵀ
k + αfWk+lFl F

ᵀ
l

)
ia

(12)

whereF
−1/2
l denotes the element-wise inverse square root matrix

of Fl , that is, (F
−1/2
l )aj = (Fl)

−1/2
aj .

It can be seen in (12) that past information is retained inXkF
ᵀ
k

andFkF
ᵀ
k . These storage matrices allow the space complexity of

the adaptive algorithm to remain constant with regard to sample
length and are updated through (13) and (14).

Xk+lF
ᵀ
k+l = αoXkF

ᵀ
k + αfXl F

ᵀ
l (13)

Fk+lF
ᵀ
k+l = αoFkF

ᵀ
k + αfFl F

ᵀ
l (14)

1) Adaptation Trigger: The adaptation algorithm is de-
signed to automatically initiate whenever defective control is
detected. Here, the self-diagnosed trigger for adaptation is based
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Fig. 1. Schematic for UAM integration in the virtual test environment. Motor command primitives are estimated from instantaneous muscle
activation patterns based on the synergy-inspired control model and are translated to cursor co-ordinates in the virtual environment. Solid arrow
lines represent continuous flows while the dashed line indicates that system adaptation only modifies control model parameters when toggled by
excessively conflicting commands (opposing within-DoF primitives).

on the rationale that position control schemes should not incur
significant co-activation of opposing within-DoF commands.
Hence, a set of thresholds, (δ+m, δ−m), are set at 5% of the max
primitive activation factorized from training data. The adaptation
is thus triggered if both positive and negative thresholds of a
DoF are exceeded at the same time instant. The pseudocode
for system adaptation is shown in Algorithm 1 while Fig. 1
illustrates how UAM is integrated in a virtual test environment.

2) Parameter Selection: The proposed algorithm for UAM
relies on four selectable parameters: regularization weighting
λ, new sample block size l and sample weights αo and αf .
An over-scaled sparsity constraint on the command primitives
would produces excessive overlap between basis vectors while
an under-scaled sparsity constraint would yield denser primitives
with bases that are too sparse. In addition, a highαo value relative
to αf would yield an unresponsive and ineffective adaptation
while the opposite case would induce unstable, noise-prone
adaptation [24]. Following [28], αf was set to be (1− αo).
Extensive pilot testing was then conducted to obtain suitable
settings of λ = 5 and αo = 0.9 used for the experiments in this
work.

For the parameter of l, larger values correspond to a larger
repertoire of contiguous muscle activation patterns presented
to the algorithm from which the model is updated with. The
larger the set of activation patterns, the more accurately the
model can update its new basis functions. Furthermore, a larger
l increases the potential overlap of samples between consecutive
blocks of adaptation input. Such overlap improves the stability
of adaptation as the gradients of consecutive updates will be con-
sistent. As such, it is favorable to incorporate more new samples
than less, creating a trade-off between computational efficiency
and the stability of learning. Here, l = 1000 was chosen which
corresponds to activation data from the last 40 s since adaptation
was triggered which allows for real-time adaptation that does not
incur additional control latencies.

C. Experiments

1) Subjects: 10 able-bodied subjects, 7 male and 3 female,
aged 22-34, all right-handed, with no prior experience in my-
ocontrol participated in the virtual target reaching experiment.
Two male amputee subjects, AM1 and AM2, aged 30 and 50,
respectively, with below-elbow congenital deficiency on the

Algorithm 1: Online NMF for UAM.

Input: f̂(t), Xl, Wk, (XkF
ᵀ
k), (FkF

ᵀ
k)

Output: Wk+l, (Xk+lF
ᵀ
k+l), (Fk+lF

ᵀ
k+l)

1: if (f̂+
1 (t) ≥ δ+1 and f̂−1 (t) ≥ δ−1 ) or... or

(f̂+
m(t) ≥ δ+m and f̂−m(t) ≥ δ−m)then

2: Initialize random non-negative matrix, Fl

3: Initialize Wk+l as Wk

4: foriteration=1:iterationLimitdo
5: Update Fl with (11)
6: Update Wk+l with (12)
7: end for
8: Calculate Xk+lF

ᵀ
k+l with (13)

9: Calculate Fk+lF
ᵀ
k+l with (14)

10: end if
11: return Wk+l

left side also participated in the virtual experiment. Both use
conventionally controlled myoelectric devices in their daily lives
with approximately 24 and 8 years of experience for AM1
and AM2, respectively. Both amputee subjects have only had
minimal exposure to advanced myocontrol prior to this study. In
addition to the virtual experiment, AM2 also participated in the
standardized Clothespin Relocation Tests.

All subjects provided their written informed consent. Both
experiments were conducted in accordance with the Declaration
of Helsinki and were approved by the research ethics committees
of Aalto University and Imperial College London.

2) Data Acquisition and Processing: The Myo Armband
(Thalmic Labs, Canada) was used to acquire EMG signals at a
sampling frequency of 200 Hz. The root-mean-square (RMS)
feature was extracted from the raw signal in windows of 160 ms
length in time steps of 40 ms (120 ms overlap between con-
secutive windows). A custom Matlab (MathWorks Inc, MA,
USA) framework was used to facilitate real-time processing of
EMG, the implementation of myocontrol algorithms and online
adaptation.

3) Model Training and Calibration: Prior to myocontrol
assessment, training data was recorded for control model ini-
tialization. Subjects were seated in front of a computer screen
with their arms relaxed by their sides. EMG was measured
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Fig. 2. 2D task space used for the target reaching exercise. The
current target is shown as a magenta solid-lined circle while dotted lines
indicate other target locations. The spatial distribution of targets ensure
thorough assessment of the multi-functional and proportional control
capabilities of each myocontrol algorithm.

from the able-bodied subjects’ dominant-side forearm while for
amputee subjects, the signals were recorded from the affected
limb. Three repetitions of each required single-DoF activation
were recorded. For UAM and NAM, which share the same base
control model, the procedure for initialization followed that
of [5] while the model initialization approach used for SAM
is described in [25]. Here, activation patterns pertaining to wrist
flexion and extension were assigned to DoF1. For all subjects but
AM2, activations pertaining to radial and ulnar deviation were
mapped to DoF2. For AM2, inability to reliably reproduce the
default motions meant that activations for pronation and supina-
tion were used for DoF2 instead. After initialization, directional
gains for boosting DoF activations were then manually tuned to
ensure full accessibility of the usable solution space.

4) Virtual Target Reaching Tasks: In the virtual experi-
ment, subjects were required to perform sets of target reach-
ing tasks in a 2D space using different controllers and under
different conditions of controlled electrode perturbation. Such
virtual testing is well established in evaluating advanced my-
ocontrol [5]–[7], [34]. Here, each trial consisted of 24 predefined
targets presented in randomized sequences with subjects given
10 s to reach each target, the spatial distribution of which
ensured a thorough evaluation of multi-DoF simultaneous and
proportional control performance. A more detailed description
of the task parameters can be found in [19] while the task space
layout is shown in Fig. 2.

NAM was assessed under normative trial settings while for
the adaptive interfaces (UAM and SAM) an adaptation trial
was first conducted to allow mutual co-adaptation of user and
interface during task performance before a post-adaptation trial
was conducted to assess the resultant control quality. During
adaptation trials the online learning algorithm of the tested
myocontrol scheme was enabled such that system adaptation
could occur as the target acquisition tasks were being performed.
For UAM, system adaptation was triggered whenever excessive
conflicting commands were detected as described in Section II-
B1, suggesting a function space that was poorly mapped. As this
method is fully automatic, system adaptation was free to occur at

TABLE I
VIRTUAL EXPERIMENT TRIAL SEQUENCE

Fig. 3. (a) The directions of transversal electrode shift. In lateral-
shifted trials the sensor band is rotated such that the reference pod (blue
LED) is 1.2 cm closer to the lateral epicondyle. In medial-shifted trials the
sensor band is rotated from its original position in the opposite direction.
(b) The custom socket housing the sensor band. Mounted distally is a
commercial bionic hand with an active rotatable wrist.

any point during the adaptation trial. For SAM, the myocontrol
interface was deemed inadequate if a target could not be reached
after 5 s at which point the supervised adaptation algorithm was
triggered as implemented in [25].

To test the robustness of control to electrode shifting, trials
were also repeated with electrodes transversally shifted from
their original positions. The full trial sequence is shown in
Table I. In medial-shifted trials, the sensor band was rotated such
that the reference sensor pod was shifted closer to the medial
epicondyle by approximately 1.2 cm while lateral-shifted trials
were conducted with the sensor band displaced by the same
magnitude in the opposite transversal direction (Fig. 3(a)). This
displacement equates to half of the reference sensor pod width
and is in alignment with past works where shifts from 0.8 cm up
to 2 cm [17], [22], [23], [35] have been tested.

5) Prosthetic Hand Control and Clothespin Relocation
Test: The UAM algorithm was also incorporated as a controller
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for a commercial hand prosthesis. The Michelangelo Hand
(Ottobock GmbH, Austria) with a rotatable wrist was used. A
customized socket was built for the amputee AM2 with internal
recesses to accommodate the wireless sensor band (Fig. 3(b)).
The processing for UAM was done by the same Matlab
framework with an additional module for the transmission of
UAM’s output to device servo commands via a Bluetooth link.
This was done through a (proportional–integral–derivative) PID
controller which minimized the difference between UAM’s
estimated DoF activation and the hand’s actual pose as sensed
by its internal encoders. Here, DoF1 was mapped to the opening
and closing of the hand in a pinch grip pattern, while DoF2 was
mapped to the rotation of the wrist.

While wearing the hand prosthesis, AM2 conducted the
Clothespin Relocation Tests where three clothespins, located
at head, chest and waist level, were moved from a vertical
bar to a horizontal one. Here, to simulate the daily effects of
electrode displacement in a controlled manner, control models
were initialized with the sensor band rotated from its original
position before donning the prosthesis. This method of simu-
lating electrode displacement was required as, while this highly
customized socket was worn, a rotation of the sensor band by
1.2 cm could not be reliably, nor comfortably maintained.

6) Performance Metrics: Control performance in the vir-
tual experiment was gauged using four metrics common to
Fitt’s law style assessments [5], [7], [25]. Completion rate (CR)
measures the ratio of targets reached within the allotted time
limit. Completion time (CT) measures the average time taken to
reach a target during the trial. Path efficiency (PE) measures the
ratio between cursor trajectory and target distance. Throughput
(TP) measures the information transfer rate of the interface as a
ratio between task difficulty and execution time.

D. Statistical Analysis

Two-factor repeated measures analysis of variance (RM-
ANOVA) was performed on the metrics obtained from able-
bodied subjects to identify any significant interactions between
the factors of algorithm and electrode shift. Prior to this, normal-
ity of the collected data was verified with Shapiro-Wilk’s tests
and sphericity assumptions verified using Mauchly’s test. If sig-
nificant interaction between factors was detected from two-way
RM-ANOVA, focused one-way RM-ANOVA was conducted
for each level of both factors. If no significant interaction was
detected from two-way RM-ANOVA, only the main effects were
analyzed. In each of these tests, if the non-fixed factor was found
to have significant effects, multiple pairwise comparisons were
carried out with Bonferroni adjustment to identify statistically
significant differences.

III. RESULTS

A. Virtual Target Reaching Tasks

1) Able-Bodied Subjects: The results from the virtual tar-
get reaching experiments are shown in Fig. 4. In all metrics,
able-bodied subjects achieved better performance over NAM
with both the supervised and unsupervised co-adaptive schemes.

Fig. 4. Virtual experiment results. Bar plots show results from able-
bodied subjects while results from amputee subjects (AM1 and AM2)
are separately shown as diamonds and squares, respectively.

In normative conditions (Unshifted) marginally higher averages
in CR, PE and TP and lower CT were observed in the post-
adaptation trials (post-UAM and post-SAM) with the UAM and
SAM controllers.

When electrodes were transversally shifted by 1.2 cm both
adaptive algorithms were effective in mitigating performance
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Fig. 5. Analysis of metrics with significant interaction between elec-
trode condition and myocontrol scheme. Focused one-way RM-ANOVA
was performed for each factor level of electrode condition and myocon-
trol scheme. Significant differences between factor levels are indicated
by shaded blocks.

degradation. Significant interaction between the factors of algo-
rithm and electrode shift was found (F6,54=3.54, P =0.005)
in the CR results of able-bodied subjects. Focused one-factor
RM-ANOVA revealed significant differences in CR values
at different electrode perturbation states for NAM (F2,18=
9.83, P <0.001) with post-hoc analysis showing lower CR in
both the lateral-shifted (−0.18, P =0.012) and medial-shifted
trials (−0.19, P =0.003). Such results reinforce the notion that
user adaptation alone is inadequate in mitigating the adverse
effects of electrode displacement. Conversely, no significant
drop in performance was detected for post-UAM nor post-
SAM trials. Although a significant difference in CR was also
detected for adapting UAM trials (F2,18=7.264, P =0.005),
the magnitudes of decrease were lower (−0.13, P =0.039 and
−0.16, P =0.017 for lateral and medial-shifted trials respec-
tively) which indicate the UAM algorithm compensates for elec-
trode shift in a gradual manner. When fixed on the lateral-shifted
level, significant differences in CR were detected between
the algorithms (F3,27=13.099, P <0.001). Both post-UAM
and post-SAM trials had higher CR (+0.17, P =0.017 and
+0.22, P =0.010, respectively) than NAM. A significant dif-
ference between algorithms was also found at the medial-shifted
level (F3,27=7.184, P =0.001), with higher CR from post-
UAM and post-SAM trials (+0.13, P =0.017 and +0.20, P =
0.009, respectively) compared to the NAM trial.

While no significant interaction between factors was de-
tected in the other results for able-bodied subjects, algo-
rithm type was found to have a significant effect on CT,
PE and TP (F3,27 = 13.494, P < 0.001, F3,27 = 8.621, P <
0.001 and F3,27 = 8.037, P = 0.001, respectively) (Fig. 5).
Post-SAM had significantly lower CT (−1.09 s, P = 0.011)
and higher PE and TP (+6.10%, P = 0.035 and +0.072 bits/s,
P = 0.022, respectively) compared to NAM. Such significant
improvements can be attributed to the supervised nature of
the SAM algorithm allowing targeted restoration of intuitive
control.

2) Amputee Subjects: For amputee subjects, UAM sim-
ilarly mitigated the performance reduction from electrode

perturbations. For AM1, post-UAM trials achieved+0.13higher
CR compared to NAM in both electrode-shifted states and in the
medial-shifted case, performance was restored to be on par with
that of the unshifted condition. An improvement was also seen
in all other metrics, except for TP which was slightly lower
for both post-UAM and post-SAM (−0.02 and −0.03 bits/s,
respectively) in the lateral-shifted trials. With AM2, the adap-
tive controllers initially underperformed in the unshifted trials.
However, this could be attributed to the particularly unintuitive
mapping of DoF2 required for this subject (as described in
Section II-C3). As such, the subject was still getting accustomed
to the mapping after the initial familiarization trial. However,
under the electrode-shifted conditions, CR in post-UAM trials
closely matched that of the unshifted NAM trial, whereas NAM
performance dropped markedly after electrode shift. Unlike the
trend observed with able-bodied subjects, the benefits from
UAM for amputee subjects, on average, exceeded those from
SAM. Compared to post-SAM trials, +0.06 CR,−0.16 s in CT
and+0.02 bits/s in TP was achieved in post-UAM trials although
PE was lower at −1.81%.

3) Adaptation Analyses: To further examine the UAM’s
adaptation algorithm and its ability to compensate for sudden
perturbations, we observed the original and shift-adapted basis
vectors from AM1 (Fig. 6(a)). Adaptation to medial shifting
resulted in basis vectors being more biased in the lateral di-
rection and vice-versa. This self-adjustment of the controller’s
internal representations of motor task synergies in the sensor
space, counteracted, in part, the physical displacement of the
electrodes. As the forms of the synergy representations were
still retained after adaptation, a familiar feed-forward translation
of motor input is observed by the user. This property was also
consistent with able-bodied subjects. Fig. 6(b) shows the average
circular cross-correlation profiles between initial bases and their
shift-adapted versions. Higher correlation is observed when the
adapted bases are rotated in accordance to the physical direction
to which they adapted for. This bias in the correlation profiles
again indicate that the UAM-adapted synergies were similar
to their original versions, albeit shifted in such a way as to
counteract the electrode perturbation.

The general evolution of UAM and SAM models through-
out an adaptation trial was quantified in terms of its disparity
from the fully adapted version, which is the one deployed in
post-UAM/SAM trials. This progress is illustrated in Fig. 7. For
UAM, the model state after each target attempt was quantified
by the absolute difference between normalized current and
final basis vectors. For SAM, regression weight vectors were
considered. Both algorithms are shown to exhibit stable model
evolution as this model disparity is gradually decreasing. In other
words, the control models stably converge to their final versions
over the course of the adaptation trial.

B. Clothespin Relocation Tests

In the Clothespin Relocation Tests, stable co-adaptive control
of a hand prosthesis via UAM was observed, even in trials with
simulated electrode perturbations. Completion times of 22.48 s,



2588 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 8, AUGUST 2022

Fig. 6. (a) Model adaptation data from AM1’s virtual trials. Grey shaded bars represent the initial model bases while resultant basis vectors from
the lateral-shifted and medial-shifted adaptation trials of UAM are overlaid as blue and red shaded bars, respectively. On the x-axis, ‘R’ indicates
the channel from the reference pod while ‘L-’ and ‘M-’ indicate a channel’s position relative to the reference pod in the lateral and medial directions,
respectively. (b) The cross-correlation between shift-adapted basis vectors and their original states, averaged over all subjects. The x-axis relates
to the level of channel shift in the lateral, ‘L-’, and medial, ‘M-’, directions and the auto cross-correlation of base model synergies are shown as grey
curves for reference. As the channels are physically distributed in a radial manner, circular cross-correlation is performed here where one vector is
shifted circularly.

Fig. 7. Adaptation progression with UAM (left) and SAM (right) dur-
ing virtual target reaching trials. The x-axes indicate adaptation trial
progress in terms of targets presented. Y-values are computed as the
difference between the model at each stage of the adaptation trial
and the final model at the end of the trial. For UAM, this means the
comparison of synergy representations (the columns of W) with their
end-of-trial versions. Shaded areas indicate the standard deviations.

24.12 s and 25.12 s for the unshifted, lateral-trained and medial-
trained cases, respectively, were achieved with no cases of
dropped pins. For comparison, the test was also conducted using
AM2’s own device of 8 years which yielded 9.07 s in the fastest
trial. Such a large difference in completion times was likely due
to the subject’s lack of familiarity with advanced myocontrol
combined with the expertise gained from daily use of his own
device. More importantly, UAM adaptation maintained intuitive
control such that the multi-DoF functionalities of the advanced
control method could be fully exploited, and the amount of
postural compensation required by the user was significantly
reduced, as shown by Fig. 8. In particular, the excessive lateral
tilting of the trunk and internal rotation of the shoulder observed
throughout trials involving the user’s own device were absent in
the trials employing UAM. A video recording of the trials can be
found in the supplementary materials accompanying this article.

IV. DISCUSSIONS

A. Unsupervised Adaptive Myocontrol

We have developed an adaptive myocontrol system that con-
tinuously learns from user input during real-time operation to
facilitate an interface that is robust to the effects of electrode
displacement, a significant and widely reported source of per-
formance degradation in advanced myocontrol [17], [19], [35].
In contrast to previous research outputs concerning real-time
adaptation which have so far been constrained to supervised con-
ditions [24]–[26] the solution presented here yielded comparable
improvements via a label-free and non-disruptive adaptation
scheme. The control model is initially trained from individual
wrist DoF activations, for each of which a corresponding motor
module is extracted. Simultaneous and proportional myocontrol
is achieved by inferring motor command primitives from the
reconstruction of live EMG input as the instantaneous combi-
nation of these motor modules [5]. During real-time operation,
system adaptation is initiated by the occurrence of conflicting
command primitives which, in this case, is defined as the simul-
taneous activation of both positive and negative displacement
in a DoF. While the co-activation of opposing (antagonistic)
motor modules is inherent in natural limb control, for instance,
when modulating joint stability, such commands do not trans-
late smoothly to the regression-based position control scheme
commonly employed in advanced myocontrol [5]–[8]. In fact,
this phenomenon can indicate a defective control model, caused
either by incompatibilities of the initial synergies in recon-
structing certain combined-DoF activations or from electrode
displacements that misalign activation patterns in sensor space.
By imposing constraints based on the intrinsic sparsity of motor
module recruitment, stable adaptation of the control model can
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Fig. 8. The UAM algorithm was employed in the control of a com-
mercial prosthesis capable of active grip and wrist rotation. With si-
multaneous and proportional control of these functions, an amputee
subject (AM2) was capable of performing clothespin relocation tasks
with minimal compensatory movements (2nd row). This contrasts greatly
with the degree of body compensation required when using the subject’s
own single function device, as indicated by the approximated angular
deviation of the body centerline from the midline (1st row). The benefits
of the adaptive myocontrol scheme were demonstrated when the same
tasks were repeated under simulated electrode displacement (3rd and
4rd row) where the high level of multi-function control was retained and
compensatory movements remained minimal.

be driven purely by novel activation patterns presented during
regular device operation.

As the practical advantages of unsupervised adaptation are
well known, a few implementations have been recently in-
troduced though these have yet to be verified in a real-timed
closed-loop context [29], [30]. Meanwhile, in the related field
of body-machine interfacing, an adaptive controller based on
autoencoding was shown to deliver superior target reaching
performance over static decoding of upper limb kinematics [36].
In general though, unsupervised system adaptation tends to be
outperformed by supervised counterparts [20], [37]. Indeed,

this trend was observed here for able-bodied subjects where
SAM consistently outperformed UAM in the virtual assessments
(though this may be partially attributed to user learning as
post-UAM trials precede post-SAM trials). This was expected
given that the supervised nature of SAM allowed for highly
targeted adjustments to its internal model. Interestingly, SAM’s
benefits were far less pronounced for amputee subjects who
achieved better results in three out of the four performance
metrics using UAM-adapted models (post-UAM trial) compared
to SAM-adapted models (post-SAM trial). The lower effective-
ness of SAM for amputee subjects may be explained by their
reduced abilities to consistently recreate and maintain activation
patterns due to reduced proprioceptive feedback [24], leading
to mislabeling issues. With UAM, the algorithm is inherently
immune to the effects of mislabeling due to its unsupervised
nature and has shown to be a more suitable interface for the
intended end users.

B. Compensating for Electrode Displacement

In the virtual target reaching trials, UAM achieved small
performance improvements over the non-adaptive base model
(NAM) under normative conditions. When electrode displace-
ments were induced, the UAM adaptation scheme was capable
of mitigating the resultant performance degradation, whereas
relying solely on user compensation resulted in significant de-
crease of controller usability (Fig. 4). Under this controlled per-
turbation, system adaptation simultaneously complemented and
alleviated the burden on user adaptation. By shifting model basis
vectors to counteract the electrode displacements, users were
not required to adopt drastically different control strategies as
the overall shapes of synergy representations were consistently
retained (Fig. 6), thus restoring intuitive control.

C. Stable Co-Adaptation Between User and Machine

In both the unsupervised and supervised adaptive schemes,
the system and the user are simultaneously learning from one
another. The model is adapted, as needed, in real-time while
the user is also adjusting their control strategies according to
the model changes. Thus, this is a two-learner scenario, where
inappropriate design choices or parameters pertaining to the ma-
chine learner can lead to conflicts with the user’s own learning,
resulting in counter-effective or unstable adaptation [24], [38],
[39]. Here, stable system adaptation can be seen in Fig. 7 as
the adapted model is gradually converging. This consistency in
system adaptation supports the user’s own adaptation as newly
learned dynamics of the evolving system are transferable to its
later stages. The same figure also indicates the relative magni-
tudes of model change when adapting under different cases of
electrode perturbation. As expected, greater changes are made
to the model with UAM under electrode-shifted conditions com-
pared to the unshifted one. However, SAM resulted in roughly
the same magnitudes of model change for electrode-shifted and
unshifted adaptation trials. This suggests that relying solely on
offline initialization yields sub-optimal models, even if done
under ideally controlled conditions, and highlights the need for
adaptive interfacing.
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While this work demonstrates the benefits of co-adaptation, it
does not quantify the user’s own adaptation, as done in previous
studies involving non-adaptive myocontrollers [18], [40]. In
such cases, the gradual reduction of control error over repetitions
of a set task can be directly tied to motor adaptation. However,
extending this analysis for multi-DoF adaptive controllers is
non-trivial, especially as the influences of user and machine
adaptation cannot be easily separated in performance metrics.
By employing the classical experimental designs used to in-
vestigate visuomotor perturbations, the ‘after effects’ learning
curve can be used to infer the magnitude of user adaptation [39].
Furthermore, under the broader umbrella of human-machine
interfacing, the brain-computer interface (BCI) domain has
similarly explored co-adaptive methods to improve controller
performance [41], [42]. For example, in classification-based
BCI, changes in control signal separability have been used as
evidence for proficiency gain [43]. Nonetheless, in this work,
the simultaneous adaptation of user and machine is implicit,
given that feedback from model changes are instantaneous and
have a direct influence on the error-driven dynamics of the user’s
motor adaptation.

D. User Learning Effects

It is known that user learning leads to improved performance
as subjects become more adept at advanced myocontrol [24],
[25]. As such, the first virtual target reaching trial was designated
as a practice trial (Table I) to partially mitigate the influence of
user learning in the assessment of different control algorithms.
Indeed, performances in Trial 1 were noted to be consistently
lower compared to those in Trial 6. In both trials the same NAM
model was used, however, subjects would have had consider-
able practice with myocontrol by Trial 6, and while different
algorithms will have different control dynamics, users will still
have gained proficiencies in reproducing machine-separable ac-
tivation patterns. To truly eliminate such learning effects from
the study, one may repeat familiarization trials until increase
in performance with NAM was no longer observed. However,
this approach would not be feasible as different subjects would
learn at different rates, resulting in a highly variable experiment
runtime. Hence, the experimental protocol was designed such
that the assessment of UAM and SAM preceded that of NAM
in each condition of electrode perturbation. This was to ensure
that any improved performance during trials employing the
adaptive systems cannot be attributed to subjects learning to
compensate. In fact, both adaptive systems outperformed NAM
in the electrode-shifted trials despite subjects having more time
to adapt to the perturbation by the time NAM was assessed
(Fig. 4).

E. Clothespin Relocation Tests

Testing in virtual environments has already been demon-
strated to correlate with performance in real-world settings [44].
Furthermore, the performance metrics used in this study have
been shown to be effective measures for distinguishing superior
methods of control [34]. Nonetheless, to demonstrate the ap-
plicability of UAM in the real-world, the algorithm was incor-
porated into the control of a multi-functional commercial hand

prosthesis. This set-up allowed AM2 to perform clothespin relo-
cation tasks using the UAM algorithm as the interface. The abil-
ity to concurrently and proportionally control both wrist rotation
and grip aperture allowed the tasks to be performed in a natural
manner. Moreover, robustness to electrode displacements was
demonstrated when models initialized under electrode perturbed
conditions were tested. With UAM adapting freely throughout
the trials, similar completion times were achieved whilst postural
compensations were minimal, leveraging the full advantages
of the multi-functional prosthetic device. Conversely, when the
same tasks were performed with the subject’s own device, which
was only capable of hand opening and closing, the amount of
body compensation required was pronouncedly greater. Such
requirements can be of detriment to users as repeated movement
of joints outside their comfortable range can lead to fatigue
or injury [45]. It should be noted, however, that the subject’s
performance was far quicker when his own device was used.
This was likely due to the high level of familiarity he has with his
own device which he uses in day-to-day life, whereas exposure
to advanced myocontrol had been minimal prior to the study. It
is therefore reasonable to expect more comparable completion
times given further familiarization with the co-adaptive inter-
face.

F. Limitations and Future Work

In this work, we have focused only on electrode displacement
as a source of signal non-stationarity. However, signal pertur-
bations can stem from a wide variety of causes such as limb
position, loading, perspiration and fatigue [46]. While in theory,
new synergy representations can be learned via UAM under any
new condition, it is yet uncertain whether current design and
parameter choices will produce a co-adaptive interface that is as
effective in compensating for such disturbances to myoelectric
interfacing.

Currently, the influence of new data in the UAM adaptation
scheme is maintained via gradual decay of existing data. While
this guarantees a responsive system adaptation, unlike SAM, no
mechanism is currently in place to deal with scenarios where the
learning algorithm is presented with highly repetitive activation
patterns over an extended period. In such a case, the updated
synergy representations may eventually become biased towards
the reconstruction of only a subset of possible activation patterns.
While the adaptation trigger implemented in this work has shown
to be effective in regulating the data presented to the adaptation
algorithm during virtual target reaching and clothespin reloca-
tion tasks, its suitability across the full range of activities of
daily living has yet to be proven. Potentially, such concerns may
be addressed by considering the novelty of candidate activation
patterns to adapt from with regard to those recently presented to
the adaptation algorithm [47].

V. CONCLUSION

In this work, a novel approach to enhancing usability and
robustness in the control of advanced, multi-functional powered
prostheses through the free and mutual co-adaptation of user
and machine was presented. This development uniquely extends
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the incorporation of neuromuscular control concepts in human-
machine interfacing by leveraging known properties of muscle
module recruitment to guide the adaptation of a myocontrol
model, forgoing the need of explicit data labels. In virtual
target reaching tasks, the proposed UAM system was capable
of mitigating perturbation-induced performance degradation,
without need for interruption in use, in both able-bodied and
amputee subjects. In the case of amputee subjects, the increase
in robustness exceeded even that of the more cumbersome
supervised adaptive system. When integrated into a commercial
hand prosthesis, UAM again demonstrated robustness to non-
stationarities through continuous co-adaptation. During stan-
dardized Clothespin Relocation Tests, an end user completed
the exercises with no discernable detriment despite electrode
perturbations. Thus, the proposed system not only retains the
functional benefits provided by supervised methods, but also
brings improved robustness for end users while offering practical
advantages for clinical deployment. To the authors’ best knowl-
edge, this demonstrates a new paradigm for co-adaptive myo-
electric interfacing, where system learning is fully automated
(self-initiated and unsupervised) and administered in real-time
in concurrence with the user’s own motor adaptation.

APPENDIX A
DERIVATION OF UPDATE RULES FOR MODIFIED ONLINE NMF

COST FUNCTION

The block-coordinate descent framework minimizes the cost
function in (9) via alternating updates to the factor matrices
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By choosing appropriate learning rates, the subtractive terms
that arise via substitution in (15) and (16) can be eliminated
to preserve non-negativity, yielding the update rules in (11)

and (12).
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