14 research outputs found

    Extended playing techniques: The next milestone in musical instrument recognition

    Full text link
    The expressive variability in producing a musical note conveys information essential to the modeling of orchestration and style. As such, it plays a crucial role in computer-assisted browsing of massive digital music corpora. Yet, although the automatic recognition of a musical instrument from the recording of a single "ordinary" note is considered a solved problem, automatic identification of instrumental playing technique (IPT) remains largely underdeveloped. We benchmark machine listening systems for query-by-example browsing among 143 extended IPTs for 16 instruments, amounting to 469 triplets of instrument, mute, and technique. We identify and discuss three necessary conditions for significantly outperforming the traditional mel-frequency cepstral coefficient (MFCC) baseline: the addition of second-order scattering coefficients to account for amplitude modulation, the incorporation of long-range temporal dependencies, and metric learning using large-margin nearest neighbors (LMNN) to reduce intra-class variability. Evaluating on the Studio On Line (SOL) dataset, we obtain a precision at rank 5 of 99.7% for instrument recognition (baseline at 89.0%) and of 61.0% for IPT recognition (baseline at 44.5%). We interpret this gain through a qualitative assessment of practical usability and visualization using nonlinear dimensionality reduction.Comment: 10 pages, 9 figures. The source code to reproduce the experiments of this paper is made available at: https://www.github.com/mathieulagrange/dlfm201

    Sound Object Recognition

    Get PDF
    Humans are constantly exposed to a variety of acoustic stimuli ranging from music and speech to more complex acoustic scenes like a noisy marketplace. The human auditory perception mechanism is able to analyze these different kinds of sounds and extract meaningful information suggesting that the same processing mechanism is capable of representing different sound classes. In this thesis, we test this hypothesis by proposing a high dimensional sound object representation framework, that captures the various modulations of sound by performing a multi-resolution mapping. We then show that this model is able to capture a wide variety of sound classes (speech, music, soundscapes) by applying it to the tasks of speech recognition, speaker verification, musical instrument recognition and acoustic soundscape recognition. We propose a multi-resolution analysis approach that captures the detailed variations in the spectral characterists as a basis for recognizing sound objects. We then show how such a system can be fine tuned to capture both the message information (speech content) and the messenger information (speaker identity). This system is shown to outperform state-of-art system for noise robustness at both automatic speech recognition and speaker verification tasks. The proposed analysis scheme with the included ability to analyze temporal modulations was used to capture musical sound objects. We showed that using a model of cortical processing, we were able to accurately replicate the human perceptual similarity judgments and also were able to get a good classification performance on a large set of musical instruments. We also show that neither just the spectral feature or the marginals of the proposed model are sufficient to capture human perception. Moreover, we were able to extend this model to continuous musical recordings by proposing a new method to extract notes from the recordings. Complex acoustic scenes like a sports stadium have multiple sources producing sounds at the same time. We show that the proposed representation scheme can not only capture these complex acoustic scenes, but provides a flexible mechanism to adapt to target sources of interest. The human auditory perception system is known to be a complex system where there are both bottom-up analysis pathways and top-down feedback mechanisms. The top-down feedback enhances the output of the bottom-up system to better realize the target sounds. In this thesis we propose an implementation of top-down attention module which is complimentary to the high dimensional acoustic feature extraction mechanism. This attention module is a distributed system operating at multiple stages of representation, effectively acting as a retuning mechanism, that adapts the same system to different tasks. We showed that such an adaptation mechanism is able to tremendously improve the performance of the system at detecting the target source in the presence of various distracting background sources

    APPRENTISSAGE PROFOND POUR LA RECONNAISSANCE EN TEMPS REEL DES MODES DE JEU INSTRUMENTAUX

    Get PDF
    International audienceAu cours des dernières années, l'apprentissage profond s'est établi comme la nouvelle méthode de référence pour les problèmes de classification audio et notamment la reconnaissance d'instruments. Cependant, ces modèles ne traitent généralement pas la classification de modes de jeux avancés, question pourtant centrale dans la composition contemporaine. Les quelques études réalisées se cantonnent à une évaluation sur une seule banque de sons, dont rien n'assure la généralisation sur des données réelles. Dans cet article, nous étendons les méthodes de l'état de l'art à la classification de modes de jeu instrumentaux en temps réel à partir d'enregistrements de solistes. Nous montrons qu'une combinaison de réseaux convolutionnels (CNN) et récurrents (RNN) permet d'obtenir d'excellents résultats sur un corpus homogène provenant de 5 banques de sons. Toutefois, leur performance s'affaiblit sensiblement sur un corpus hétérogène, ce qui pourrait indiquer une faible capacité à généraliser à des données réelles. Nous proposons des pistes pour résoudre ce problème. Enfin, nous détaillons plusieurs utilisations possibles de nos modèles dans le cadre de systèmes interactifs

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    An Investigation into the Use of Artificial Intelligence Techniques for the Analysis and Control of Instrumental Timbre and Timbral Combinations

    Get PDF
    Researchers have investigated harnessing computers as a tool to aid in the composition of music for over 70 years. In major part, such research has focused on creating algorithms to work with pitches and rhythm, which has resulted in a selection of sophisticated systems. Although the musical possibilities of these systems are vast, they are not directly considering another important characteristic of sound. Timbre can be defined as all the sound attributes, except pitch, loudness and duration, which allow us to distinguish and recognize that two sounds are dissimilar. This feature plays an essential role in combining instruments as it involves mixing instrumental properties to create unique textures conveying specific sonic qualities. Within this thesis, we explore harnessing techniques for the analysis and control of instrumental timbre and timbral combinations. This thesis begins with investigating the link between musical timbre, auditory perception and psychoacoustics for sounds emerging from instrument mixtures. It resulted in choosing to use verbal descriptors of timbral qualities to represent auditory perception of instrument combination sounds. Therefore, this thesis reports on the developments of methods and tools designed to automatically retrieve and identify perceptual qualities of timbre within audio files, using specific musical acoustic features and artificial intelligence algorithms. Different perceptual experiments have been conducted to evaluate the correlation between selected acoustics cues and humans' perception. Results of these evaluations confirmed the potential and suitability of the presented approaches. Finally, these developments have helped to design a perceptually-orientated generative system harnessing aspects of artificial intelligence to combine sampled instrument notes. The findings of this exploration demonstrate that an artificial intelligence approach can help to harness the perceptual aspect of instrumental timbre and timbral combinations. This investigation suggests that established methods of measuring timbral qualities, based on a diverse selection of sounds, also work for sounds created by combining instrument notes. The development of tools designed to automatically retrieve and identify perceptual qualities of timbre also helped in designing a comparative scale that goes towards standardising metrics for comparing timbral attributes. Finally, this research demonstrates that perceptual characteristics of timbral qualities, using verbal descriptors as a representation, can be implemented in an intelligent computing system designed to combine sampled instrument notes conveying specific perceptual qualities.Arts and Humanities Research Council funded 3D3 Centre for Doctoral Trainin

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF
    corecore