487 research outputs found

    A swimming robot actuated by living muscle tissue

    Get PDF
    Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm) and straight-line swimming (max speed >1/3 body lengths/second). A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle) before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses

    The interplay of biomimetics and biomechatronics

    Get PDF
    Biomechatronics is an engineering subject in which biomimetics as a method is one of its two supporting pillars: biology for engineering, or Bio4Eng. This is contrasted with biocompatible design, or Eng4Bio, examples of which are human-serving systems, such as exoskeletons, and biomedical engineering. The paper aims to illustrate that the research fields of biomimetics, biomechatronics, and biomedical engineering are not in competition but mutually supportive. The current attempts to place biomechatronics under the umbrella of biomimetics or biomedical engineering are therefore not expedient; they deprive the subject of its strength of combining Bio4Eng and Eng4Bio at any time in a task-related manner. In addition to research and development, however, the training of the specialists supporting the subjects must not be disregarded and is therefore described based on a proven design

    A two DoF finger for a biomechatronic artificial hand

    Get PDF
    Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumb-index pinch. Although most amputees consider this performance as acceptable for usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronics design and technology. We are developing a novel prosthetic hand featured by multiple degrees of freedom, tactile sensing capabilities, and distributed control. Our main goal is to pursue an integrated design approach in order to fulfill critical requirements such as cosmetics, controllability, low weight, low energy consumption and noiselessness. This approach can be synthesized by the definition "biomechatronic design", which means developing mechatronic systems inspired by living beings and able to work harmoniously with them. This paper describes the first implementation of one single finger of a future biomechatronic hand. The finger has a modular design, which allows to obtain hands with different degrees of freedom and grasping capabilities. Current developments include the implementation of a hand comprising three fingers (opposing thumb, index and middle) and an embedded controller

    Novel miniaturised and highly versatile biomechatronic platforms for the characterisation of melanoma cancer cells

    Get PDF
    There has been an increasing demand to acquire highly sensitive devices that are able to detect and characterize cancer at a single cell level. Despite the moderate progress in this field, the majority of approaches failed to reach cell characterization with optimal sensitivity and specificity. Accordingly, in this study highly sensitive, miniaturized-biomechatronic platforms have been modeled, designed, optimized, microfabricated, and characterized, which can be used to detect and differentiate various stages of melanoma cancer cells. The melanoma cell has been chosen as a legitimate cancer model, where electrophysiological and analytical expression of cell-membrane potential have been derived, and cellular contractile force has been obtained through a correlation with micromechanical deflections of a miniaturized cantilever beam. The main objectives of this study are in fourfold: (1) to quantify cell-membrane potential, (2) correlate cellular biophysics to respective contractile force of a cell in association with various stages of the melanoma disease, (3) examine the morphology of each stage of melanoma, and (4) arrive at a relation that would interrelate stage of the disease, cellular contractile force, and cellular electrophysiology based on conducted in vitro experimental findings. Various well-characterized melanoma cancer cell lines, with varying degrees of genetic complexities have been utilized. In this study, two-miniaturized-versatile-biomechatronic platforms have been developed to extract the electrophysiology of cells, and cellular mechanics (mechanobiology). The former platform consists of a microfluidic module, and stimulating and recording array of electrodes patterned on a glass substrate, forming multi-electrode arrays (MEAs), whereas the latter system consists of a microcantilever-based biosensor with an embedded Wheatstone bridge, and a microfluidic module. Furthermore, in support of this work main objectives, dedicated microelectronics together with customized software have been attained to functionalize, and empower the two-biomechatronic platforms. The bio-mechatronic system performance has been tested throughout a sufficient number of in vitro experiments.Open Acces

    Evaluating Attentional Impulsivity: A Biomechatronic Approach

    Full text link
    Executive function, also known as executive control, is a multifaceted construct encompassing several cognitive abilities, including working memory, attention, impulse control, and cognitive flexibility. To accurately measure executive functioning skills, it is necessary to develop assessment tools and strategies that can quantify the behaviors associated with cognitive control. Impulsivity, a range of cognitive control deficits, is typically evaluated using conventional neuropsychological tests. However, this study proposes a biomechatronic approach to assess impulsivity as a behavioral construct, in line with traditional neuropsychological assessments. The study involved thirty-four healthy adults who completed the Barratt Impulsiveness Scale (BIS-11) as an initial step. A low-cost biomechatronic system was developed, and an approach based on standard neuropsychological tests, including the trail-making test and serial subtraction-by-seven, was used to evaluate impulsivity. Three tests were conducted: WTMT-A (numbers only), WTMT-B (numbers and letters), and a dual-task of WTMT-A and serial subtraction-by-seven. The preliminary findings suggest that the proposed instrument and experiments successfully generated an attentional impulsivity score and differentiated between participants with high and low attentional impulsivity.Comment: 10 pages, 5 figures, 5 table

    On the development of a cybernetic prosthetic hand

    Get PDF
    The human hand is the end organ of the upper limb, which in humans serves the important function of prehension, as well as being an important organ for sensation and communication. It is a marvellous example of how a complex mechanism can be implemented, capable of realizing very complex and useful tasks using a very effective combination of mechanisms, sensing, actuation and control functions. In this thesis, the road towards the realization of a cybernetic hand has been presented. After a detailed analysis of the model, the human hand, a deep review of the state of the art of artificial hands has been carried out. In particular, the performance of prosthetic hands used in clinical practice has been compared with the research prototypes, both for prosthetic and for robotic applications. By following a biomechatronic approach, i.e. by comparing the characteristics of these hands with the natural model, the human hand, the limitations of current artificial devices will be put in evidence, thus outlining the design goals for a new cybernetic device. Three hand prototypes with a high number of degrees of freedom have been realized and tested: the first one uses microactuators embedded inside the structure of the fingers, and the second and third prototypes exploit the concept of microactuation in order to increase the dexterity of the hand while maintaining the simplicity for the control. In particular, a framework for the definition and realization of the closed-loop electromyographic control of these devices has been presented and implemented. The results were quite promising, putting in evidence that, in the future, there could be two different approaches for the realization of artificial devices. On one side there could be the EMG-controlled hands, with compliant fingers but only one active degree of freedom. On the other side, more performing artificial hands could be directly interfaced with the peripheral nervous system, thus establishing a bi-directional communication with the human brain

    Scent whisper

    Full text link
    Scent Whisper is a jewellery set integrated with wireless sensor networks that offer social and therapeutic value in a desirable context. The jewellery incorporates sensors and microfluidics to initiate fragrance delivery, depending on the sensor response. A wireless humidity sensor is used to trigger scent output in these proof-of-concept devices. Future devices will use sensors to detect stress physiologically and release benefit chemicals in controlled ways responding to personal needs. About this conference: MEMS technology (micro-electro-mechanical-systems) is advancing rapidly, and over the last five years has allowed the construction of many integrated systems, including (for example) novel micro and nano structured materials, sensors based on movable mechanical components and self powered autonomous devices. Many involve nanotechnology. These components are allowing systems that were once confined to the laboratory to find new applications with a strong commercial potential. UK activity is now rapidly increasing, after a relatively slow start compared to the rest of the advanced industrial nations. The aim of this event is to bring together UK expertise in MEMS, to introduce the advantage of MEMS process technology and to highlight developments. The topics will be relevant to companies engaged in sensor manufacture and process control, equipment manufacturers for the semiconductor industry and academics engaged in MEMS, nanotechnology and sensor researc

    Design of a cybernetic hand for perception and action

    Get PDF
    Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllabilityā€”in addition to poor cosmetic appearanceā€”are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumbā€“finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the userā€™s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control

    Bionics: bionic prosthetics

    Get PDF

    Inverse Dynamics Modelling of Paralympic Wheelchair Curling

    Get PDF
    Accepted author manuscript version reprinted, by permission, from Journal of Applied Biomechanics, 2017 (ahead of print) 1-19, http://dx.doi.org/10.1123/jab.2016-0143. Ā© Human Kinetics, Inc.Paralympic wheelchair curling is an adapted version of Olympic curling played by individuals with spinal cord injuries, cerebral palsy, multiple sclerosis, and lower extremity amputations. To the best of the authorsā€™ knowledge, there has been no experimental or computational research published regarding the biomechanics of wheelchair curling. Accordingly, the objective of this research was to quantify the angular joint kinematics and dynamics of a Paralympic wheelchair curler throughout the delivery. The angular joint kinematics of the upper extremity were experimentally measured using an inertial measurement unit system; the translational kinematics of the curling stone were additionally evaluated with optical motion capture. The experimental kinematics were optimized to satisfy the kinematic constraints of a subject-specific multibody biomechanical model. The optimized kinematics were subsequently used to compute the resultant joint moments via inverse dynamics analysis. The main biomechanical demands throughout the delivery (i.e., in terms of both kinematic and dynamic variables) were about the hip and shoulder joints, followed sequentially by the elbow and wrist. The implications of these findings are discussed in relation to wheelchair curling delivery technique, musculoskeletal modelling, and forward dynamic simulations.This research was funded by Dr. John McPheeā€™s Tier I Canada Research Chair in Biomechatronic System Dynamics
    • ā€¦
    corecore