159,017 research outputs found

    Biologically Active Molecules from Soybeans

    Get PDF

    Electrochemical detection methods for biologically-active molecules

    Get PDF
    Pulsed Amperometric Detection (PAD) has proven to be applicable to the determination of a number of organic compounds. One difficulty has been calibration of PAD for quantitative analysis over a wide concentration range. By pairing PAD in series with Conductivity Detection (CD), a much wider linear calibration range was found for carbohydrates and amino acids. Both compound groups were separated via anion-exchange chromatography and detected at Au electrodes;In an attempt to decrease amino acid detection limits, phenylthiohydantoin and methylthiohydantoin derivatives were examined. PAD was found to be more sensitive to these derivatives than the free amino acids. DC amperometry was also applicable to the thiohydantoin derivatives, with no instability or sensitivity loss with time observed. Detection limits as low as two picomoles were determined. Employment of a commercially available C-18 column allowed separation of nearly all amino acids using gradient elution liquid chromatography;Improvement in detection of underivatized amino acids was made by applying Pulsed Coulometric Detection (PCD) and Indirect Coulometric Adsorption Detection (ICAD). Both could be used following separation on anion-exchange columns. PCD was coupled with a glass reference electrode to allow anion-exchange separation of amino acids using gradient elution, and baseline perturbation during the gradient was minimal. Up to 20 amino acids were separated in less than one hour

    Quorumpeps database : chemical space, microbial origin and functionality of quorum sensing peptides

    Get PDF
    Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds

    Spectroscopy of Isolated Prebiotic Nucleobases

    Get PDF
    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions

    In-silico Predictive Mutagenicity Model Generation Using Supervised Learning Approaches

    Get PDF
    With the advent of High Throughput Screening techniques, it is feasible to filter possible leads from a mammoth chemical space that can act against a particular target and inhibit its action. Virtual screening complements the in-vitro assays which are costly and time consuming. This process is used to sort biologically active molecules by utilizing the structural and chemical information of the compounds and the target proteins in order to screen potential hits. Various data mining and machine learning tools utilize Molecular Descriptors through the knowledge discovery process using classifier algorithms that classify the potentially active hits for the drug development process.
&#xa

    COMPUTER AIDED DRUG DESIGN: TOOLS TO DEVELOP DRUG FOR COVID 19

    Get PDF
    The CADD includes the combined use of modern computational and experimental techniques which provide structural information about the biologically active molecules. These molecules are involved in disease process and in modulating disease process. The processes of CADD methods are dependent on Bioinformatics tools, applications and database. The present Review article highlights how the modern computational and experimental techniques that have been developed in recent years can be used together to provide structural information about the biologically active molecules that are involved in disease process and in modulating disease process in Special focus to Drug designing for COVID 19 by virtual Screening. Out Put of the article: The present article may be one tool for new drug development against corona Virus

    A REVIEW ON PHYTOCHEMICAL AND PHARMACOLOGICAL SIGNIFICANCE OF CANTHIUM PARVIFLORUM LAM

    Get PDF
    A large number of medicinal plants are explored from the natural flora for production of commercial drugs. Approximately 20% of the plants found in the world have been submitted to pharmacological or biological tests. Canthium parviflorum is an important medicinal plant used in indigenous system of medicine in India and abroad. To isolate and characterize biologically active molecules, many medicinal plants were screened. Though the medicinal importance of this plant is known, but the potential source of this plant for biologically active molecules is not known. So, the present review on Canthium parviflorum is opens a gateway to find out useful and novel drugs

    Nanomaterials From Biologically Active Molecules: Self-Assembly and Molecular Recognition

    Get PDF
    This dissertation describes the development of molecular assemblies and molecular recognition of phospholipids (PLs) that exhibit potential applications in emerging nanotechnologies. It consists of two parts: (1) structural features of PLs responsible for recognition of synthetic copolymers, and (2) design, synthesis and analysis of magnetic nanotubes obtained from PLs with a common theme of colloidal synthesis served as a platform for film formation and nano-assemblies of nanotubes. Poly(methyl methacrylate/n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PLs were synthesized, and upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities were capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and forming crystalline SLICs at the monomer interface. Utilizing spectroscopic analysis combined with ab initio calculations, we determined the nature of their interactions, where the two neighboring MMA and nBA units along the polymer backbone provided conducive environments to signal and attract amphiphilic groups of DLPC, thus initiating SLIC formation. Further studies were conducted on synergistic stimuli-responsive behaviors of p-MMA/nBA colloidal dispersions in the presence of sodium dioctyl sulfosuccinate (SDOSS) and DLPC. Spectroscopic analysis of p-MMA/nBA colloidal dispersions revealed the formation and the preferential orientation of SLICs at the film-air (F-A) or film-substrate (F-S) interfaces in response to the combined stimulus effects. Using bioactive 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) nanotube-forming PL as templates, concentric ferromagnetic iron oxidecarbon- iron oxide nanotubes (FMNTs) were synthesized. Their structural and morphological features were further investigated by utilizing x-ray diffraction, selected area electron diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy, which revealed that concentric magnetite (Fe3O4)/carbon/magnetite multilayer structures, where the carbon layer was sandwiched between two magnetite layers as well as magnetite was present inside the carbon interlayer. Furthermore, using the synthetic approaches, controllable and uniform diameter, wall thickness, and length of FMNTs were obtained. Further studies focused on the surface modifications of different nano-objects such as C60, multi-walled carbon nanotubes, FMNTs, and carbon fibers, which resulted in inhibition of gram positive bacteria and cytotoxicity. This was accomplished by utilizing microwave plasma reactions of maleic anhydride as well as attaching polyethylene glycol spacer and penicillin

    Multifunctional and biologically active matrices from multicomponent polymeric solutions

    Get PDF
    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly
    corecore