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The Interplay of Biomimetics and Biomechatronics
Hartmut Witte

Group of Biomechatronics, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Max-Planck-Ring 12,
D-98693 Ilmenau, Germany; hartmut.witte@tu-ilmenau.de

Abstract: Biomechatronics is an engineering subject in which biomimetics as a method is one of its two
supporting pillars: biology for engineering, or Bio4Eng. This is contrasted with biocompatible design,
or Eng4Bio, examples of which are human-serving systems, such as exoskeletons, and biomedical
engineering. The paper aims to illustrate that the research fields of biomimetics, biomechatronics,
and biomedical engineering are not in competition but mutually supportive. The current attempts to
place biomechatronics under the umbrella of biomimetics or biomedical engineering are therefore not
expedient; they deprive the subject of its strength of combining Bio4Eng and Eng4Bio at any time in a
task-related manner. In addition to research and development, however, the training of the specialists
supporting the subjects must not be disregarded and is therefore described based on a proven design.
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1. Introduction

Beyond the debate whether the subject was initiated with the coining of the terms
“biomimicry”, “biomimetics” or “bionics”, the supplementing of technological skills by
using knowledge from the observation of nature is an old technique of mankind. Its
formal application in science is often attributed to Leonardo da Vinci (1452–1519) and
Matthew Baker (1530–1613) [1]. What concerns the definition of “biomimetics”, we refer to
DIN-ISO 18458-2016 (Biomimetics—terminology, concepts and methodology) [2] and VDI
6220.1-2021 (Biomimetics—fundamentals, conception, and strategy) [3].

Biomechatronics, on the other hand, is a term that only became possible with the
emergence of mechatronics and the release of the trademark claiming the term in 1982.
It was successfully introduced by Hugh Herr at M.I.T. as an addition to the use of the
term biomimetics for activities in the field between biology and mechatronic technology
and has been successfully represented by him internationally for over 30 years, mostly by
patents (cp. [4–49]). Brody, as early as in 2005, addressed biomechatronics to be one of
the “10 emerging technologies” [50]. Is biomechatronics to be understood as a subfield of
biomimetics? At a time of the rise of mechatronics, the term addressed the interaction of this
discipline (rather than the entirety of engineering) with life sciences. From his own concern,
Herr started with the aspect of mechatronics for medicine, thereby practically narrowing
the term initially to biomechatronics as a subfield of biomedical engineering, and this is
how it is still frequently perceived internationally today [51–53]. At the time of writing
this article, Web of Science points to 6153 publications entitling “biomechatronics” and
“biomedical engineering”. However, Herr based his work in medicine on biomimetics—at
least a quarter of his publications we cite directly addresses biomimetics, mostly concerning
his own work. This fact is widely ignored: there are only 10 findings in Web of Science for
“biomimetics” and “biomechatronics”. Consequently, for the benefit of biomimetics, two
equally important objectives of the subject biomechatronics have to be named: “engineering
for biology” (Eng4Bio; e.g., for human-serving systems and in biomedical engineering)
and “biology for engineering” (Bio4Eng, first dominated by biomimetics). Due to the
successes in Eng4Bio, Bio4Eng increasingly had to cover aspects of biocompatibility in
addition to biomimetics, and therefore, with advancing digitalization, Bio4Eng now also
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includes aspects of human–machine interaction, especially ergonomics and usability. Since
no international standard is available, as a working base we defined biomechatronics in the
following way: “Biomechatronics is the development and improvement of mechatronic
products and processes using biological and medical knowledge.” [54]. Thus, in contrast to
biomimetics, it is primarily anchored in engineering. Since biomechatronics makes use of
biomimetics, which is the largest part of Bio4Eng beneath human–machine interaction, it is
a sibling of biomimetics, but not restricted to it [55].

Since no internationally accepted definition of biomedical engineering is available,
we refer to the widely used definition of Michigan Technological University, “Biomedical
engineering is the application of the principles and problem-solving techniques of engi-
neering to biology and medicine. This is evident throughout healthcare, from diagnosis
and analysis to treatment and recovery, and has entered the public conscience though the
proliferation of implantable medical devices, such as pacemakers and artificial hips, to
more futuristic technologies such as stem cell engineering and the 3-D printing of biological
organs.” [56], which illustrates that responsibility is claimed for biology and medicine, but
applications are directed to human biology with the focus on medicine

Figure 1 illustrates our perception of the field graphically. Additionally, in order to
reliably represent the integrative character of biomechatronics in all of the given fields, the
concept of the “biomechatronic system” is helpful [57].
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Figure 1. Activities of biomechatronics in relation to the related scientific fields (dashed circle).
BMTR: biomechatronics; BME: biomedical engineering; HMI: human–machine interaction; Asterisk *:
engineering for biology (“E4B”).

Biomimetics and biomechatronics are therefore two overlapping and thus comple-
mentary scientific fields. In the following, some aspects of the exchange and cooperation
between the disciplines will be discussed.
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2. Material and Methods
2.1. Problem Description

Recently, the term biomechatronics has become fashionable in general. Both in publi-
cations [58,59] and in job advertisements for professorships, there is a reversal of system
and system components: “biomechatronics in biomedical engineering”, “biomechatronics
in bionics”, and, in extreme detail, “biomechatronics for measurement systems in the
biomedical sciences”, illustrating a current trend to cannibalize biomechatronics by other
scientific fields. Now, the scientific game of segregation of new from old scientific fields
is an established basis of scientific progress (for example, physiology first spun off from
anatomy; from the latter physiological chemistry, and from the latter molecular biology),
and the appropriation of innovative developments by large disciplines is part of the stan-
dard repertoire of academic institutions. However, that is not the point here. The subject
matter of a discipline is defined by what its practitioners do: “Biomechatronics is what
biomechatronics engineers do.” Furthermore, “pars pro toto” (a part taken for the whole)
and “totum pro parte” (the whole taken for a part) are rhetorical figures at first, but they can
have huge effects. Building on 20 years of our own academic representation of the subject
of biomechatronics in research and teaching, we must point out what a loss the detachment
from Herr’s idea of the equal status as well as simultaneity of Bio4Eng and Eng4Bio would
be for technical progress. The author is free to argue here: as an engineer and physician
with many years of experience in biology (functional morphology), he does not have to take
sides with any of the components of biomechatronics; in particular, regarding biomimetics,
as a co-founder of the German biomimetics competence network BioKoN, he also may be
allowed to make critical statements towards his own community.

2.2. The Role of Biomimetics in Biomechatronics

In engineering science, we consider biomimetics quite pragmatically as a method,
without therefore questioning the scientific claim of the subject so named. In practice, it is
rather normal to actively realize the part of technical biology in biomimetics itself together
with biologists, because for which technical requirements do biologists have prepared
biological principles at hand in the sense of “technological pull”? The way of the “biology
push” is more probable and thus often the implementation of a biological insight for the
development of products. In this context, one must be aware of the fact that technical
advancement in biomimetics is strongly dependent on the current topics in the life sciences,
and those partly are driven by the available analysis technologies (which nowadays often
are embodied by biomechatronic systems).

For the expansion of the “technology pull” approach, consideration of the “soft skills”
component is indispensable. Biologists, physicians, and engineers are trained differently,
learn different ways of thinking, as well as have different methods and terminologies. Most
future professionals may still vacillate between biology and medicine as a course of study at
school, but the decision will rarely be between life or engineering sciences. We are all shaped
since childhood with respect to our preferences for science. Thus, working effectively
in truly interdisciplinary fields, such as biomimetics and biomechatronics, requires a
willingness to engage with other subjects, and the mindsets of the people practicing
them, in more than a superficial way. In biomimetics, for all the initial enthusiasm for
interdisciplinary collaboration, the honeymoon phase easily turns into that of resignation
if this insight is missing. Therefore, life and engineering scientists need to be actively
introduced to each other and to each other’s ways of thinking and terminologies. Acquiring
this empowerment is a core element of higher education biomimetics.
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2.3. Differences between Biomimetics and Biomechatronics

In biomechatronics, the problem is twofold: potential partners for technical devel-
opments come primarily from biology and medicine—two major subjects, two technical
languages. It is therefore clear that biomechatronics can only be realized in a team, ideally
embedded in an environment of biology, medicine, and technology. In education, only a
few universities can offer this environment; industry has more diverse opportunities here
through the suitable location of company parts.

Figure 1 shows how biomechatronics can be realized under these boundary conditions
or (to use a biological term) “environmental” conditions. Due to the indispensability of
human-compatible design of products in the product field of human-serving systems, in-
cluding those for biomedical technology, interaction with occupational sciences is necessary
as the fourth pillar of work. Biomechatronics does not live as a niche subject between
the other subjects but integrates parts of them in the entire field. The dashed circle in
Figure 1 can be compared to the search area of a bee swarm, the main areas of nectar
collection change regularly depending on supply and demand. Own daughter colonies
with frequent contacts are found close to biology (bionics) and medicine (biomechatronics
in biomedical engineering) due to good location factors. The biological metaphors in the
description of a technical science may illustrate that biomechatronic engineers by no means
claim to be “specialists for everything”, but saprophytically cooperate with specialists from
other disciplines.

Examples of our own biomechatronic work are given in Figure 2. “Bio4Eng” provides
examples from biorobotics, which for biomimetic realization of function need mechatronics.
“Eng4Bio” shows examples of human-serving systems and measurement setups. Due to the
present focus of biomedical engineering on the aspects of human biology and medicine, we
created a chance to be contacted by biological and biomedical scientists for mechatronic tool
building and supporting experiments, and in Figure 1 the corresponding area is marked by
an asterisk representing “engineering for biology” (E4B).

3. Results
3.1. Education in Biomechatronics

For student training in biomechatronics, such examples naturally form the backbone
of an engineering course. Since 2002, three training concepts have been implemented. For
four years, the diploma course in mechatronics ran over 3 years of specialization, with
the clear premise that the graduates would be accepted by industry without restriction
as fully fledged engineers. This successful phase was ended by the fact that with the
introduction of the “Bologna” ECTS system with bachelor’s and master’s degrees, only
1.5 years were realized for the master’s degree program—too little for a solid education.
Consequently, the biomechatronics education started already in the bachelor’s program and
extended over another 1.5 years, together again forming 3 years. However, the advantage
of longer learning with more intensive penetration of the subject matter proved to be no
longer feasible, since part of the audience of the bachelor’s program left the university
after graduation, and new students were admitted to the master’s program. The prior
knowledge of the students was therefore very different, and part of the propaedeutics from
the bachelor’s program had to be repeated in the master’s program. This situation, which
was unsatisfactory for all concerned, was remedied by extending the master’s program to
two years and increasing the amount of time per year spent on specialization.
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Figure 2. Examples of biomechatronic development. In reading order, please find for Bio4Eng the
climbing robot RatNic (coop. Tetra GmbH lmenau, granted by the German Ministery of Education and
Research BMBF) [60]; the window-cleaning robot MatBot; the adhesive gripper TaCare; the bird-like
robot eNandu (coop. FSU Jena, Gentle Robotics); the swimming robots CSnake and Urmele; the small
wheg robot T-Whex. For Eng4Bio: the walker eRolli; the modular exoskeleton Leviaktor (coop. FSU Jena,
HS Aalen, Gottinger, BM innovations, LSK, granted by German Ministery of Education and Research
BMBF), the figure is provided by Gottinger; fixateur externe instrument for measurement of fragment
motions in DoF 6 (coop. RU Bochum) [61]; the system view and module of the System for Automated
Cell Cultivation and Analysis (SACCA; granted by the Carl-Zeiss Stiftung); a dendrometer; a sensor
for gripping forces DoF 6, 20 × 25 mm [62]; and a Personalized Miniaturized Dosimeter (PMD;
granted by BGN Mannheim Erfurt) [63].
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Figure 3 illustrates how biomechatronics now is taught in the master’s program in five
modules. Accompanying this, there is a larger module over 1 year for a (bio) mechatronic
design project (workload of 480 h).
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Figure 3. Overlay on Figure 1: Superimposed are the modules of the master’s study programs
in which the associated content is taught. “A”—Anatomy and Physiology; “B”—Bio-oriented
Methods in Engineering; “C”—Basics of Biomedical Engineering; “D”—Human-Serving Systems;
“E”—Biomechatronics. Asterisk * : engineering for biology (“E4B”).

The basics of medicine are provided in the module “Anatomy and Physiology” (“A” in
Figure 3, workload 150 h). Biomimetics is the focus of the module “Bio-oriented Methods in
Engineering” (“B”, 150 h). In addition to a smaller theory part (20 h), a biomimetic design
project is realized in group work (60 h). At the same time, the students practice working with
agile methods. The remaining 70 h of the module are devoted to biomechanics, the methods of
which are already used during the biomimetic design project. The learning experience of this
project flows back into the biomechatronic design project. The module “Basics of Biomedical
Engineering” (“C”, 150 h) is offered by our colleagues in Germany’s oldest (founded in 1954)
Institute of Biomedical Engineering and Informatics. The module “Human-Serving Systems”
(“D”, 150 h) introduces the basic principles of human–machine interaction. Those are the
pre-requisites for the “core” module “Biomechatronics” (“E”, 150 h).

3.2. Intensification of Cooperation between Biomimetics and Biomechatronics for Mutual Benefit

Beneath personal interest, the question remains as to what should motivate biologists
to contribute to technology. In Germany, biomimetics has experienced a surge in develop-
ment for about a decade, with massive public funding for joint projects between biology
and technology under the label “Bionics”, with an estimated EUR 50 million invested. As a
result, biomechatronics has been able to make great progress in biorobotics (cp. Figure 2).
In the USA, DARPA promoted biomimetic developments with greater perseverance, and
in the People’s Republic of China, investments in this postulated future field are growing
steadily. Biologists have been able to conduct basic research on this basis, which could no
longer be adequately financed from normal research funding. However, how can the moti-
vation to cooperate with technology be maintained if the extrinsic motivation is removed by
funding the objects of intrinsic motivation? For biomechatronics, the answer is simple: biol-
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ogy has great need for experimental setups of the latest technology—the natural partners
and suppliers of this technology are biomechatronics engineers. The small gap between
biomimetics, biology, and biomedical engineering (asterisk in Figure 1) is surprisingly not
yet occupied by any established terminus (cp. [58,59]. Our proposal is “engineering for
biology” (quite different from the term biomedical engineering, which at present does
not really cover the development of devices for the whole field of life sciences—leaving a
wide-open gap). In this field, biomechatronics can offer biology and biomimetics a win–win
situation in return for the benefit of mechatronic product development in collaboration.

4. Conclusions

Increased collaboration between biomimetics, biomedical engineering, and biomecha-
tronics is of benefit to all involved in the interaction of life sciences and engineering.
Mutual appropriation and demarcation cause friction losses and harm the development of
all subjects.
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