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ABSTRACT 

NANOMATERIALS FROM BIOLOGICALLY ACTIVE MOLECULES：  

SELF-ASSEMBLY AND MOLECULAR RECOGNITION  

by Min Yu 

May 2010 

This dissertation describes the development of molecular assemblies and 

molecular recognition of phospholipids (PLs) that exhibit potential applications in 

emerging nanotechnologies. It consists of two parts: (1) structural features of PLs 

responsible for recognition of synthetic copolymers, and (2) design, synthesis and 

analysis of magnetic nanotubes obtained from PLs with a common theme of colloidal 

synthesis served as a platform for film formation and nano-assemblies of nanotubes. 

Poly(methyl methacrylate/n-butyl acrylate) (p-MMA/nBA) colloidal particles that were 

stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PLs were synthesized, 

and upon the particle coalescence, PL stratification resulted in the formation of surface 

localized ionic clusters (SLICs). These entities were capable of recognizing MMA/nBA 

monomer interfaces along the p-MMA/nBA copolymer backbone and forming crystalline 

SLICs at the monomer interface. Utilizing spectroscopic analysis combined with ab initio 

calculations, we determined the nature of their interactions, where the two neighboring 

MMA and nBA units along the polymer backbone provided conducive environments to 

signal and attract amphiphilic groups of DLPC, thus initiating SLIC formation. Further 

studies were conducted on synergistic stimuli-responsive behaviors of p-MMA/nBA 

colloidal dispersions in the presence of sodium dioctyl sulfosuccinate (SDOSS) and 

DLPC. Spectroscopic analysis of p-MMA/nBA colloidal dispersions revealed the 
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formation and the preferential orientation of SLICs at the film-air (F-A) or film-substrate 

(F-S) interfaces in response to the combined stimulus effects.  

Using bioactive 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine 

(DC8,9PC) nanotube-forming PL as templates,  concentric ferromagnetic iron oxide-

carbon-iron oxide nanotubes (FMNTs) were synthesized. Their structural and 

morphological features were further investigated by utilizing x-ray diffraction, selected 

area electron diffraction, high-resolution transmission electron microscopy, and 

Mössbauer spectroscopy, which revealed that concentric magnetite 

(Fe3O4)/carbon/magnetite multilayer structures, where the carbon layer was sandwiched 

between two magnetite layers as well as magnetite was present inside the carbon 

interlayer. Furthermore, using the synthetic approaches, controllable and uniform 

diameter, wall thickness, and length of FMNTs were obtained. Further studies focused on 

the surface modifications of different nano-objects such as C60, multi-walled carbon 

nanotubes, FMNTs, and carbon fibers, which resulted in inhibition of gram positive 

bacteria and cytotoxicity. This was accomplished by utilizing microwave plasma 

reactions of maleic anhydride as well as attaching polyethylene glycol spacer and 

penicillin. 
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INTRODUCTION 

This dissertation is concerned with new advances in assembly and molecular 

recognition using phospholipids (PLs) and consists of two parts: Part (1) (Chapters  II-III) 

outlines structural features of PLs responsible for recognition of synthetic copolymers, 

and Part (2) (Chapters IV-VI) focuses on design, synthesis and analysis of magnetic 

nanotubes obtained from PLs templates.  

Chapter I focuses on a review of the recent advances of molecular recognition, PL 

self-assembly, and magnetic nanotubes as well as elucidates the promising opportunities 

of bioactive PLs to create different shapes, exhibiting stimuli-responsive and specific 

recognizing ability. Due to PL amphiphilic nature, versatile self-assembled morphologies 

can be achieved ranging from micelles, liposomes, bilayers, to nanotubes. The 

incorporation of biocompatible PL as stabilizing agents into colloidal dispersions offers a 

potential opportunity to prepare novel biomaterials, which may exhibit stimuli-responsive 

features and selective recognition.  

Chapter II investigates the molecular recognition of surface localized ionic 

clusters (SLICs) formation as well as their structural features formed on polymer surfaces. 

Poly(methyl methacrylate/n-butyl acrylate) (p-MMA/nBA) colloidal particles that were 

stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PLs were synthesized. 

Upon particle coalescence, PL stratification resulted in the formation of surface localized 

ionic clusters (SLICs). These entities were capable of recognizing MMA/nBA monomer 

interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the 

monomer interface. Utilizing attenuated total reflectance Fourier transform infrared (ATR 

FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab 
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initio calculations, we determined the nature of the interactions between anionic 

phosphate groups, cationic quaternary ammonium groups of the phospholipid, and 

carbonyl groups of the neighboring MMA and nBA units of p-MMA/nBA copolymer, 

where the two neighboring MMA and nBA units along the polymer backbone provided 

conducive environments to signal and attract amphiphilic groups of DLPC, thus initiating 

SLIC formation. 

Chapter III describes synergistic stimuli- responsive behaviors of the p-

MMA/nBA colloidal dispersions in the presence of sodium dioctyl sulfosuccinate 

(SDOSS) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Stimuli-responsive 

behaviors such as the combined effects of ionic strength, enzyme, and pH of these 

colloidal dispersions were investigated on the mobility of dispersion stabilizing agents 

within p-MMA/nBA copolymer matrixes during and after coalescence. ATR FT-IR 

spectroscopy of p-MMA/nBA colloidal dispersions revealed the formation and the 

preferential orientation of SLICs at the film-air (F-A) or film-substrate (F-S) interfaces in 

response to the combined stimulus effects. Using this approach it is possible to control 

surface morphologies of coalesced films.  

Chapter IV addresses the synthesis and structural features of concentric 

ferromagnetic iron oxide-carbon- iron oxide nanotubes (FMNTs) using biologically active 

1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) nanotube-forming 

PL as templates, which consists of two parts. While Part I focuses on the synthesis of 

FMNTs, Part II analyzes the structural and morphological features. In Part I, this was 

accomplished by polymerization of DC8,9PC in the presence of Fe2+/H2O2 redox agents 

which leads to the formation of amorphous iron oxide concentric nanotubes. Further 
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exposure to 550 °C resulted in the partial removal and crosslinking of the organic phase 

and conversion of amorphous iron oxide to concentric iron oxide-carbon-iron oxide 

nanotubes. FMNTs exhibited the remanent magnetization (Mr) of 4.62 emu/g, the 

saturation magnetization (Ms) of 46.12 emu/g, the squareness (Mr/Ms) of 0.1002, and the 

coercivity (Hc) of 51.35 Oe.  In Part II, by combining the analysis of x-ray diffraction 

(XRD), SAD, high-resolution transmission electron microscopy (HRTEM), and 

Mössbauer spectroscopy, concentric magnetite (Fe3O4)/carbon/magnetite nanotubes were 

revealed, where the carbon layer was sandwiched between two magnetite layers as well 

as magnetite was present inside the carbon interlayer. These nanotubes can be utilized not 

only in devices with tunable ferromagnetic properties, but also as nano-conductors. 

Electrical resistivity of FMNTs and FMNTs after the removal of iron oxide layers by acid 

reactions are 3.3 x 10-2 and 5.06 x 10-4 Ω·m, respectively, indicating that these properties 

can be also tailored for specific applications.  

Chapter V reports the synthetic approaches producing controllable and uniform 

diameter, wall thickness, and length of FMNTs. While the thicknesses of the carbon 

layers can be controlled by the chemistry of PL templates as well as their concentration 

and solvent environments, variable wall thicknesses of magnetite layers can be achieved 

by changing concentration levels of the reactive species. Furthermore, in order to obtain 

desirable lengths of FMNTs, we developed extrusion through a porous polycarbonate 

membrane, which combined with the diameter changes of nanotubes achieved by 

incorporating saturated phospholipid spacers into PL templates, thus resulting in the 

aspect ratio changes ranging from 10 to 80. Consequently, a spectrum of magnetic 

properties, such as saturation magnetizations increase (from 40 to 79 emu/g) as well as 
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the geometry parameter β and parallel magnetization states. In addition, by alternating 

magnetic field direction, the preparation of FMNTs/polyester nanocomposites containing 

alternating alignment of FMNTs was demonstrated.  

Chapter VI illustrates the development of surface modifications of C60, multi-

walled carbon nanotubes (MWNTs), FMNTs, and carbon fibers that resulted in inhibition 

of gram positive bacteria and cytotoxicity. This was accomplished by the sequence of 

reactions, which involved microwave plasma reactions of maleic anhydride (MA) and 

subsequent hydrolysis leading to the formation of carboxylic acid groups, conversion of 

carboxylic acid to carboxylic chloride groups, followed by reactions of a polyethylene 

glycol (PEG) spacer, and the subsequent chemical attachment of penicillin (PEN). Each 

step of surface reactions was analyzed spectroscopically, and the PEN reaction sequences 

revealed the presence of ester linkages due to the reactions between PEN and PEG 

functionalities. Furthermore, introduction of PEG serving as a molecular spacer allowed 

PEN molecules desirable mobility, thus making it surface effective against formation of 

microbial films. Antimicrobial tests revealed highly effective anti-bacterial activity 

toward gram-positive Staphylococcus aureus bacteria, and cytotoxicity experiments 

illustrated no toxicity against mouse embryonic stem cells.  
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CHAPTER I 

MOLECULAR RECOGNITION AND PHOSPHOLIPID SELF-ASSEMBLY 

Introduction 

Progress in nanotechnologies has brought numerous new developments, 

challenges, and opportunities. Several notable developments are single-walled carbon 

nanotubes (SWNT),
1
 molecular self-assemblies,

2
 self-healing polymers,

3
 molecular 

recognition,
4
 biosensors.

5
 These new developments also created a spectrum of challenges 

among which is the ability of incorporating synthetic and natural monomers or 

macromonomers to generate smart nanomaterials with sustainable biocompatibility that 

exhibit stimuli-responsiveness as well as a specific recognition. Among a variety of 

bioactive species phospholipids (PLs) are of particular interest as these entities are 

essential components in cell membranes, capable of forming bilayers, micelles, 

liposomes and tubules. Due to PL amphiphilic nature, versatile self-assembled 

morphologies can be achieved ranging from micelles, liposomes, bilayers to nanotubes. 

The incorporation of biocompatible PL as stabilizing agents into colloidal dispersions 

offers a potential opportunity to prepare novel biomaterials, which may exhibit stimuli-

responsive features and selective recognitions. Furthermore, due to their unique structural 

and morphological features, PL may serve as templates for developing nanomaterials 

with tailored properties.  

Molecular Recognition 

In nature, biological molecules such as proteins and DNA are able to recognize 

each other as well as numerous other molecular sequences through specific interactions. 

During this process, formulation of complex entities facilitating the various necessary 
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 functions to maintain living activities occurs, and examples of these interactions are 

avidin-biotin, antigen-antibody, DNA-protein, sugar-lectin, and others.
6
 The primary 

driving forces responsible for selective recognitions are through non-covalent interactions, 

including H-bonding, electrostatic forces, hydrophobic interactions, and metal-ligand 

coordinations.
7
 One of the notable and well-studied examples of these interactions is 

biotin and avidin. Biotin molecules using carboxylic acid groups can form selective 

binding with the lysine and tryptophan of avidin, a tetrameric protein containing four 

identical subunits, that plays an important role in gluconeogenesis.
8
  

Aside from molecular recognitions in bimolecular systems, synthetic 

macromolecules have been shown to bind target molecules and mimic biological 

recognitions, which are potentially utilized in therapeutic and diagnostic applications. 

This field is quite open and there are many opportunities for new advances to further 

understand a variety of recognitions at a molecular level. In order to achieve specific 

recognitions, often natural recognitions of specific proteins were utilized to immobilize 

them to various polymer platforms, such as polymer brushes,
9-12

 colloidal 

nanoparticles,
12,13

 and stimuli-responsive polymer surfaces.
14,15

 Resulting from a high 

density of reactive groups as well as good swellability, polyacrylic acid brushes were 

grafted onto a gold substrate and further reactions introduced a nitrilotriacetic acid ligand 

in the presence of Cu
2+

, which showed a good reversible binding capacity with proteins 

such as lysozyme, myoglobin and bovin serum albumine.
9
 Polymer nanoparticles with a 

polystyrene core and a glucosyloxyethyl methacrylate (GEMA) oligomer shell were also 

prepared, which exhibited good binding ability with a concanavalin A lectin.
13

 Stimuli-

responsive polymers, such as poly(N-isopropyl acrylamide) (PNIPAAm) by chemically 
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bonded with Streptavidin, were also utilized for responsive molecular recognition .
14

 Due 

to stimuli-responsive features of PNIPAAm, this polymer has shown reversible binding 

with biotin below LCST of 32 °C, whereas above LCST no binding was observed as a 

result of polymer collapse leading to block binding sites.
14

 Using the concept of folded or 

expended conformations of proteins, multi-type monomers, such as anionic acrylic acid, 

cationic methacryl-amido-propyl-trimethyl-ammonium chloride (MAPTAC), and 

thermo-responsive NIPAAm were copolymerized and formed heterogels, where two 

phases were obtained: swollen and collapsed phases. At the collapsed state, such 

functional anionic or cationic groups are close to each others, thus forming a receptor-like 

recognition site for the specific molecular detection.
16

  For example, p-

MAPTAC/NIPPAAm heterogels were able to reversibly bind negatively charged 

pyranine molecules through multiple ionic interactions in collapsed state at 55 °C and 

released pyranine in swollen phase at 25 °C.
17

  Similar recognitions were also applied to 

p-NIPAAm/acrylic acid polymeric gels, which exhibited the reorganizing ability of 

norephedrine and adrenaline.
18

 

Another approach to facilitate the recognition ability is designing molecular 

cavities where other molecular entities can fit and selectively bind. Molecular imprinting 

polymer (MIP) technique is one of the commonly accepted methods for molecular 

recognition, which enables creating cavities in the polymer network.
19-22

 This approach is 

based on prepolymerization and crosslinking of functional monomers in the presence of 

template molecules which interact with a monomer through covalent or non-covalent 

bonds, or metal-ligand coordinations. Upon removing the template molecules using 

solvent extraction, three-dimensional porous polymer networks are formed, which 
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contain cavities which are able to recognize specific template molecules. Hydrogels are 

cross-linked and hydrophilic polymeric networks. As a result of significant water content, 

hydrogels exhibit good biocompatibility as well as similar flexibility to natural tissues. 

Such hydrogels as polyacrylamide,
21

 polyacrylic acid,
22

 and polymethacrylic acid
19

 were 

mostly investigated to be utilized as the MIP networks.  

Because acrylic acid or acrylic amide functional groups are able to interact with 

template molecules through H-bonding in non-polar solvents or ionic interactions in 

anqueous solutions, interpenetrating polymer network hydrogels containing chitosan and 

polyacrylamide were prepared, which showed a significant adsorption capacity for 

hemoglobin.
21

 The advantage of introducing chitosan into the polymeric network is its 

higher affinity to proteins due to the presence of a significant number of amino and 

hydroxyl groups in chitosan. In contrast with MIP without chitosan or nonimprinted 

hydrogel, MIP containing chitosan exhibit much higher protein adsorption.
21

 Another 

notable example is copolymerization of methacrylic acid and trimethylolpropane 

trimethacrylate to form MIPs in the presence of magnetic particles.
22

 Due to magnetic 

properties, particles can be easily separated and manipulated as well as localized to 

designated sites by external magnetic field. This magnetic MIP exhibits good specific 

recognition and further controlled release of aspirin.
22

 

Although synthetic polymers rarely have identical structures to multi-functional 

proteins, heteropolymers randomly synthesized using multi-monomers were found to 

offer recognition ability, which were contributed to a portion of polymers with the same 

distribution of functional groups as the target molecule, thus leading to the strong binding 

between polymers and target and therefore recognition ability.
23-28

 Dextran polymers 
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were randomly modified with sulphonate, carboxylate, amino acid sulphamide and amide 

groups, and they were found to interact with the complement component 3b (C3b) protein 

and subsequently inhibit the activation of the complement system which is a crucial 

process in the immune response.
24,25

 Similar random heteropolymers containing 

biomimetic functional groups were also prepared to recognize insulin secretion,
26,27

 or 

fibronectin protein.
28

 

Although numerous experiments are conducted every year to determine 

specificity of recognition in biological systems, complexity of interactions and a lack of 

probes to establish molecular events leading to these interactions often prohibit detailed 

molecular understanding. Thus, how to understand the mechanisms of molecular 

recognition on a molecular level continues to be a challenge. However, using 

computational simulations combined with experimental evidence may play a significant 

role in elucidating the principles of molecular recognitions. Typical simulation 

approaches includes Monte Carlo approach, molecular dynamics, density functional 

theory (DFT), ab initio calculations, and molecular mechanics.
29

 The recognition of DNA 

and protein with phospholipids has been studied,
30-34

 which depends on the 

intermolecular interactions resulting from their structural features. In an aqueous salt 

solution, resulting from the molecular electrostatic and elastic interactions, cationic PL 

and DNA were found to form various relatively stable complexes including flat-bilayer, 

honeycomb, and cylindrical structures.
30,31

 A phase diagram was further proposed to 

elucidate PL and DNA interactions.
32

 Molecular mechanics approaches were also 

employed to reveal the presence of a cationic bridge in the complexes and emphasize the 

effect of primary structure of nucleic acid on the intramolecular interactions.
33

 The 
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interactions between transmembrane proteins and a lipid bilayer were examined using 

molecular dynamics simulation, and the results are shown in Figure 1.1.
34

 As seen, the 

lysine groups of protein form H-bondings to phosphate and ester oxygens of PL, and 

there are also H-bonding interactions between the tryptophan groups of protein and ester 

oxygens of PL.
34

 Recently, molecular simulation method have been utilized to study the 

mechanisms of molecular recognition by MIPs.
35-37

 The all-atom kinetic gelation model 

where the position and interactions of all atoms were traced was employed to study the 

polymer formation as well as recognizing and binding ability.
35

 Several MIPs for 

recognizing biotin were prepared and using the molecular mechanism method, their 

binding and dissociation ability with biotin were compared, which revealed that p-

methacrylic acid had a highest binding energy and sufficient biotin dissociation constants 

were obtained.
36

 The effect of solvents on the molecular recognition capability of MIPs 

using DFT theory and showed that maximum selectivity was obtained when chloroform 

were utilized in the MIP synthesis, which is in good agreement with experimental 

results.
37

  

Although these examples demonstrate significant interest in this field, there are 

many advances to be made. As the above examples demonstrate, the majority of studies 

are concerned with biological systems, where specific recognitions between individual 

entities were established using a sequence of empirical methods. Recognition of synthetic 

molecules and naturally occurring species remain uncharted areas. One of the challenges 

will be how to mimic biologically active species using synthetic materials at molecular 

levels and in view of these considerations and limited literature data, PLs are of particular 
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interest due to their unique structural features, biocompatibility, and the ability to self-

assemble. 

Phospholipid Self-Assembly 

Phospholipids are the principal components of biomebranes and the matrix of the 

biological membrane is a lipid bilayer composed of phospholipids, which serves as a 

permeability barrier for essential molecular diffusion. As shown in Figure 1.2, 

phospholipids are derived from glycerol-3-phosphate esterified at its C1 and C2 positions 

to fatty acid chains and the phosphoryl group to a head moiety.  These amphiphatic 

species contain hydrophilic polar head groups and hydrophobic long hydrocarbon chains 

which are capable of self-assembling in an aqueous phase. When such amphiphatic 

molecules are mixed with water, they spontaneously form various aggregates depending 

on the chemical makeup, concentration levels, ionic strength of the solution, and 

preparation methods. Figure 1.3 schematically illustrates possible aggregation forms 

which are attributed to hydrophilic and hydrophobic groups.
38

  When the cross-sectional 

area of the head group is larger than that of the tails, such as sodium dioctylsulfosuccinate 

(SDOSS), typical micelle structures are formed as shown in Figure 1.3, A. However, 

when the cross-sectional areas of the head group and the tails are similar, such as in 1,2-

dilauroyl-sn-glycero-3-phosphocholine (DLPC) phospholipid, bilayer formation is 

favored as illustrated in Figure 1.3, B. Furthermore, hydrophobic tails at bilayer edges are 

in contact with water transiently and the bilayer sheet is not quite stable, thus capable of 

forming a hollow sphere, or liposome shown in Figure 1.3, C, which is much more stable 

in water.
38
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Due to their amphiphilic nature leading to versatile aggregation forms, PLs were 

recently successfully utilized as surfactants and templates in emulsion polymerization to 

stabilize colloidal particles and control particle morphology by altering interfacial 

tensions resulting in different shapes. In emulsion polymerization
39,40

 monomers are 

polymerized using a free-radical initiator in an aqueous solution of a surfactant to form 

colloidal particles which are dispersed in an aqueous medium. The main ingredients of 

the emulsion polymerization include monomers, surfactants, initiators, and water. The 

schematic diagram of the emulsion process is shown in Figure 1.4. When the surfactant 

concentration surpasses its critical micelle concentration (CMC), the excess surfactants 

aggregate to form micelles. As monomer molecules diffuse to micelles through the 

aqueous phase from the monomer droplets, in the presence of initiators which may cleave 

thermally or photochemically, polymerization begins.  Monomers continue to diffuse to 

active particles until monomer droplets are exhausted and polymerization reactions stop 

until the remaining monomers are consumed.
39

 In recent years, composite colloidal 

particles with tailored physical properties and versatile morphologies have been prepared 

through consecutive emulsion polymerization processes using different monomers, where 

typically the second-step monomer is polymerized in the presence of the seed particles 

prepared in a separate process. Although a number of variables during seed 

polymerization are believed to result in various particle morphologies
39

, including core-

shell,
41

 inverted core-shell,
42,43

 hemispherical,
43,44

 sandwich structures.
45

 Recently, 

pentafluorostyyene (PFS) was copolymerized with methyl methacrylate (MMA) and n-

butyl acrylate (nBA) in a two-step emulsion polymerization process which generated 

acorn-shaped stable colloidal particles, where one hemisphere of the nanoparticles 
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contained p-PFS phase and the other hemisphere consisted of p-MMA/nBA phase.
44

 

Figure 1.5, A and B illustrate a TEM image of these particles and a photograph of acorns, 

respectively. Upon film coalescence, these acorn-shaped particles exhibited self-assemble 

ability depending on the surface energy of a substrate, where the p-PFS phase localized 

itself near the film-air (F-A) interface for a high surface tension substrate and in contrast 

the p-PFS phase dominated the film-substrate (F-S) interface for a low surface energy 

substrate.
44

 

How to control and predict particle morphologies becomes a crucial issue because 

minute chemical-physical alterations may lead to drastic property changes. Surfactants 

play a significant role in stabilizing particles and controlling particle morphology by 

altering interfacial tensions. For traditional surfactants, such as sodium 

dioctylsulfosuccinate (SDOSS) or sodium dodecyl sulfate (SDS), micelles to stabilize the 

spherical colloidal dispersions are formed. However, by changing the surfactant from 

sodium lauryl sulfate to natural pectin, particle morphologies were altered from 

particle/oil droplets to completely encapsulated oil droplets (core-shell).
39

  

Recently, phospholipids such as 1,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3-

Phosphocholine (DC8,9PC),
46,47

 DLPC,
48

 1-myristoyl-2-hydroxy-sn-glycero-

phosphocholine (MHPC)
49

 and hydrogenated soybean phosphatidylcholine (HSPC)
50

 

have been employed as cosurfactants in the emulsion polymerization of p-MMA/nBA 

copolymer, which forms non-spherical colloidal dispersions as well as contains stimuli-

responsive features. For example, cocklebur-shape particles were obtained to polymerize 

MMA and n-BA in the presence of SDOSS and DCPC stabilizing species using a nano-

extruder, which is illustrated in Figure 1.6.
46

 As seen, upon extrusion, p-MMA/nBA 
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colloidal particles containing tubules pointing outward were prepared resulting from 

DC8,9PC phospholipids present at the particles surfaces. Using traditional emulsion 

polymerization, MMA and n-BA were also polymerized into stable colloidal particles in 

the presence of SDOSS and liposome forming DLPC phospholipids,
48

 which showed that 

hollow colloidal particles were obtained for DLPC stabilized p-MMA/nBA and stable 

monomodal spherical particles for DLPC and SDOSS stabilized p-MMA/nBA. The 

presence of DLPC along with SDOSS exhibited stimuli-responsive behaviors during film 

formation and these stabilizing components can be driven to the film-air (F-A) or film-

substrate (F-S) interface in response to thermal, ionic, pH, and enzymatic stimuli, which 

is depicted in Figure 1.7. As seen, in response to these stimuli, migration direction 

(labeled) changes and during film formation particles containing SDOSS/DLPC release 

stabilizing species to the F-S interface at elevated temperature and low ionic strength, or 

to the F-A interface, at higher pH environments and enzymatic degradation of DLPC.
48

 In 

contrast, when HSPC acts as cosurfactant with SDOSS in the p-MMA/nBA colloidal 

dispersions,
50

 formation of bimodal particle distribution was observed, which was 

attributed to dissimilar hydrophobicity and compatibility of HSPC and SDOSS. Upon 

coalescence, PLs were released at F-A interface and their preferential orientation to the F-

A interface were varied as changing ionic strength.  

PL can also serve as facilitators of non-spherical particle synthesis. Using DLPC 

copolymerization of heptadecafluorodecyl methacrylate (FMA) with MMA/nBA was 

accomplished.
51,52

 Although several efforts
53-56

 have been made to prepare fluorinated 

colloidal dispersions, relatively low solids and fluorine contents (8.5% w/w) were 

obtained resulting from their limited solubility in an aqueous phase. However, the 
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incorporation of DLPC into the synthesis of fluorinated monomers led to stable non-

spherical particles with up to 15% w/w FMA contents, which is attributed to the lower 

CMC of DLPC,
51

 and the ability to facilitate monomer transport usually not achievable 

using traditional surfactants. Morphologies of these particles were able to be varied 

depending on MMA/nBA ratios, and spherical particles were obtained for higher MMA 

content, whereas non-spherical morphologies were observed for higher nBA content, 

which is resulting from monomer starved conditions and the reactivity ratio differences, 

thus forcing copolymerization of FMNA on the p-MMA/nBA particle surfaces. Upon 

particle coalescence, such films exhibited ultralow static and kinetic coefficients of 

frictions due to FMA phase stratification during film formation.
52

 

Aside from the versatile self-assemble forms of PL, DC8,9PC is a unique PL 

which can form hollow cylinders, namely “tubules.” Previous studies
57,58

 showed that 

DC8,9PC are able to  form liposomes in an ethanol/water solution above its hydrocarbon 

chain melting temperature (Tm), which forms a disordered high-temperature Lα phase, 

and these liposomes can be converted to stable hollow tubules at lower temperatures, 

corresponding to an ordered low-temperature Lβ  ́phase. The dimensions of these tubules 

vary from 0.4 μm to 1 μm in diameter and tens to several hundreds of micrometers in 

length, with walls that vary from two to ten bilayers in thickness, usually 10-50 nm. Two 

approaches of tubule preparation have been widely utilized: the liposome process which 

forms phospholipid liposomes in ethanol/water solution and then cools down the solution, 

and the precipitation process,
59

 where water is added into an ethanol/phospholipid 

solution and tubules are precipitated. The tubules prepared from the liposome process 

often contain one or more trapped liposomes that can immobilize aqueous content within 
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the tubules but prevent the tubule lumen from being a true open cylinder, while the 

tubules from precipitation process have no trapped liposomes so that they are true open 

hollow cylinders.
59

 Besides multilayer tubules, other morphologies such as unilamellar 

cylinders,
60

 coaxially nested cylinders,
60

 cones
61

 are found, depending on the solvent.  

Formation of PL different shape assemblies in water has been of significant 

interest, in particular tubule formation. There are three general concepts that attempted to 

explain tubule formations: electrostatic interactions, proposed by de Gennes;
62

 elasticity 

of orientational order, proposed by Lubensky and Prost,
63

 and the chirality theory, 

proposed by Schnur.
64

 While the first two concepts provided rather general explanation 

regarding inter-molecular interactions, they did not account for experimental observations 

such as specificity of orientations of individual molecules. Currently, the chirality theory 

is well accepted to elucidate how diacetylene phospholipids form tubules. Due to 

chirality, PL molecules are unable to pack parallel together, so that each molecule packs 

at certain favored angle with respect to the other nearest molecule and the twist from a 

molecule to a molecule leads the bilayer to twist out of the plane, thus forming a tubule. 

Figure 1.8
65

 illustrates the formation of tubular structure resulting from the chirality of 

individual molecules and as shown above Tm, PLs preferentially form liposomes, and 

upon cooling below Tm, there are two possible paths to form tubules. The first path, as 

shown in Figure 1.8a, results from a decrease of the helical pitch of the ribbon while 

maintaining a constant tape width. The second path as shown in Figure 1.8b involves an 

increase of the tape width which keeps a constant helical pitch, which is more common 

based on the literature.  
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Lipid tubules are of significant interest, because they may have many potential 

applications ranging from slow release and nano-fluidic devices to delivery systems, or 

molecular traps for self-healing applications, electronic devices, and many others. Since 

they are fragile and unstable at elevated temperatures, lipid tubules serve as templates and 

due to ionic phosphocholine groups they are able to be coated with metal,
66-73

 silica,
74

 

clay,
75

 oppositely charged polymers and nanoparticles
76,77

 or make polypyrrole strands.
78

 

For example, nickel were coated onto DC8,9PC tubules using electroless deposition, 

followed by embedding in epoxy resin and such nickel tubules/epoxy composite were 

demonstrated to the fabrication of a cathode for vacuum field emission.
79

 In addition, 

resulting from their hollow cylinder structures thus offering encapsulation and controlled 

release ability through diffusion, copper coated DC8,9PC tubules were mixed with 

antifouling agents in epoxy matrix and such coating were applied to surfaces exposed to 

the marine environments, which showed good antifouling properties and the slow-release 

of antifouling agents for many months.
73

  

In summary, the presence of hydrophilic head groups and hydrophobic tails 

facilitates the formation of the unique amphiphilic structural features of PL, which 

provide the ability to form diverse self-assemble shapes. Thus, there are numerous 

opportunities in creating shapes by serving as stabilizing agents for colloidal dispersions 

as well as templating of depositing other species, which may open new avenues in 

development of nanomaterials with various shapes. One potential aspect is to use PLs as 

templates to prepare magnetic nanotubes, and the following section will introduce the 

preparation and recent advance of magnetic nanotubes. 
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Magnetic Nanotubes 

Magnetic nanomaterials are of particular interest due to their potential 

applications. Of particular interest are geometrical parameters because they will dictate 

magnetic properties.
80,81

 One of the recent examples of utilization of superparamagnetic 

nanoparticles was their ability to repair mechanically damaged polymer matrix upon 

exposure to the oscillating magnetic field.
82

 Although many attempts have been made to 

explore the use of magnetic nanoparticles in many biomedical applications, the control of 

the sizes and surface composition remain to be still challenging.
83,84

 One of the 

difficulties is the formation of aggregates as well as limited controllable surface 

modifications. In spite of favorable size in the range of a few nanometers allowing 

penetration of biological cells in many applications, magnetic nanotubes are 

indispensable. Aside from the ability to modify inner and outer surfaces, diameter, wall 

thickness, and lengths are of particular interest in many materials applications ranging 

from drug delivery systems to biosensing devices.  

Among several methods of synthesis of magnetic nanotubes probably the most 

common one was to use templates of other materials. For example, anodized aluminum 

oxide (AAO) templates were utilized to prepare magnetite (Fe3O4)/silica,
85,86

 

cobalt/polystyrene,
87

 Ni,
88

 Co,
88

 FePt, Fe3O4,
89,90

 NiFe2O4,
91

 and Fe3O4/ polypyrrole 

nanotubes.
92

 In addition, Fe3O4/polymer
93

 and Fe3O4/polypeptide nanotubes
94

 were 

prepared using the layer-by-layer assembly of polyelectrolyte or polypeptide and Fe3O4 

in the presence of the porous polycarbonate templates. Other template methods involve in 

the pulsed laser deposition of Fe3O4 onto MgO nanowires,
95

 mineralization of tobacco 

mosaic virus (TMV) template,
96

 bacterial Fe3O4 nanocrystal onto peptide nanotubes,
97
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and α-Fe2O3 nanotube templates to prepare Fe3O4 and γ-Fe2O3 nanotubes by 

hydrothermal methods.
98

 Biologically active DC8,9PC PL nanotubes
99

 were also utilized 

as a template to form ferromagnetic iron oxide/carbon nanotubes (FMNTs).
100

 

As shape contributes to magnetic properties,
80,81

 magnetic nanotubes resulting 

from its unique hollow cylinder structures  provide an opportunity for diversified 

applications. The equilibrium magnetization states of magnetic nanotubes have been 

identified as a ferromagnetic state with all the magnetic moments are parallel to the tube 

axis, and a flux-closure vortex state. To determine which configuration is dominant 

depends on geometrical factors
101-103

 such as the diameters of the nanotubes and their 

aspect ratios as well as the structure features.
102,104

 It was found that the ferromagnetic 

state exists in the middle part of nanotubes with enough length, while the end of 

nanotubes exhibits a vortex state.
105,106

 Preferential parallel magnetic orientation is 

observed in composite cobalt/polystyrene nanotubes with small diameters and isotropic 

magnetic features for larger diameters.
87

 

Due to continuous demand of biocompatible synthetic nanomaterials utilized in 

biological systems, understanding of interactions of nanomaterials with biological 

systems is also very important, and particularly the influence of nano-size and shapes on 

cell cytotoxicity are of significance. Recent studies that utilized carbon nanotubes and 

fullerenes indicated that interactions of these species with living cells or other biosystems 

are complex and not well understood. Although cytotoxicity of carbon nanotubes and 

fullerenes have been attributed to size,
107,108

 shape,
109,110

 surface functionalizations,
111,112

 

and even the choice of a test method,
113,114

 further detailed studies are needed to resolve 

these issues. There is a common agreement that these materials, however, exhibit 
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antimicrobial properties.
108,115,116

 For example, highly purified single wall carbon 

nanotubes showed antimicrobial activities against Escherichia coli (E. coli) and their 

cytotoxicity resulted from a direct contact with a bacterial cell membrane, causing severe 

cell membrane damage.
115

 Ideally, one would like to control cytotoxicity while 

maintaining antimicrobial functions and thus controlling these properties of nano-

materials are of particular interest, which may open up many potential applications in 

various fields of medicine. Although magnetic particles and nanotubes have been utilized 

in biological applications, their cytotoxicity and biocompatibility are still under 

investigation, which may be influenced by impurities or preparation methods.  

Incorporation of synthetic and natural objects to generate smart devices with 

sustainable biocompatibility and multifunctions remains to be a challenge. Unfortunately, 

the majority of synthetic materials in contact with bio-systems become problems due to 

either microbial growth or cytotoxicity. One approach to alleviate and control interactions 

of bioorganisms on surfaces while maintaining useful bulk characteristics is to modify 

their surfaces. In order to overcome the compatible limitation of magnetic nanotubes in 

biological applications, surface modification methods were utilized. Fe3O4/silica 

nanotubes were differentially functionalized on their outer or inner surfaces by physical 

absoprtion,
85

 whereby upon inner surface modification by octadecyltriethoxysilane these 

nanotubes exhibited hydrophobic inner surface and hydrophilic outer surface, as a result, 

they were easily dispersed in water as well as extracted and separated hydrophobic dye 

molecules through hydrophobic interactions. Alternatively, human Immunoglobulin G 

(IgG) and poly(ethylene glycol) (PEG) silane were also functionalized onto their inner 

and outer surface, which demonstrated a magnetic bioseparation of anti-human IgG 
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through antigen-antibody interactions. In addition, magnetic nanotubes upon inner 

surface modification with amino-silane were filled with several drug molecules in order 

to study the drug release and influence of hydrogen-bonding interactions, which indicated 

that the drug containing carboxylic acid group exhibited a slow releasing rate through 

strong hydrogen-bonding.
85

 Magnetic Fe3O4 nanotubes containing polypeptide were able 

to adsorb plasmid DNA through electrostatic interactions, which demonstrated their 

potential applications in gene transfer areas.
94

 Superparamagnetic Fe3O4/polymer 

nanotubes capable of adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block 

copolymers to enhance colloidal stability were also able to abstract and further release 

low molecular weight anionic dye and drug molecules.
93

  

Compared to physisorption modification methods, the advatanges of covalently 

bonded species to the surfaces provide more stability and uniformity of surface entities. 

Since covalent bonding to surfaces using grafting-to
117,118

 and grafting-from
117,119-121

 

reactions offer significantly greater control over the surface chemistry as well as surface 

morphologies, various synthetic paths were utilized. However, key components for 

successful covalent attachments of other species are to create a reactive surface group as 

well as a molecular spacer. While a surface reactive group facilitates an anchor for 

further reactions, the presence of a spacer provides mobility to bioactive species attached 

to the end of the spacer. For example, antibiotics such as penicillin (PEN)
119,122

 and 

ampicillin (AM)
123

 which prevent bacteria protein synthesis, were successfully 

chemically attacheded to expanded poly(tetrafluoroethylene) (ePTFE) surfaces using 

plasma reactions and grafting of poly(ethylene glycol) (PEG) spacer through carboxylic 

acid groups as well as the attachment of bioactive molecules, which are illustrated in 
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Figure 1. 9. As seen, the first step is the attachment of an anchor molecule through the 

reaction of maleic anhydride to form acid groups using microwave plasma reactions, 

followed by reactions of a PEG spacer to provide mobility to the active antibiotic 

molecule attached to the other end of the spacer. These studies showed high effectiveness 

against both gram positive and negative bacteria. Such surface reactions are appealing 

because they may be ulitlized in the surface modifications of nano-objects such as carbon 

nanotubes, fullerene, and magnetic nanotubes, which may open a new avenue for creation 

of biocompatible nanomaterials.  

In summary, as new developments in nanotechnologies progress, the formation of 

nanomaterials with diverse shapes with sustainable and biocompatible properties 

continues to be a challenge. The incorporation of bioactive PLs into nanomaterials 

provides another promising opportunity because due to their unique amphiphilic nature, 

PLs are able to form versatile shapes, thus offering unexploited avenues for creating new 

materials with various shapes which may exhibit stimuli-responsive features and the 

ability of recognizing other species.  
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Figure 1.1. Interactions between PL and a transmembrane α-helix in a lipid bilayer.
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Figure 1.2. Structure of a phospholipid. 
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Figure 1.3. Aggregation forms of the amphiphilic molecules in water: (A) micelle; (B) 

bilayer; (C) liposome.
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Figure 1.4.  Schematic process of emulsion polymerization.
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Figure 1.5.  TEM micrograph of the acorn-shaped morphology of the synthesized 

colloidal particles (A) and an optical image of acorns from nature (B).
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Figure 1.6. TEM micrographs of p-MMA/nBA containing DCPC using extrusion 

polymerization.
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Figure 1.7. Schematic diagram illustrating the mobility of SDOSS/DLPC and DLPC 

stabilizing components to the F-A and F-S interfaces in response to temperature, ionic 

strength, pH and phospholipase A2 changes.
48
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Figure 1.8. Proposed formation mechanism of lipid tubules resulting from chiral 

molecular self-assembly.
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Figure 1.9. Schematic diagram of Ar microwave plasma reactions in the presence of 

maleic anhydride leading to the formation of -COOH groups, followed by PEG 

attachment and bioactive molecules to functionalized surfaces.
119,123-125
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CHAPTER II 

MOLECULAR RECOGNITION AT METHYL METHACRYLATE/N-BUTYL 

ACRYLATE (MMA/NBA) MONOMER UNIT BOUNDARIES OF PHOSPHOLIPIDS 

AT P-MMA/NBA COPOLYMER SURFACES 

Introduction 

Non-covalent interactions play an important role in biological systems and there 

are numerous examples of molecular recognition at interfaces ranging from crystal 

interfaces
1,2

 to base-pairing,
3
 peptide and DNA recognition, 

4,5
 and sensing.

6
 Mother 

Nature has mastered these processes and, with just a few building blocks, is capable of 

signaling and recognizing subtle changes through manipulations of non-covalent, 

typically weak hydrogen bonding interactions. One biopolymer that is capable of 

encoding genetic data is DNA, and among other functions its sequence determines the 

type of organism or disease susceptibility, but its critical feature is the ability to precisely 

encode a specific protein sequence.
5
 The key component in these processes is molecular 

recognition and the ability of selective binding to specific molecular segments. Another 

example is proper matching between hydrophobic components of proteins with more 

flexible lipid molecules which tend to surround the former by matching sizes and shapes. 

Due to protein rigidity and relatively flexible lipids, the conditions of hydrophobic 

matching can by accomplished by structural rearrangements of lipid rafts. The main 

question in these and other studies is what chemical entities are responsible for structural 

matching and molecular recognition? Thus, one of the challenges, and at the same time 

opportunity for creating materials with supermolecular structures with signaling 
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characteristics, is their ability of recognizing other species not necessarily via covalent 

bond formation, but other typically weaker, but orchestrated interactions. 

In view of these considerations, we recently explored film formation processes of 

colloidal particles that were deliberately stabilized by biologically active and surface 

stabilizing phospholipids (PL).
7-10

 These studies showed that colloid particle 

morphologies play an essential role in coalescence and exhibit particular influence on 

interfacial regions near the film-air (F-A) and film-substrate (F-S) interfaces. One of the 

outcomes of these studies was the formation of surface localized rafts that exhibit stimuli-

responsive characteristics controlled by colloidal particle-phospholipid interactions as 

well as pH and temperature. These surface entities resemble the natural phenomena of 

membrane lipid rafts and may have significant implications on further advances leading 

to understanding mechanistic aspects of cell-cell signaling, endocytosis, and raft-raft 

cross-talk.
11,12

 During the course of these studies unique structural features were 

identified which were inherently associated with particle coalescence and copolymer 

composition, as well as structural features of biologically active phospholipids. It turns 

out that colloidal particle coalescence provides a unique environment for PLs 

stratification near the F-A and F-S interfaces, which is driven by an access of the surface 

energy at the interfacial regions, thus often facilitating PL mobility. One of the intriguing 

phenomena was the ability of PLs to form well organized surface entities referred to as 

surface localized ionic clusters (SLICs) which form only during particle coalescence and 

are composed of PLs or a combination of PL and other dispersing agents. Several 

mechanisms leading to stratification of these species were proposed.
7-10
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Since structural features and interactions of SLICs composed of PLs with polymer 

surfaces are important for facilitating either attachment or growth of biocomponents to or 

from polymeric surfaces, this study attempts to determine what structural features are 

responsible for molecular recognition of PLs and interactions that lead to SLIC formation 

on poly(methyl methacrylate/n-butyl acrylate) (p-MMA/nBA) film surfaces.  For that 

reason synthetic and spectroscopic efforts along with molecular modeling will be 

employed to advance limited knowledge that may enhance comprehension of lipid-

protein recognition and interactions between biological and synthetic systems.  

As have been shown in our previous studies, during coalescence of p-MMA/nBA 

colloidal particles stabilized by biologically active phospholipid dispersing agents SLICs 

are formed at the F-A and F-S interfaces.
7-10

 Figure 2.1 illustrates an optical image 

obtained from the F-A of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)-stabilized 

p-MMA/nBA films and show that crystalline SLIC entities are observed. The F-S 

interface does not show these features (not shown).  For the same copolymer matrix, but 

prepared in the presence of sodium dioctylsulfosuccinate/1,2-dilauroyl-sn-glycero-3-

phosphocholine (SDOSS/DLPC), these species are not observed under ambient 

conditions. If they were formed, their formation would occur only during coalescence of 

colloidal particles and a number of control experiments in which DLPC and other PLs 

were solidified from an aqueous phase resulted in the formation of a powdery PL. Thus, 

the formation of SLICs occurs only in certain areas of coalesced films, thus raising two 

questions: (1) what chemical entities at the p-MMA/nBA surfaces are responsible for the 

initiation of SLIC formation, and (2) why the presence of colloidal particles facilitates 

selective SLIC formation. 
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Experimental 

Methyl methacrylate (MMA), n-butyl acrylate (nBA), sodium 

dioctylsulfosuccinate (SDOSS), and potassium persulfate (KPS) were purchased from 

Aldrich Chemical Co. 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) phospholipid 

was purchased from Avanti Polar Lipids, Inc. p-MMA/nBA copolymer emulsions 

stabilized by DLPC and SDOSS/DLPC were synthesized, following the procedure 

outlined earlier.
9
 p-MMA and p-nBA homopolymers containing DLPC were prepared by 

the same procedure. 

The particle size measurements were performed on a Macrotrac Nanotrac 250 

instrument. Optical micrographs of film surfaces were obtained using a Nikon Optiphot 

biological microscope equipped with cross-polarizers. Microscopic attenuated total 

reflectance Fourier transform infrared (ATR FT-IR) spectroscopic measurements were 

performed on the film-air (F-A) and film-substrate (F-S) interfaces using a Bio-Rad FTS-

6000 FT-IR single-beam spectrometer with 4 cm
-1

 resolution. The surfaces were analyzed 

using a 2 mm Ge crystal with a 45° angle maintaining constant contact pressure between 

the crystal and the specimens. All spectra were corrected for spectral distortions using 

software for the Urban-Huang algorithm.
13

 Selected area electron diffraction (SAD) 

patterns of samples were obtained using a Jeol JEM-2100 transmission electron 

microscope (TEM) operated at 200 kV. 

Computer simulations were carried out in order to determine structural features of 

SLICs. The choice of theoretical level depends on the accuracy requested and the size of 

a system. It is well known that DFT-B3LYP method predicts excellent geometries,
14,15

 

however, due to the large size of the SLICs systems under consideration, computer 
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simulations at AM1, HF/3-21G, B3LYP
16-19

/6-31G, and B3LYP/6-31G+(d) levels were 

employed. It has been proven that the HF/3-21G method well reproduces the geometrical 

parameters. Thus only the models optimized at the HF/3-21G
20-22

 level are discussed in 

this work unless mentioned otherwise. The characteristics of the local minima were 

verified by vibration frequency calculations. The harmonic vibrational wavenumbers and 

absolute intensities were calculated at the same level using the HF/3-21G optimized 

structures. The values of the wavenumbers were scaled by a factor of 0.964 for HF/3-21G 

level of theory.
23,24

 All calculations were carried out using the Gaussian 03 package.
25

  

Results and Discussion 

We utilized ATR FT-IR spectroscopy which allows us to analyze chemical 

entities at the F-A and F-S interfaces of p-MMA/nBA films. The results of the analysis 

are illustrated in Figure 2.2, and Traces A/A’ and B/B’ show spectra recorded from the F-

A and F-S interfaces, respectively. The spectra were recorded using TE (Traces A, B) and 

TM (Traces A’, B’) polarizations in order to determine dichroic ratios of selected bands, 

and establish preferential spatial orientation of given species responsible for these 

vibrations. Analysis and comparison of the spectra recorded from the F-A and F-S 

interfaces show the presence of the bands at 1310, 1300, 1265, and 1250 cm
-1

 which are 

not present at the F-S interface. Furthermore, enhanced intensity of the band at 1061 cm
-1

 

due to P-O-C segments of DLPC in the TM polarization is observed, with the dichroic 

ratio of 0.235. The P-O-C orientation changes originate from the ionic segments of DLPC. 

These observations indicate preferentially perpendicular orientation of the DLPC head 

groups with respect to the F-A interface. As shown in Trace C, no IR bands due to SLICs 

are detected in the films coalesced from the particles stabilized by SDOSS/DLPC.
9
 For 



 

 

45 

reference purposes, Traces D and E of Figure 2.2 illustrate the spectra of DLPC and p-

MMA/nBA/SDOSS, respectively, and show virtually no resemblance of the spectra 

recorded from the F-A and F-S interfaces (Traces A/A’ and B/B’) with the exception of 

the strong bands at 1148 and 1162 cm
-1

 due to C-O of MMA and nBA units. 

 Before we attempt to address these spectroscopic differences reflecting 

significant chemical differences, it should be also noted that SDOSS/DLPC stabilized 

particles exhibit monomodal particle distribution with an average particle size of 132 nm, 

whereas the same DLPC-stabilized colloidal particles are 69 nm in diameter. These 

observations indicate that SDOSS/DLPC form larger miscible micelles and form 

monomodal particles during synthesis. In contrast, previous studies have shown that 

when hydrogenated soybean phosphatidylcholine (HSPC) and SDOSS are utilized,  

formation of bimodal particle distribution
7
 was observed, which was attributed to 

dissimilar hydrophobicity and compatibility of HSPC and SDOSS. Furthermore, as 

shown in Trace C of Figure 2.2, the presence of SDOSS inhibits DLPC mobility, and thus 

does not facilitate SLIC formation.
7
 This is attributed to ionic interactions between NH3

+
 

of DLPC and SO3
-
 of SDOSS at the particle interfaces, which inhibit DLPC migration, 

and is schematically illustrated in Figure 2.3, A. However, the presence of ionic 

interactions between NH3
+
 and PO4

2-
 groups of two DLPC molecules and the hydrophilic 

nature of phosphocholine groups of DLPC facilitates SLICs formation. As water 

evaporates, DLPC molecules are released from the particle surfaces and migrate to the F-

A interface being forced out of the interfacial regions. This is schematically depicted in 

Figure 2.3, B. Thus, there is a significant influence of dispersing agents and their 

interactions with colloidal particles on mobility and stratification during coalescence. 
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In an effort to establish the influence of the polymer matrix on SLIC formation, 

ATR FTIR spectra were recorded from the F-A interfaces of DLPC stabilized p-MMA 

and p-nBA homopolymers, and their blend films. As illustrated in Figure 2.4, Traces 

A/A’, ATR FT-IR spectra collected from the F-A interface of a 50/50 p-MMA/p-nBA 

blend stabilized by DLPC reveal the presence of SLICs, as manifested by the presence of 

the bands at 1310, 1300, 1265, 1250, and 1061 cm
-1

 due to SLICs. In contrast, these 

bands are not detected in Traces B/B’ and C/C’, which represent the spectra recorded 

from the F-A interface of p-MMA and p-nBA homopolymers containing DLPC. 

Although these data suggest that the formation of SLICs is attributed to the simultaneous 

presence of MMA, nBA, and DLPC, further evidence is necessary to determine the origin 

of their formation and the location of SLICs on the p-MMA/nBA surface. 

As indicated above, the formation of SLICs occurs only during particle 

coalescence, whereas disturbance of the particle surface by other species inhibits or 

promotes migration to the interfaces, depending upon the nature of chemical interactions. 

Numerous experimental attempts to recreate SLIC formation outside the colloidal 

environment resulted in failure, and it became clear that structural features of SLICs are 

unique, and a prerequisite for their formation is the particle coalescence. Although one 

could attribute the interfacial surface tension between collating particles generating 

capillary forces
26

 as the main source for mobilizing DLPC to the F-A interface, we 

believe that this process is an intermediate stage that mobilizes PLs from particle surfaces. 

The first stage will require the displacement of PLs, such as depicted in Figure 2.3, B, 

followed by their transport via the capillary forces, and orchestrated alignment of DLPC 

at the F-A interface. While the first two stages are fairly well documented,
27

 and several 
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factors contribute to these efforts, specific interactions that are responsible for the growth 

of the SLICs shown in Figure 2.1 in specific locations remain unknown. 

In an effort to determine molecular entities responsible for SLIC formation, we 

calculated IR spectra shown in Figure 2.2 from molecular modeling experiments. For that 

purpose we utilized ab initio calculations in which polar ends of DLPC were allowed to 

interact with p-MMA/nBA copolymer backbone. This approach was stipulated by the 

experimental data discussed in conjunction with Figures 2.2 and 2.4. During simulations, 

p-MMA and p-nBA homopolymers were allowed to interact independently with DLPC 

through electrostatic and H-bonding attraction between the anionic phosphate-cationic 

quaternary ammonium pair and the carbonyls of the copolymer matrices. This choice 

resulted from ionic interactions detected spectroscopically and shown in Figure 2.3. 

Using an ab initio approach, we calculated spectral features responsible for IR bands to 

match experimentally determined spectra of SLICs shown in Figure 2.2. Based on the ab 

initio results that match the experimental data, structural features responsible for SLICs 

may be deduced.  

Figure 2.5 A, B, C, and D illustrate possible interactions derived from the ab initio 

calculations and show that the most stable configuration is obtained for DLPC-p-

MMA/nBA interactions. As seen in Figure 2.5, A, A’, and A”, these interactions occur 

via DLPC-p-MMA/nBA segments and provide energetically the most stable structure. 

The distance between the carbonyl O of the MMA1 segment and H of the 

trimethylammonium of DLPC is 2.38 Å, which indicates an existence of a strong 

electrostatic and H-bonding interactions between them. In addition, the short distances 

between the carbonyl O from the nBA1 and three Hs of the trimethylammonium (2.25, 
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2.25, 2.94 Å) also stabilize the interaction. Although the MMA2 segment is slightly 

distorted away from DLPC, there is still an additional weak interaction between the 

carbonyl O of the MMA2 segment and three Hs of trimethylammonium of DLPC. The 

distances between the carbonyl O of MMA2 and three Hs of the trimethylammonium are 

in the range of 2.51 to 3.32 Å. Similarly, relatively weak interactions between the 

carbonyl O of nBA2 and the Hs of trimethylammonium on DLPC also stabilize the model 

A. It should be noted that the PO2
-
 segment of DLPC is oriented towards the methyl of 

MMA and butyl groups of nBA resulting from attractive forces between the Hs of methyl 

and butyl groups of the polymer and O
-
 of PO2

-
. Based on these modeling studies, we 

conclude that the primary component responsible for SLIC formation results from the 

presence of neighboring MMA and nBA units and electrostatic attractions between   

DLPC at the MMA/nBA boundaries. This is illustrated in Figure 2.5, A”. 

The same analysis conducted for p-MMA or p-nBA homopolymers at the 

MMA/MMA or nBA/nBA boundaries with structural features illustrated in Figure 2.5, B-

B’ and C-C’ shows that these interactions are not stabilized. As seen in Figure 2.5, B-B’, 

the model for interactions between p-MMA and DLPC indicates that there are barely any 

interactions between the MMA1 segment and DLPC as well as the PO2
-
 group and 

MMA1,  resulting only from the interaction of methyl groups. In contrast, for p-nBA 

model illustrated in Figure 2.5, C-C’, the nBA2 unit is fairly distorted, and the structure is 

destabilized due to the presence of strong steric repulsions. These features lead to the 

conclusion that the binding energies of homopolymer structures are significantly less 

favorable and weaker than those obtained for the copolymer structure with MMA/nBA 

units.   
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In order to consider all possible scenarios of potential interactions we determined 

the feasibility of inter-molecular interactions between the neighboring chains of p-MMA 

and p-nBA homopolymer blends. The results are shown in Figure 2.5, D-D’ which 

indicate that when a sequence of three MMA and nBA units in the neighboring chains, in 

the presence of DLPC, also forms SLICs. As seen, when two polymer chains are side-by-

side, DLPC forms a bridge between the chains. In this case, H-bonding interactions 

between the carbonyl oxygen atoms of nBA1 and nBA2, the Hs of trimethyl ammonium 

of DLPC as well as the carbonyl oxygen atoms of MMA1, MMA2, and MMA3 with 

DLPC, stabilize the structure. As shown in Figure 2.5, D’, which depicts the side and top 

views of the structure, the 50/50 p-MMA/p-nBA blend provides a similar environment 

for the SLIC formation as that observed for p-MMA/nBA copolymer shown in Figure 2.5, 

A-A”. Because only three nBA units are involved in the interaction with DLPC on one 

side, p-nBA chains are less restrained, as that compared with that in p-MMA/nBA 

copolymer (Figure 2.5, A-A”), thus providing a more flexible environment for rigid 

pMMA chains to approach PO2
-
 groups. Using ab initio calculations significant H-

bonding interactions appear to play an important role in the SLIC formation. Specifically, 

as shown in Figure 2.5, D-D’, MMA3 group can approach DLPC closer and H-bonding 

between the DLPC PO2
-
 oxygen O2 atom and the H atoms of nBA3 and the near-

neighbor MMA1 are responsible for SLIC formation. Other similar type interactions are 

also located between the DLPC PO2
-
 oxygen O1 atom and the Hs of nBA1 and nBA3 

groups which resembles the arm-chair-model structure of the copolymer.  

Furthermore, this analysis shows that the existence of the neighboring of MMA 

and nBA units in the p-MMA/nBA backbone facilitates SLIC formation which is also 
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manifested by a comparison of the experimental and calculated IR spectra. Figure 2.6, 

Trace A, illustrates ATR FT-IR spectrum obtained by averaging of the spectra recorded 

in the TE and TM polarization modes at the F-A interface with the characteristic SLIC 

bands at 1310, 1300, and 1265, 1250, and 1061 cm
-1

. For comparison, Trace B of 2.6 is 

the calculated IR spectrum obtained from the structure shown in Figure 2.5, A-A”. 

Similar results are obtained for the 50/50 p-MMA and p-nBA homopolymer blend. Trace 

C of Figure 2.6 illustrates calculated IR spectrum from the structure shown in Figure 2.5, 

D-D’. Although not all experimental and theoretically predicted IR bands exactly match,  

the main calculated bands (Trace B) at 1316, 1296, 1269, 1240, 1079, 785 cm
-1

 show 

good agreement with the experimental results (Trace A). Similarly, for the blend (Trace 

C) the following bands are obtained: 1305, 1299, 1272, 1081, and 783 cm
-1

. To illustrate 

which vibration contributes to specific structural features, characteristic vibrational bands 

and structural features responsible for these bands are summarized in Table 2.1. Table 2.1 

also illustrates 3D vibrational modes responsible for the SLIC formation. The bands at 

1310 and 1300 cm
-1

 are attributed to the C-(C=O) stretching and CH vibrational modes, 

whereas the bands at 1265 and 1250 cm
-1

 result from the CH2 on backbone vibrational 

modes and C-(C=O) stretching vibrations, respectively. Finally, the band at 1061 cm
-1

 is 

due to P-O-C stretching, and the band at 736 cm
-1

 is attributed to P-O stretching 

vibrations. 

Although these studies demonstrate for the first time that specificity of PL diester-

type polymer interactions is attributed to the presence of MMA and nBA units next to 

each other, analysis of Figure 2.1 clearly illustrates the formation of crystallites. In order 

to determine the size of crystalline lattice of SLICs grown from the p-MMA/nBA surface, 
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SAD was utilized. Figure 2.7, A, illustrates the single crystal diffraction pattern of the 

orthorhombic lattice. Using these data we calculated the lattice constants which are 4.0 Å 

and 6.2 Å. As we recall the results of the ab initio calculations, the distance between 

DLPC molecules shown in Figure 2.5, A’ gives the crystal lattice constants of 3.90 Å and 

6.16 Å, which closely matches the SAD data shown in Figure 2.7, with the unit cell 

shown in Figure 2.7, B. For reference, Figures 2.7, C and D, illustrate electron diffraction 

patterns of DLPC and p-MMA/nBA containing SDOSS, respectively, which do not 

exhibit single crystal patterns, reinforcing earlier conclusions that the presence of 

colloidal particles facilitates mobility and transport of DLPC to the surface, while the 

presence of neighbouring MMA and nBA units next to each other facilitates SLIC 

formation. 

Lipid-protein interactions have been studied intensively, but the detailed chemical 

nature of their interactions is not known. Specifically, questions that need to be address 

are how membrane proteins interact with the lipids surrounding the membrane proteins or 

do lipid molecules form shells around a membranes protein. These studies show for the 

first time that the presence of diester group separated by aliphatic C-C bonds facilitated 

by covalently bonded methyl methylacrylate and n-butyl acrylate units provides a 

recognition site for the SLIC formation. These interactions are specific, and occur 

between C=O and N-(CH3)3 groups as H-bonding and electrostatic interactions. Although 

these interactions have been recognized in the protein-lipid studies, their specificity was 

not identified. After all, p-MMA/nBA copolymer structure and portions of protein 

structural features exhibit similar hydrophobic groups which may provide environments 

conducive for amphiphilic lipid crystallization and specific recognition site by PLs.  
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Conclusions 

p-MMA/nBA colloidal dispersions were synthesized in the presence of 

biologically active phospholipids and upon coalescence lead to the formation of SLICs 

which are only formed during film formation of colloidal particles. Combination of 

experimental and theoretical approaches allowed us to determine the nature of the 

interactions between anionic phosphate groups, cationic quaternary ammonium groups of 

the phospholipid, and carbonyl groups of the neighboring MMA and nBA units of p-

MMA/nBA copolymer. These studies show that the two neighboring MMA and nBA 

units along the polymer backbone provide conducive environments to signal and attract 

amphiphilic groups of DLPC, thus initiating SLIC formation. This process is believed to 

be driven by H-bonding and electrostatic interactions of both units which recognize 

amphiphatic characteristic species, thus resembling biological recognitions. 

 

  

 



 

 

53 

Table 2.1. Experimental and calculated IR bands obtained from ATR FT-IR 

measurements and ab initio calculations using Models A and D.  

Note:  c – denotes p-MMA/nBA copolymer  

b – denotes 50/50 p-MMA/p-nBA homopolymer blend.  

Experimental 

IR Band (cm
-1

) 

Calculated  IR 

Band (cm
-1

) 
Vibrational Mode 3D Vibrational Modes 

1310 
1316 (c) 

1305(b) 

C- (C=O) stretching   

CH vibrational 

mode 

 

1300 
1296 (c) 

1299 (b) 

C-(C=O) stretching      

CH vibrational 

mode 

 

1265 
1269 (c) 

1272 (b) 

CH2 vibrational 

mode 

 

1250 1240 (c) C-(C=O) stretching 

 

1061 
1079 (c) 

1081 (b) 
P-O-C stretching 

 

736 
785 (c) 

783(b) 
P-O stretching 
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Figure 2.1. Cross-polarized optical micrographs of DLPC stabilized p-MMA/nBA film 

surfaces recorded from the F-A interface. 

 

 

 

 

100 μm 
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Figure 2.2. Polarized ATR-FTIR spectra of p-MMA/nBA copolymer films containing 

DLPC at:  (A) F-A, TE polarization; (A’) F-A, TM polarization; (B) F-S, TE polarization; 

(B’) F-S, TM polarization; and reference sample: (C) p-MMA/nBA copolymer 

containing SDOSS/DLPC;  (D) DLPC, and (E) p-MMA/nBA copolymer containing 

SDOSS.  
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Figure 2.3. Schematic diagram depicting interactions between DLPC and SDOSS.  
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Figure 2.4. ATR-FTIR spectra of DLPC stabilized p-MMA and p-nBA recorded from the 

F-A interface: (A) p-MMA/p-nBA blend, TE polarization; (A’) p-MMA/p-nBA blend, 

TM polarization; (B) p-MMA, TE polarization; (B’) p-MMA, TM polarization; (C) p-

nBA, TE polarization; (C’) p-nBA, TM polarization. 
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Figure 2.5. Proposed SLIC models resulting from the interaction between copolymer 

components and DLPC: (A) p-MMA/nBA copolymer; (A’) 3D localized p-MMA/nBA 

copolymer–phospholipid interactions; (A”) 3D model of SLICs; (B) p-MMA 

homopolymer; (B’) 3D localized p-MMA homopolymer–phospholipid interactions; (C) 

p-nBA homopolymer; (C’) 3D localized nBA homopolymer–phospholipid interactions; 

(D) p-MMA/p-nBA blend; (D’) 3D localized p-MMA/p-nBA blend-phospholipid 

interactions.
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Figure 2.6.  Comparison of (A) combined TE and TM polarized ATR-FTIR spectrum of 

DLPC stabilized p-MMA/nBA collected from the F-A interface; (B) Calculated IR 

spectrum from the Model A in Figure 2.5, (C) Calculated IR spectrum from the Model D 

in Figure 2.5. 
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Figure 2.7. Selected area diffraction images of: (A) DLPC; (B) p-MMA/nBA polymer 

containing SDOSS; (C) p-MMA/nBA containing DLPC; (D) proposed crystal lattice 

models for SLICs.  
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CHAPTER III 

STIMULI-RESPONSIVE STRATIFICATION OF PHOSPHOLIPIDS ACROSS  

P-MMA/NBA FILMS CONTROLLED BY SYNERGISTIC EFFECTS OF PH,  

IONIC STRENGTH AND ENZYME LEVELS  

Introduction 

 

Although utilization of colloidal dispersions has been know for many years,
1-7

 

their ability to facilitate crystallization of self-assembling bioactive phospholipids (PLs) 

near the film surfaces and interfaces has been only recently observed.
4,8-10

 This 

stratification phenomenon was achieved using a combination of sodium 

dioctylsulfosuccinate (SDOSS) and dual-tailed PLs such as 1,2-bis(10,12-

tricosadiynoyl)-sn-Glycero-3-Phosphocholine (DC8,9PC),
8
 1,2-dilauroyl-sn-glycero-3-

phosphocholine (DLPC),
9
 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC)

8
 

and hydrogenated soybean phosphatidylcholine (HSPC),
4,10

 which functioned as 

stabilizing agents in the emulsion polymerization of p-(methyl methacrylate/n-butyl 

acrylate) (p-MMA/nBA) copolymer. Such colloidal particles formed non-spherical 

dispersions as well as stimuli-responsive features. For example, while stable monomodal 

spherical colloidal particles were obtained in the presence of SDOSS and liposome 

forming DLPC phospholipids,
11

 hollow colloidal particles were produced for DLPC 

stabilized p-MMA/nBA. The presence of DLPC along with SDOSS exhibited stimuli-

responsive behaviors during film formation and these stabilizing components can be 

driven to the film-air (F-A) or film-substrate (F-S) interface. As a result, formation of 

surface localized ionic clusters (SLICs) 
4,8-10

 at the interfaces during coalescence may 

occur. In response to thermal, ionic, pH, and enzymatic stimuli, during film formation 
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particles containing SDOSS/DLPC release stabilizing species to the F-S interface at 

elevated temperature and low ionic strength, or to the F-A interface with higher pH 

environments and enzymatic degradation of DLPC.
11

 In view of the previous findings 

and the importance of understanding molecular level processes governing formation of 

biologically active surfaces and interfaces, these studies examine the origin of synergistic 

stimuli-responsive characteristics of PL stabilized p-MMA/nBA dispersions, with the 

particular focus on synergistic effects of ionic strength, enzyme concentration, and pH 

changes during and after coalescence of colloidal dispersions. 

Experimental  

Methyl methacrylate (MMA), n-butyl acrylate (nBA), sodium 

dioctylsulfosuccinate (SDOSS), potassium persulfate (KPS), CaCl2, phospholipase A2 

(PLA2) (1,283 units/mg) were purchased from Aldrich Chemical Co. 1,2-dilauroyl-sn-

glycero-3-phosphocholine (DLPC) was purchased from Avanti Polar Lipids, Inc.  

p-MMA/nBA copolymer emulsions stabilized by DLPC and SDOSS/DLPC 

respectively were synthesized as described elsewhere.
9
 CaCl2 aqueous solutions were 

prepared by solubilizing CaCl2 in DDI water at 6.9, 11.5, 13.8, 23.0, 27.6, and 45.0 mM. 

These concentrations correspond to CaCl2/DLPC molar ratios of 0.5:1.0 and 1.0:1.0 in 

the emulsions prepared with DLPC and SDOSS/DLPC, respectively. 1.0 mg of PLA2 

enzyme (Aldrich) was dissolved in 1.0 mL of the CaCl2 aqueous solutions. When 

applicable, each PLA2/CaCl2 solution was separately mixed with 1mL of emulsions 

containing DLPC and SDOSS/DLPC and adjusted to pH of 2.0, 5.0, and 8.0, and for the 

dispersion containing SDOSS/DLPC partial precipitation of p-MMA/nBA colloidal 

particles occurs, whereas for the dispersion containing DLPC, colloidal particles fully 
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precipitated. This behavior is attributed to a partial cleavage of  DLPC at C2 position in 

the presence of PLA2 to form a single tailed lyosophospholipid and lauric acid,
12,13

 thus 

destabilizing colloidal particles and leading to partial precipitation. The nonprecipitated 

portions of the dispersions were allowed to coalescence to form uniform films and are 

subjects of further studies. Such colloidal dispersions were cast onto a 

poly(tetrafluoroethylene) (PTFE) mold to achieve free-standing colloidal films with an 

approximate film thickness of 100 μm. The films were allowed to coalesce for 72 h in a 

controlled environment at 60% relative humidity (RH) and 23 °C. Model studies were 

conducted in which DLPC, SDOSS, CaCl2 and PLA2 were dispersed in DI water.  

Optical micrographs of film surfaces were obtained using a Nikon Optiphot 

biological microscope equipped with cross-polarizers. Polarized attenuated total 

reflectance Fourier transform infrared (ATR FT-IR) spectra were collected from the film-

air (F-A) and film-substrate (F-S) interfaces using a Bio-Rad FTS-6000 FT-IR single-

beam spectrometer with 4 cm
-1

 resolution. The surfaces were analyzed using a 2 mm Ge 

crystal with a 45° angle maintaining constant contact pressure between the crystal and the 

specimens. The polarization modes of transverse electric (TE - 0°) and transverse 

magnetic (TM - 90°) were employed from which dichroic ratios (DR) were determined 

and listed in Tables 1 and 2. When DR < 1.0, molecular segments exhibit preferentially 

perpendicular orientation to the film interface, whereas for DR > 1.0, parallel alignment 

is anticipated. All spectra were corrected for spectral distortions using software for the 

Urban-Huang algorithm.
14

 Colloidal dispersion particle morphologies were analyzed 

using a Zeiss EM 109-T transmission electron microscope (TEM) in which colloidal 



66 

 

 

dispersions were diluted at a 20:1 vol. ratio (DDI H2O: dispersion) and deposited on 

Formvar coated copper TEM grids. 

Results and Discussion 

 The combined effects of ionic strength and enzyme on DLPC/SDOSS stabilized 

p-MMA/nBA colloidal dispersions are of particular interest because if designed properly, 

these entities will allow controllable mobility to the F-A and F-S interfaces, thus leading 

to bioactive surfaces and interfaces. Figure 3.1 illustrates optical images of the F-A 

(subscript 1) and F-S (subscript 2) interfaces of p-MMA/nBA films: A1 and A2-images 

of p-MMA/nBA films with 0/1.0 CaCl2/DLPC; B1 and B2-images of p-MMA/nBA films 

with 0.5/1.0 CaCl2/DLPC; C1 and C2-images of p-MMA/nBA films with 1.0/1.0 

CaCl2/DLPC. As illustrated in optical micrographs shown in Figure 3.1, A1 and A2, if 

there is no stimuli, the F-A and F-S interfaces exhibit no differences. However, when 

Ca
2+

 and PLA2 are present in colloidal dispersions, CaCl2/DLPC ratio will dictate the 

existence of crystalline entities at the interfaces. As seen in Figure 3.1, B1-B2, when a 

0.5/1.0 CaCl2/DLPC ratio is used, only crystalline domains are present at the F-A 

interface. In contrast, for a 1.0/1.0 CaCl2/DLPC ratio, both interfaces are decorated with 

crystalline entities in the presence of PLA2. In an effort to identify molecular species 

responsible for the crystalline phase, spectroscopic analysis was performed and  Figure 

3.2A, Traces A/A' illustrate the F-A interface of SDOSS/DLPC stabilized p-MMA/nBA 

copolymer films recorded using TE and TM polarization modes. This approach allows us 

to identify preferable orientation of molecular entities at the F-A interface. When the 

CaCl2/DLPC ratio changes in the presence of PLA2, new bands at 1135, 1123 and 1089 

cm
-1

 are observed, which are attributed to surface localized ionic clusters (SLICs).
4,8,9
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This is shown in Figure 3.2, Traces B/B' and C/C'. At the same time, enhanced intensity 

of the 1089 cm
-1

 band due to PO4
- 
entities in the TE mode indicates a preferential parallel 

orientation of PO4
-
 , thus DLPC molecules align perpendicularly to this interface. In 

addition, as shown in Figure 3.2B, Traces C/C', for a 1.0/1.0 CaCl2/DLPC ratio, the bands 

at  1135, 1123 and 1089 cm
-1

 due to SLICs are suppressed at the F-S interface, as 

compared to the surfaces containing no Ca
2+

 and PLA2 (Traces A/A') and 0.5/1.0 

CaCl2/DLPC in the presence of PLA2 (Traces B/B').  

The combined effects of ionic strength and enzyme on the DLPC stabilized p-

MMA/nBA dispersions were analyzed by utilizing 0.5/1.0 and 1.0/1.0 molar ratio        

CaCl2/DLPC solutions in the presence of PLA2. In this case, the entire colloidal 

dispersion precipitated out due to the hydrolysis effect of PLA2 enhanced in the presence 

of Ca
2+

.
13

 At this point the unprecipitated portion of the solution was analyzed in order to 

determine partitioning of DLPC molecules. Figure 3.3, A1 and B1 illustrates TEM 

images of solid residues obtained from 0.5/1.0 and 1.0/1.0 CaCl2/DLPC solution, 

respectively. As seen in Figure 3.3, A1 and B1, hydrolyzed phospholipids form 

aggregates to form branches as well as particles, but when the CaCl2/DLPC ratio changes 

in the presence of PLA2, the morphologies are different. As seen in Image B1 for 1.0/1.0 

CaCl2/DLPC ratio, smaller fraction of aggregates are remained because higher 

concentration levels of Ca
2+

 result in DLPC precipitating in the latex particles, thus 

resulting in less DLPC aggregates. Detailed chemical compositional evidence is provided 

in Figure 3.3, A2 and B2, which illustrate corresponding IRIRI images recorded by 

turning into the 1089 cm
-1

 band due to the P-O vibrations of DLPC. As seen in Figure 3.3, 

A2, and B2, similar branched heterogeneous morphologies are observed. Furthermore, 
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Figure 3.3, A3 and B3 show IR spectra recorded from selected area. As illustrated in 

Figure 3.3, A3, the band at 1089 cm
-1

 due to the P-O vibrations of DLPC are detected. 

However, the band at 1735 cm
-1

 resulting from the C=O vibrations of DLPC shows a 

relatively low intensity, which is likely attributed to hydrolyzed dual tails by PLA2. The 

same spectroscopic information was obtained for the specimen containing 1.0/1.0 

CaCl2/DLPC ratios and it shown in Figure 3.3, B3. 

Based on these data, Figure 3.4 depicts SLIC formation as a function of 

concentration levels of Ca
2+

 in the presence of PLA2 in the SDOSS/DLPC and DLPC 

stabilized colloidal dispersions. For SDOSS/DLPC stabilized p-MMA/nBA colloidal 

dispersions, SLICs which appear as crystalline domains form preferentially perpendicular 

to the F-A interface of the dispersions containing 0.5/1.0 CaCl2/DLPC as well as the F-A 

and F-S interfaces of dispersions containing 1.0/1.0 CaCl2/DLPC in the presence of PLA2. 

In contrast, for DLPC stabilized p-MMA/nBA colloidal dispersions, excessive 

coagulation occurs and DLPC remains in the solution.  

The activity of PLA2 is strongly dependent upon pH. The pH of the initial 

colloidal dispersions was 3.0. pH values of colloidal dispersions were adjusted to 2.0, 5.0, 

and 8.0 before addition of Ca
2+

 and PLA2, and results of spectroscopic analysis of the 

dispersions containing 0.5/1.0 CaCl2/DLPC in the presence of PLA2 are illustrated in 

Figure 3.5. As shown in Figure 3.5A (F-A), Traces A/A', at pH=2.0, the bands at 1135, 

1123 and 1089 cm
-1

 are observed, which are attributed to SLICs formation. Also, the 

enhanced intensity of the 1089 cm
-1

 band due to PO4
- 
entities in the TE mode indicates a 

preferential perpendicular orientation of DLPC molecules at the F-A interface. However, 

when pH changes to 5 and 8, these bands are not detected (Traces B/B' and C/C'). 
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Furthermore, as shown in Figure 3.5B (F-S), Traces A-A', at pH=2.0, spectroscopic 

analysis of the F-S interface shows the presence of SLICs manifested by the bands at 

1135, 1123 and 1089 cm
-1

. However, the bands at 1135, 1123, 1100 cm
-1

 are detected, as 

shown in Traces B/B' and C/C' (pH=5.0 and 8.0). The dichroic ratio (R) values of the 

bands at 1089 and 1100 cm
-1

 are approximately R=1.0, indicating random orientation of 

DLPC molecules. Similar spectroscopic analysis was obtained when utilizing 1.0/1.0 

CaCl2/DLPC in the presence of PLA2 at various pHs, which is illustrated in Figure 3.6. In 

summary, pH changes significantly affect mobility of DLPC to the F-A and F-S 

interfaces. 

The dispersions containing only DLPC containing Ca
2+

 and PLA2 at various pH 

values showed different significantly responsiveness. For dispersions containing 0.5/1.0 

and 1.0/1.0 CaCl2/DLPC in the presence of PLA2, at pH = 2.0 and 5.0, the entire 

dispersion precipitated out, but at pH=8.0, the dispersions remain stable. In the presence 

of Ca
2+

, PLA2 has lower hydrolysis activity at higher pHs and DLPC molecules are more 

sensitive to PLA2 and Ca
2+

 than the presence of SDOSS and DLPC together. Figure 3.7, 

A and B, illustrates analysis of the F-A and F-S interfaces of p-MMA/nBA containing 

DLPC in the presence of Ca
2+

 and PLA2 at pH = 8.0. As shown in Figure 3.7A, Traces 

A/A', the presence of SLICs at the F-A interface of the dispersions containing no Ca
2+

 

and PLA2 is observed , which is manifested by the bands at 1310, 1300, and 1265 cm
-1

. 

However, these bands are not detected on the surfaces of films containing Ca
2+ 

and PLA2 

at pH=8.0, (Traces B/B’ and C/C’). Furthermore, spectroscopic analysis of the F-S 

interface of the dispersions containing no Ca
2+

 and PLA2 is illustrated in Figure 3.7B, 

Traces A/A', and shows that the presence of SLICs is not observed.  However, as shown 
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in Figure 3.7B, Traces B/B', the band at 1100 cm
-1

 with significant intensity increases at 

the F-S interface of the dispersions containing 0.5/1.0 CaCl2/DLPC in the presence of 

PLA2 at pH = 8.0 is observed. For dispersions containing 1.0/1.0 CaCl2/DLPC, the bands 

at 1310, 1300, and 1265 cm
-1

 are detected, which are again due to SLICs. As shown in 

Figure 3.7A, Traces A/A', and Figure 3.7B, Traces C/C', the enhanced intensity of the 

bands at 1061 cm
-1

 due to P-O-C
 
entities in the TE mode indicates a preferential 

perpendicular orientation DLPC molecules to the interface.  

The proposed mechanisms depicting molecular-level interactions in the p-

MMA/nBA colloidal dispersion containing SDOSS/DLPC and DLPC stabilizing agents 

are illustrated in Figure 3.8. In the presence of the PLA2, DLPC are hydrolyzed to a 

single tailed lyosophospholipid and lauric acid, which is enhanced by the presence of 

Ca
2+

. For p-MMA/nBA dispersions stabilized with CaCl2/DLPC at 0.5/1.0 and 1.0/1.0 

SDOSS/DLPC ratios, the presence of strong ionic interactions between Ca
2+

, anionic 

SO3
-
 of SDOSS, PO4

-
 and N(CH3)

+
 groups of DLPC lead to ionic aggregates forming 

SLICs at both film interfaces. For DLPC dispersions, after the addition of PLA2 and Ca
2+

,
 

DLPC molecules with single tails are unable to stabilize hollow particles and 

phosphocholine groups of DLPC interact with Ca
2+

 leading to the removal of DLPC 

around the particles.  

Based on the spectroscopic analysis of SDOSS/DLPC and DLPC stabilized 

MMA/nBA colloidal dispersion in the presence of Ca
2+

, PLA2 and pH, the following 

physic-chemical phenomenon resulting from combined effects of ionic strength, enzyme 

and pH are depicted, which is illustrated in Figure 3.9. For SDOSS/DLPC stabilized 

colloidal dispersions containing 0.5/1.0 CaCl2/DLPC and PLA2, at pH=2.0, SLIC are 
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preferentially perpendicular to the F-A and F-S interfaces, whereas at pH=5.0 and 8.8, 

SLICs are randomly orientated at the F-S interface. The same results were obtained for 

dispersions containing 1.0/1.0 CaCl2/DLPC. In contrast, for DLPC stabilized particles 

containing 0.5/1.0 and 1.0/1.0 CaCl2/DLPC in the presence of PLA2 at pH=8.0, SLICs 

revealed preferentially perpendicular orientation to the F-S interface. These results 

illustrate synergistic effects of ionic strength, pH, and enzyme, thus providing means for 

controlled stratification of stabilizing species during film formation. 

Conclusions 

In the presence of ionic species and biologically active enzymes, DLPC stabilized 

colloidal dispersions are highly sensitive to the enzymatic hydrolysis which is 

strengthened by Ca
2+

, and SLICs are observed in the F-A interfaces of colloidal particles 

containing SDOSS/DLPC. As biologically active dispersing agents are sensitive to pH 

changes, the synergistic effects of ionic strength, pH, and enzyme result in controlled 

stratification during film formation. 
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Table 3.1. Dichroic Ratios of Selected IR Bands
a
 of SDOSS/DLPC stabilized p-

MMA/nBA colloidal dispersions. 

 
a
 R= A║/ A┴, where A║ and A┴ are band areas for parallel (TE) and perpendicular (TM) 

polarizations. R values were obtained by ratioing the baseline corrected IR bands of 

interest. For each band, the same wavenumber range was used to determine the band area 

for TE and TM polarizations. 

CaCl2/DLPC Interface pH 
PO4

-
 P-O-C 

1089cm
-1

 1061cm
-1

 

0.0/1.0 F-A 3 n/a 0.890 

 F-S 3 n/a 0.482 

0.5/1.0 F-A 3 4.555 0.398 

 F-S 3 2.260 0.436 

1.0/1.0 F-A 3 1.757 0.297 

 F-S 3 2.640 0.317 

0.5/1.0 F-A 2 1.648 0.398 

  5 n/a 0.501 

  8 n/a 0.440 

 F-S 2 2.760 0.464 

  5 n/a 0.903 

  8 n/a 0.511 

1.0/1.0 F-A 2 1.624 0.472 

  5 n/a 0.509 

  8 n/a 0.570 

 F-S 2 1.735 0.289 

  5 n/a 0.431 

  8 n/a 3.946 



73 

 

 

Table 3.2. Dichroic Ratios of Selected IR Bands
b
 of DLPC stabilized p-MMA/nBA 

colloidal dispersions. 

b
 R= A║/ A┴, where A║ and A┴ are band areas for parallel (TE) and perpendicular (TM) 

polarizations. R values were obtained by ratioing the baseline corrected IR bands of 

interest. For each band, the same wavenumber range was used to determine the band area 

for TE and TM polarizations. 

 

 

CaCl2/DLPC Interface pH 
SLIC 

1310cm
-1

 
SLIC 

1300cm
-1

 
SLIC 

1265cm
-1

 
P=O 

1250cm
-1

 
PO4

-
 

1089cm
-1

 
P-O-C 

1061cm
-1

 

0/1.0 F-A  0.933 1.404 0.862 4.639 n/a 0.235 

  F-S  n/a n/a n/a n/a n/a 0.525 

0.5/1.0 F-A 8 n/a n/a n/a n/a n/a 0.422 

  F-S 8 n/a n/a n/a n/a n/a 0.420 

1.0/1.0 F-A 8 n/a n/a n/a n/a n/a 0.487 

  F-S 8 0.939 1.575 0.672 1.172 n/a n/a 
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Figure 3.1. Cross-polarized optical micrographs of SDOSS/DLPC stabilized p-

MMA/nBA films recorded from F-A and F-S interfaces at (A1) F-A; (A2) F-S; (B1) F-A, 

0.5/1.0 CaCl2/DLPC, PLA2; (B2) F-S, 0.5/1.0 CaCl2/DLPC, PLA2; (C1) F-A, 1.0/1.0 

CaCl2/DLPC, PLA2; (C2) F-S, 1.0/1.0 CaCl2/DLPC, PLA2. 
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Figure 3.2. Polarized ATR-FTIR spectra at F-A interface (2A) and F-S interface (2B) of 

p-MMA/nBA copolymer films containing SDOSS/DLPC: (A) TE; (A') TM, and colloidal 

dispersions treated with CaCl2/DLPC molar ratios: (B) 0.5/1.0, TE; (B') 0.5/1.0, TM; 

(C)1.0/1.0, TE; (C') 1.0/1.0, TM in the presence of PLA2. 
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Figure 3.3. Analysis of colloidal residue of p-MMA/nBA dispersions containing DLPC 

treated with CaCl2/DLPC molar ratios: (A) 0.5/1.0 CaCl2/DLPC; (B) 1.0/1.0 

CaCl2/DLPC in the presence of PLA2 including TEM images (A1) and (B1), IRIRI 

images (A2) and (B2), and IR spectra (A3) and (B3). 
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Figure 3.4. Schematic diagram depicting preferentially oriented manifestations at the F-A 

and F-S interfaces of SDOSS/DLPC and DLPC stabilized p-MMA/nBA copolymer 

prepared in the presence of CaCl2/DLPC molar ratios and PLA2. 
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Figure 3.5. A. Polarized ATR-FTIR spectra at F-A interface of p-MMA/nBA copolymer 

films containing SDOSS/DLPC treated with PLA2 and 0.5/1.0 CaCl2/DLPC and adjusted 

to pH: (A) 2.0, TE; (A') 2.0, TM (B) 5.0, TE; (B')5.0, TM; (C)8.0, TE; (C') 8.0, TM. 

Figure 3.5.B. Polarized ATR-FTIR spectra at F-S interface of p-MMA/nBA copolymer 

films containing SDOSS/DLPC treated with PLA2 and 0.5/1.0 CaCl2/DLPC and adjusted 

to pH: (A) 2.0, TE; (A') 2.0, TM (B) 5.0, TE; (B')5.0, TM; (C)8.0, TE; (C') 8.0, TM. 
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Figure 3.6.A. Polarized ATR-FTIR spectra at F-A interface of p-MMA/nBA copolymer 

films containing SDOSS/DLPC treated with PLA2 and 1.0/1.0 CaCl2/DLPC and adjusted 

to pH: (A) 2.0, TE; (A') 2.0, TM (B) 5.0, TE; (B’)5.0, TM; (C)8.0, TE; (C') 8.0, TM. 

Figure 3.6.B. Polarized ATR-FTIR spectra at F-S interface of p-MMA/nBA copolymer 

films containing SDOSS/DLPC treated with PLA2 and 1.0/1.0 CaCl2/DLPC and adjusted 

to pH: (A) 2.0, TE; (A') 2.0, TM (B) 5.0, TE; (B')5.0, TM; (C)8.0, TE; (C') 8.0, TM. 

 

 

MMA/nBA-SDOSS/DLPC-PLA2-CaCl2/DLPC=1.0/1.0 

ATR-FTIR  
FA 

 

pH=2, TE 

ATR-FTIR  
FS 

 

1089 

1135 

1123 1193 

pH=2, TM 

pH=5, TE 

pH=5, TM 

pH=8, TE 

pH=8, TM 

pH=2, TE 

pH=2, TM 

pH=5, TE 

pH=5, TM 

pH=8, TE 

pH=8, TM 

1089 

1123 

1135 

1193 

1061 

1046 

1061 
1046 

Wavenumber (cm-1) Wavenumber (cm-1) 

1100 

A 

A’  

B 

B’  

C 

C’  

A 

A’  

B 

B’  

C 

C’  

6A 6B 



80 

 

 

 

 

Figure 3.7.A. Polarized ATR-FTIR spectra at F-A interface of DLPC stabilized p-

MMA/nBA copolymer films (A) TE; (A') TM, and treated with PLA2 and various ratios 

of CaCl2/DLPC and adjusted to pH 8: (B) 0.5/1.0 CaCl2/DLPC, TE; (B') 0.5/1.0 

CaCl2/DLPC, TM; (C) 1.0/1.0 CaCl2/DLPC, TE; (C') 1.0/1.0 CaCl2/DLPC, TM.  

3.7.B. Polarized ATR-FTIR spectra at F-S interface of DLPC stabilized p-MMA/nBA 

copolymer films (A) TE; (A') TM, and treated with PLA2 and various ratios of 

CaCl2/DLPC and adjusted to pH 8: (B) 0.5/1.0 CaCl2/DLPC, TE; (B') 0.5/1.0 

CaCl2/DLPC, TM; (C) 1.0/1.0 CaCl2/DLPC, TE; (C') 1.0/1.0 CaCl2/DLPC, TM. 
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Figure 3.8. Schematic diagram depicting molecular-level interactions between SDOSS 

and DLPC species in the presence of Ca
2+

 and PLA2. 
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Figure 3.9. Schematic diagram depicting preferentially oriented manifestations at the F-A 

and F-S interfaces of SDOSS/DLPC stabilized dispersions and DLPC stabilized 

dispersions treated with various ratios of CaCl2/DLPC and PLA2 and adjusted to various 

pH. 
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CHAPTER IV 

CONCENTRIC FERROMAGNETIC NANOTUBES 

FROM BIOLOGICALLY ACTIVE PHOSPHOLIPIDS 

PART I: SYNTHESIS 

Introduction 

A quest for unique magnetic nanomaterials continues to be driven by scientific 

curiosity as well as numerous potential applications ranging from information storage, 

ferro-fluidics, drug delivery systems, biosensing devices, magnetic resonance imaging, to 

name just a few. Iron oxides are of particular interest and since shape also contributes to 

magnetic properties,
1,2

 different shapes of α-Fe2O3, including nanorods,
3,4

 nanospheres,
5,6

 

nanowires,
7
 and a spindle-type

8
 were prepared. Attempts to make hollow tubular 

structures
9,10

 have been made because this shape may exhibit unique magnetic properties, 

but the highest obtained magnetization values were 2.7-2.9 emu/g or smaller. 

In this chapter, we report the development of a simple approach that utilizes 1,2-

bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) phospholipid (PL) 

which self-assembles in water into unstable nanotubes,
11

 which upon further redox and 

thermal reactions form ferromagnetic nanotubes (FMNTs) with exceptionally high 

magnetization.  

Experimental  

1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) was 

purchased from Avanti Polar Lipids, Inc. Ammonium iron (II) sulfate hexhydrate 

((NH4)2Fe(SO4)2·6H2O), and hydrogen peroxide (H2O2) (30 wt. % in water) were 

purchased from Aldrich Chemical Co. A schematic diagram illustrating the formation of  
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nanotubes containing inorganic layers is shown in Figure 4.1.1. Initially, DC8,9PC 

nanotubes were obtained using the literature method.
11

 10 mL of an aqueous dispersion 

with 1.1 mol/L DC8,9PC nanotubes was purged with N2 for 0.5 hr, followed by the 

addition of 0.5 mL of 0.4 mol/L ammonium iron (II) sulfate hexhydrate aqueous solution, 

which served as a reducing agent. After 0.5 hr, the final step involved the addition of 0.2 

mmol of hydrogen peroxide, which acted as an oxidizing agent to react with the reducing 

agent. The reaction continued for 1 hour after which time the product was collected by 

centrifuging and dialysis to remove excess ions. Due to the presence of Fe
3+

 oxidized 

from Fe
2+

 by H2O2 the final nanotube product exhibited a light yellow color. Finally, 

nanotubes were freeze dried and annealed at 550 °C for 0.5 hour.  

Morphologies of nanotubes were analyzed using a Jeol JEM-2100 transmission 

electron microscope (TEM) operated at 200 kV, in which samples were diluted and 

deposited on formvar/carbon coated copper grids. Magnetic hysteresis measurements 

were performed using a MicroMag Model 2900 alternating gradient magnetometer 

(AGM, Princeton Measurement Corp.) at room temperature. Raman spectra and images 

were obtained with a Renishaw inVia Raman microscope equipped with a computer-

controlled three-axis encoded (XYZ) motorized stage, a RenCam CCD detector, and a 

Leica microscope (DMLM series). The 785 nm diode laser provided Raman excitation 

with a maximum power output of 300 mW. The sample solutions were deposited on the 

gold surface and allowed to dry overnight.  The Raman spectra of samples were collected 

with a 30 mW laser power on the sample and an acquisition time of 30 sec. Raman 

images were obtained with the dielectric tunable filter band-pass centered at 1508 cm
-1

 

using an acquisition time of 2 min and a ×100 objective. 
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Results and Discussion 

The formation of FMNT process involves three steps which are illustrated in 

Figure 4.1.1. As seen, Step 1 involves DC8,9PC self-assembly leading to the formation of 

PL nanotubes. In Step 2, after addition of (NH4)2Fe(SO4)2, these ionic species are 

attached onto the interior and exterior surfaces of DC8,9PC nanotubes. Further addition of 

H2O2 leads to the fast Fe
2+

 ─> Fe
3+

oxidization and the formation of the amorphous basic 

iron (III) sulfate layers on the interior and exterior of DC8,9PC nanotubes. At the same 

time, HO· radicals generated from redox reactions initiate polymerization of diacetylene 

groups of DC8,9PC, thus forming an alternating C=C/C≡C conjugated interlayer. As 

shown in Step 3, further thermal exposure to 550 °C of these materials result in the 

conversion of amorphous basic iron (III) sulfate to doped iron oxide phase and the 

formation of crosslinked carbon tubular interlayers.  

The process of the nanotube formation was experimentally followed using 

transmission electron microscopy (TEM) and spectroscopically. Figure 4.1.2 illustrates 

TEM images of each step described in Figure 4.1.1. As shown by image A, self-assembly 

of DC8,9PC nanotubes occurs, followed by Step 2 involving reactions of ammonium iron 

(II) sulfate hexhydrate ((NH4)2Fe(SO4)2·6H2O) and crosslinking of diacetylene groups of 

DC8,9PC in the presence of  H2O2 oxidizing agent. The resulting nanotube is illustrated in 

Figure 4.1.2, B. The final third stage that leads to the exceptionally high magnetization 

involves annealing at 550 °C for 0.5 hour. As shown in Figure 4.1.2, C, concentric 

nanotubes separated by crosslinked carbon layers are formed. Supplemental section 

provides spectroscopic and selected area electron diffraction (SAD) data to support these 

results. 
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In order to follow chemical changes resulting from Steps 1 and 2, Raman analysis 

was performed, which is shown in Figure 4.1.3, A and B. Trace A, collected from Step 1, 

illustrates the Raman spectrum of DC8,9PC nanotubes, which exhibit C≡C stretching 

vibrations manifested by the band at 2259 cm
-1

. As shown in Trace B, Raman spectrum 

recorded after Step 2 exhibits the presence of the band at 1610 cm
-1

 due to H2O stretching 

vibrations, the band at 1021 cm
-1

 due to SO4
2-

 stretching vibrations, and the 602 cm
-1 

band resulting from the Fe-O vibrations. It should be noted that after Step 2 nanotubes 

contains H2O, SO4
2-

, and Fe-O species. Based on the literature data, there are two types 

of structures which contain these species: iron (III) oxyhydroxy sulfate 

(Fe8O8(OH)x(SO4)y)
12

 and amorphous basic iron (III) sulfate (2Fe2O3·SO3·xH2O).
13

 Since 

the bands due to –OH vibrations are present in iron (III) oxyhydroxy sulfate, which is 

absent after Step 2, iron (III) oxyhydroxy sulfate is unlikely to be present. In contrast, 

amorphous basic iron (III) sulfate prepared from hydrolytic precipitation of the Fe2(SO4)3 

solution at pH 5-6 matches our spectroscopic data. Thus, chemical composition after Step 

2 is believed to be amorphous basic iron (III) sulfate.
13

 As seen in Trace B (Step 2), the 

band at 2259 cm
-1

 due to C≡C stretching vibrations exhibits lower intensity, and new 

bands detected at 2109 cm
-1

 and 1508 cm
-1

 are due to C≡C and C=C stretching vibrations 

of polymerized interlayer structures, respectively.
14

 The latter result from polymerization 

of diacetylenic groups of DC8,9PC which is initiated by the radicals generated by 

Fe
2+

/H2O2 redox reactions, and the formation of alternating C≡C and C=C conjugated 

structures. The detailed Raman analysis of nanotubes recorded from Step 3 will be 

discussed in Part II.  
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In an attempt to combine morphological and chemical information, an optical 

microscopic image (insert C of Figure 4.1.3) and Raman imaging of a nanotube after Step 

2 (insert D of Figure 4.1.3) are shown. While the optical image manifests the tubular 

morphology, Raman image of the same nanotube was collected by tuning into the C=C 

band at 1508 cm
-1

. Again, tubular morphology is clearly observed, where green area 

represents the 1508 cm
-1

 band intensity. 

Magnetic properties of the nanotubes are illustrated in Figure 4.1.4, A and B, 

respectively. As seen in Figure 4.1.4, A, after Step 2 nanotubes are paramagnetic. After 

Step 4, the hysteresis loop (M-H curve) of FMNTs with exceptionally high magnetization 

at room temperature is observed (Figure 4.1.4, B). The remanent magnetization (Mr), the 

saturation magnetization (Ms), the squareness (Mr/Ms), and the coercivity (Hc) values are 

4.62 emu/g, 46.12 emu/g, 0.1002 and 51.35 Oe, respectively. These data also show that 

magnetic properties of FMNTs are significantly enhanced compared to those reported for 

chemically similar particles and rods, which is likely attributed to the formation of anion 

or cation-doped iron oxide phases altering localized oxidation state of Fe, thus resulting 

in exceptionally high magnetization values. Concentric doped iron oxide nanotubes 

separated by a carbon layer which may also influence magnetization. 

Conclusions 

 In summary, DC8,9PC phospholipid nanotubes were polymerized in the presence 

of Fe
2+

/H2O2 redox agents, which resulted in amorphous basic iron (III) sulfate 

concentric nanotubes separated by crosslinked PL layers. Further exposure of the 

nanotubes to 550 °C resulted in the formation of ferromagnetic iron oxide concentric 

nanotubes separated by carbon sheet interlayers with the remanent magnetization (Mr) of 
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4.62 emu/g, the saturation magnetization (Ms) of 46.12 emu/g, the squareness (Mr/Ms) of 

0.1002, and the coercivity (Hc) of 51.35 Oe. To the best of our knowledge this is the first 

study illustrating that using biologically active phospholipids highly ferromagnetic 

nanotubes can be produced. 
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Figure 4.1.1. Schematic diagram illustrating reaction mechanisms responsible for 

formation of FMNTs. 
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Figure 4.1.2. TEM images of nanotubes: (A) Step 1 ─ self-assembly of DC8,9PC into 

nanotubes; (B) Step 2 ─ reactions of (NH4)2Fe(SO4)2 and H2O2; (C) Step 3 ─ thermal 

exposure to 550 °C for 0.5 hour. 
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Figure 4.1.3. Raman spectra in the 3200-200 cm
-1

 region of nanotubes after Step 1 (A) 

and Step 2 (B), Optical image (C) and Raman image (D) of nanotubes after Step 2. 
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Figure 4.1.4. Magnetic hysteresis loops of nanotubes after Steps 2 (A) and 3 (B) in Figure 

4.1.1. 
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PART II: STRUCTURAL AND MORPHOLOGICAL FEATURES 

Introduction 

Magnetic nanomaterials are of particular interest due to their potential 

applications ranging from information storage to nano-fluidics, or drug delivery systems 

to biosensing devices or magnetic resonance imaging, to name just a few.
1
 One of the 

recent examples of utilization of superparamagnetic nanoparticles was their ability to 

repair mechanically damaged polymer matrices upon exposure to the oscillating magnetic 

field.
2
 Because shape significantly contributes to magnetic properties,

3,4
 thus providing an 

opportunity for diversified applications, a quest for developing new magnetic 

nanomaterials with unique shapes continues. Various magnetic nanotubes have been 

prepared including FePt,
5
 Fe3O4,

5,6
 NiFe2O4,

7
 Fe3O4/silica,

8,9
 Fe3O4/polymer,

10
 

Fe3O4/polypeptide,
11

 and cobalt/polystyrene
12

 nanotubes, and applications in 

bioseparation,
8,9

  drug delivery,
8,9,10

 and gene transfer
11

 have been demonstrated. If 

shape and size variations including wall thickness, diameter, and length can be controlled, 

magnetic properties may be altered, thus leading to new applications. 

In view of these considerations we utilized biologically active phospholipids (PL) 

as templates to produce ferromagnetic iron oxide/carbon/iron oxide concentric nanotubes 

(FMNTs),
13

 where a carbon layer sheet was sandwiched between the iron oxide layers. 

The structural complexity of these multi-layered morphologies brought about questions 

regarding the makeup of the iron oxide layers as well as concentric carbon layer phase.  

These studies focus on the elucidation of the content of these phases, their location, and 

how multilayers are assembled. 
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Experimental 

1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) was 

purchased from Avanti Polar Lipids, Inc. Ammonium iron (II) sulfate hexhydrate 

((NH4)2Fe(SO4)2·6H2O), and hydrogen peroxide (H2O2) (30 wt. % in water) were 

purchased from Aldrich Chemical Co.  

A schematic diagram illustrating the formation of nanotubes containing inorganic 

layers is shown in Figure 4.2.1, which followed the procedures published previously.
13

   

DC8,9PC nanotubes were obtained using the literature method.
14,15

 10 mL of an aqueous 

dispersion with 1.1 mol/L DC8,9PC nanotubes was purged with N2 for 0.5 hr, followed by 

the addition of 0.5 mL of 0.4 mol/L ammonium iron (II) sulfate hexhydrate aqueous 

solution, which served as a reducing agent. After 0.5 hr, the final step involved the 

addition of 0.2 mmol of hydrogen peroxide, which acted as an oxidizing agent to react 

with the reducing agent. The reaction continued for 1 hour after which time the product 

was collected by centrifuging and dialysis to remove excess ions. Finally, nanotubes were 

freeze dried and annealed at 550 °C for 0.5 hour. For reference purpose, final nanotubes 

mixed with 1mol/L HCl for one week to remove iron oxide and final product were 

centrifuged and collected. DC8,9PC powder was annealed at 550°C for 0.5 hour and 

residue was collected.  

Transmission electron microscopy (TEM) and selected area electron diffraction 

(SAD) images of nanotubes were obtained using a Jeol JEM-2100 TEM operated at 200 

kV, and high-resolution TEM (HRTEM) images were collected by a Hitachi HF2000 

TEM operated at 300 kv. Raman spectra were obtained with a Renishaw inVia Raman 

microscope with a 785 nm diode laser. The Raman spectra of samples were collected with 
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a 30 mW laser power on the sample and an acquisition time of 1500 sec. X-ray 

diffraction (XRD) was collected by X-ray diffractometer with CuKa radiation. Mossbauer 

spectroscopy was obtained by a Mössbauer spectrometer with 
57

Co (Rh) source. The 

conductivity tests of nanotubes were conducted using focused iron beam (FIB). The 

nanotube was deposited on the oxidized wafer and two platinum pads were fixed at the 

both end of the nanotube. Current-voltage (I-V) curves of samples were measured when 

the electrode tips contacted with platinum pads. 

Results and Discussion 

Figure 4.2.1, A-D illustrates a schematic diagram of the synthesis of FMNTs which 

involves self-assembly of PL nanotubes (Step 1), followed by reactions of 

(NH4)2Fe(SO4)2 and H2O2 (Steps 2 and 3), and further thermal annealing at 550 °C (Step 

4). Figure 4.2.1, A'-D' show TEM images of nanotubes produced in each step. As seen in 

Figure 4.2.1, A', a nanotube with a 500 nm length is observed, resulting from the PL 

self-assembly. Figure 4.2.1, Images B' and B'', illustrate the morphology of PL nanotubes 

upon iron oxide precursor (NH4)2Fe(SO4)2 reactions in step 2, which revealed that the 

darker layers resulting from higher electron density of Fe
2+

 ions are formed around PL 

nanotubes as well as in the PL interbilayers. This is attributed to the electrostatic 

interactions among Fe
2+

, SO4
-
, NH4

+
 ionic species and phosphocholine groups of PL, 

allowing these ionic species to form nanotube surfaces or diffuse into the PL interbilayers. 

Upon further reactions using H2O2 oxidizing species (Step 3), Fe
2+

 ions are partially 

oxidized to Fe
3+

 and, as shown in the TEM image of Figure 4.2.1, C', uniform iron oxide 

layers are generated on PL nanotube surfaces. The final Step 4 involves thermal 

annealing of nanotubes at 550 °C, and as shown in Figure 4.2.1, D', nanotube 
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morphologies are retained. One of the intriguing features of this process is the formation 

of multilayer structures, where concentric iron oxide nanotubes are separated by a layer 

carbon sheet.  

In an effort to dictate crystalline structure of FMNTs, XRD was performed. As 

shown in Figure 4.2.2, A and B, illustrates XRD patterns of FMNTs and standard 

magnetite (Fe3O4), respectively. The diffraction peaks of FMNTs (Trace A) are in good 

agreement with those of magnetite (Trace B). However, since maghemite (γ-Fe2O3) also 

exhibits a similar cubic lattice structure and the same lattice constants as magnetite, both 

of the phases may coexist in the iron oxide phase of FMNTs. Furthermore, the additional 

peak at 2θ = 25° is detected, corresponding to (012) diffraction of hematite (α-Fe2O3). 

Thus, a small amount of hematite impurity is present in the iron oxide phase of FMNTs, 

and the Scherrer equation using the (311) peak of FMNTs predicts that the average 

crystallite size of iron oxide is approximately to be 10.6 nm. 

To further confirm structural features of FMNT, SAD was utilized, and the image 

of FMNT is illustrated in Figure 4.2.3. The presence of amorphous halos with the 

d-spacing values of 4.85, 2.96, 2.53, 2.10, 1.72, 1.61, 1.48, and1.08 Å is observed with 

correspond to magnetite (Fe3O4) and maghemite (γ-Fe2O3) d-spacings that exhibit 4.85, 

2.95, 2.52, 2.09, 1.70, 1.61, 1.58, 1.09 Å values.
16

 To further elucidate localized structural 

details, phase analysis of FMNTs using HRTEM and Mossbauer spectroscopy were 

conducted. Figure 4.2.4, A, B, and C illustrate HRTEM images of the surface and walls 

of FMNTs as well as a schematic diagram of the FMNT morphology, respectively. As 

seen in TEM images of the FMNT surface in Figure 4.2.4, A, the surface layer consists of 

a number of small single crystals that exhibit different orientations. The enlarged images 
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A' and A'' show that the lattice spacing of 2.09 and 4.85 Å exist, and the insert images a' 

and b' show diffraction patterns of A' and A''. These results show that the image a' gives 

the diffraction patterns of magnetite or maghemite with the following reflections: 400 

lattice spacing of 2.09 Å and 311 with 2.53 Å, whereas Image a'' represents the 111 lattice 

spacing of 4.85 Å, 220 of 2.95 Å, and 511 of 1.61 Å. Thus, the lattice analysis provides 

further evidence for the existence of magnetite or maghemite phases and the size of 

magnetite or maghemite crystalline phase as seen in Figure 4.2.4, A, is estimated to be 

approximately 10 nm. These results are in good agreement with the 10.6 nm values 

obtained from XRD data.  

Further analysis of the data shown in Figure 4.2.4, B and B', illustrate that the 

darker layers represent iron oxide crystals, whereas lighter layers are carbon sheets 

resulting from crosslinking of PL bilayers after annealing. Iron oxide is deposited onto the 

external and internal surfaces of the nanotube and the interlayers between two carbon 

layers result from C≡C crosslinking of hydrophobic tails of PLs. Enlarged TEM image B' 

illustrates the presence of multi-layered carbon layers (arrows), which is schematically 

depicted in Figure 4.2.4, C and C'. The cross-section of the wall of the FMNT is 

composed of the carbon multilayers separated by iron oxide crystals. The carbon layered 

structure of FMNT, however, is different from multi-walled carbon nanotubes (MWNT). 

Typically, carbon nanotubes have an inner diameter of 10 nm and an interlayer distance 

of 3.3 Å. In contrast, the thickness of FMNT carbon layers is about 5 nm with a 3 nm 

interlayer distance, which results from PL spacing of the initial template which is 

reflected in the formation of amorphous carbon layer after annealing of PL bilayers  

In an effort to determine the elemental composition of FMNT as a function of 
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distance from the FMNT wall, Energy dispersive X-ray spectroscopy (EDS) analysis was 

performed. The results are illustrated in Figure 4.2.5, where Image A shows TEM images 

of a FMNT and Image B show that the height contrast image of the selected area in A. As 

seen in B, two brighter layers result from magnetite, whereas the darker layers are due to 

the carbon phase. To determine spatial distribution of each element, the composition 

distribution was measured along the x-y direction and the results are shown in Figure 

4.2.5, C. As seen, Fe and O dominate the content of the wall, and lesser quantities of C 

and S elements are detected. Also, the greater intensity of Fe and O appear at 15 and 45 

nm which corresponds to the positions of the two magnetite layers (brighter areas) in the 

TEM Image B. Small contents of C and S show that, in addition of the magnetite phase, S 

is also present in the iron oxide lattice is detected, which is impurities in the iron oxide 

phase. 

The presence of iron oxide phases provides an opportunity for utilizing 

Mössbauer spectroscopy as a function of temperatures. The results are shown in Figure 

4.2.6, Traces A-G. As seen in Trace A collected at 295K, the spectrum exhibits two sextets 

(a and b) and two doublets (c and d). The two sextets of a and b exhibit characteristics of 

spinel Fe3O4.
17

 Thus, the presence of γ-Fe2O3 can be excluded resulting from its single 

Fe
3+

 sextet and the detailed crystalline structure of Fe3O4 is depicted in Figure 4.2.7, A 

and B depicting the crystal Fe3O4 unit cell and its polyhedral network. As seen, Fe3O4 

exhibits cubic spinel lattice, where the tetrahedral sites (A) are completely occupied by 

Fe
3+

, where as octahedral sites (B) are filled by equal amounts of Fe
3+

 and Fe
2+

, which 

are usually described as an average oxidation state of Fe
2.5+ 

resulting from fast electron 

exchange between the Fe
2+

 and Fe
3+

. As seen from the Mössbauer spectrum analysis 
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shown in Figure 4.2.6, A, the spectrum a with the isomer shift of 0.167 mm/s indicates 

the presence of tetrahedral Fe
3+

, whereas the spectrum b with the isomer shift of 0.502 

mm/s corresponds to the octahedral Fe
2.5+

.
 
The magnetic hyperfine filed values (Hhf) of 

tetrahedral a and octahedral b sites are 482 kOe and 450 kOe, respectively. In addition, as 

seen in the doublet spectra c and d, the doublet c with isomer shift of 1.059 mm/s 

corresponds to a paramagnetic Fe
2+

 phase, while the doublet d with isomer shift of 0.271 

mm/s results from a paramagnetic Fe
3+

 phase. The presence of paramagnetic iron phase is 

attributed to the incomplete crystallization of Fe3O4. Upon integration of the area for each 

component, the percentage of Fe
2+

 and Fe
3+

 in Fe3O4, paramagnetic Fe
2+

, and 

paramagnetic Fe
3+

 phase are 36.48, 40.41, and 23.11%, respectively. Traces B, C, and D 

of Figure 4.2.6 collected at 240, 180, 130 K exhibit similar spectral features as those 

observed in Trace A, indicating no structural changes within this temperature range. 

However, at 77, 40, and 4.2 K, the Fe
3+

 and Fe
2.5+

 sextets exhibit boarder line widths 

illustrated in Traces E, F and G. As seen, the most significant changes are shown in Trace 

G at 4.2 K illustrating that the isomer shift values for tetrahedral Fe
3+

 of 0.360 mm/s and 

for octahedral Fe
2.5+

 is 0.604 mm/s. Furthermore, intensities of the two paramagnetic 

peaks decrease and the isomer shift values for paramagnetic Fe
3+

 and Fe
2+

 are 0.432 and 

0.863 mm/s, respectively. Significant changes of paramagnetic phases result from the 

phase changes or electron mobility decreases at low temperatures, and these data show 

that FMNTs consist of Fe3O4 crystals as well as paramagnetic Fe
2+

 and Fe
3+

, where Fe3O4 

crystal structures are illustrated in Figure 4.2.7 depicting the coexistence of tetrahedral 

Fe
3+

 and octahedral Fe
2.5+

 sites, whereas the paramagnetic phase results from the 

uncompleted crystallization of iron oxide.  
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Raman spectra were also utilized to analyze the chemical composition of FMNTs. 

Figure 4.2.8, A and B, Traces a, b, c, and d, show Raman spectra in the 900-200 and 

2000-1000 cm
-1

 regions collected from FMNT, FMNT after acid reactions leading to the 

removal of the iron oxide layers, PL residues after annealing, and Fe3O4 control, 

respectively. As seen in Figure 4.2.8, A, Trace a, recorded from FMNTs, characteristic 

bands of magnetite are detected at 670 and 318 cm
-1

, and the bands at 670 and 318 cm
-1

 

due to magnetite are not present in Traces b and c. However, the presence of the bands at 

878, 770, 673, 602, 622, 435, and 381 cm
-1

 in Traces a, b and c are detected and are 

attributed to the carbon layers resulting from the degradation of PL. It should be pointed 

out that the carbon layers of FMNT in Trace a are identical to the carbon layers of FMNT 

after acid reactions (Trace b) and PL residues after annealing (Trace c), but due to the low 

concentration levels, the Fe3O4 bands at 538 and 462 cm
-1 

are not detected in FMNTs 

(Trace a). For reference, Trace d illustrates Raman spectrum of standard Fe3O4 which 

shows bands at 670, 538, 462, and 318 cm
-1

. In addition, as seen in the 2000-1000 cm
-1

 

region (Figure 4.2.8, B) of FMNTs (Trace a), two bands at 1580 and 1330 cm
-1

 are 

observed which are characteristics of carbon nanotubes with the tangential G-band 

resulting from the graphite-like in plane modes and the disorder-induced D-band of 

carbon nanotubes, respectively.
18

 Similar G- and D-bands are detected for Traces c and d 

which are due to the presence of identical carbon layers in FMNTs. Thus, Raman 

measurements support previous conclusions that FMNTs consist of magnetite and carbon 

phases. 

In view of above analysis, FMNTs are concentric magnetite/carbon/magnetite 

nanotubes, with a carbon layer sandwiched between two magnetite layers as well as 
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magnetite inside of the carbon interlayer. These unique structural features offer a number 

of promising properties for FMNTs. One of the examples is shown in Figure 4.2.9, A, 

which shows a setup for conductivity measurements FIB, where FMNT is deposited on 

the oxidized wafer and two platinum pads are fixed at the both ends of the nanotube. 

Using this setup, electrical conductivity of the nanotube was measured when the 

electrode tips were in contact with the platinum pads. Figure 4.2.9, B and B' illustrate the 

FIB image and current-voltage (I-V) characteristics of a FMNT. As seen in Figure 4.2.9, 

B, conductivity measurements (current (I) vs. voltage (V)) were performed on a 12 µm 

long FMNT and Figure 4.2.9, B' illustrates that the resistance (R) and resistivity (ρ) of the 

FMNT are 8.3 MΩ and 3.3 x 10
-2 

Ω·m, respectively. In contrast, the results for nanotube 

prepared from the FMNT after removal of magnetite layers using acid etching process are 

shown in Figure 4.2.9, C and C'. Upon removing the magnetite phase, only carbon phase 

is present, and as seen in the FIB image of Figure 4.2.9, C, the nanotube remains stable 

and the results of conductivity measurements illustrated in Figure 4.2.9, C' show that the 

R and ρ values are 75 kΩ and 5.06 x 10
-4

 Ω·m, respectively. Thus, the resistivity 

decreases by two orders of magnitude For reference purposes, Figure 4.2.10, A shows a 

comparison of electrical resistivity and conductivity of FMNT (A), FMNT after removal 

of magnetite outer and inter layers (B), standard magnetite (C), and multi-walled carbon 

nanotube (MWNT) (D). As seen the ρ value of 3.2 x 10
-4

 Ω·m
19

 for magnetite is two 

orders of magnitude larger than that of FMNT, thus showing that the resistivity of FMNT 

is enhanced compared with magnetite particles. In contrast, the reported resistivity of a 

multi-walled carbon nanotube (D) is about 1.2 x 10
-6

 Ω·m.
20

 To illustrate the significance 

of these data it is also of interest to compare magnetic properties of these materials which 
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are illustrated in Figure 4.2.10, B. As shown, saturation magnetization (Mr) values of 

FMNT (A), FMNT after removal of magnetite outer and inter layers (B), standard 

magnetite (C), and MWNT (D) are 79, 0.52, 78, and 0.4 emu/g, respectively. FMNT (A) 

and magnetite (C) are ferromagnetic and show similar magnetization values. However, 

FMNT after removal of magnetite outer and inter layers (B) revealed a paramagnetic 

behavior, thus no saturation magnetization was obtained. For comparison, the 

magnetization values at the magnetic field of 10k Oe was labeled. Due to the presence of 

small quantities of catalyst impurities, MWNT shows weak ferromagnetic characteristics 

with a Mr value of 0.4 emu/g. Thus, strong ferromagnetic properties of FMNT were 

obtained similar as magnetite and FMNT after removal of magnetite exhibit paramagnetic 

properties.  

Conclusions 

FMNTs are concentric magnetite/carbon/magnetite nanotubes where the carbon 

layer is sandwiched between two magnetite layers as well as magnetite is present inside 

the carbon interlayer. Also, FMNTs contain magnetite single crystals of 10.6 nm in size 

as well as paramagnetic iron oxide impurity. Resulting from its unique structural feature, 

FMNT was demonstrated to make a nano-conductor device. The resistivity of FMNTs 

and FMNTs after acid treatment were measured as 3.3 x 10
-2 

and 5.06 x 10
-4

 Ω·m, 

respectively, and suggest that the FMNTs can be utilized to make conductive devices and 

their conductivity can be altered by changing their phase composition.  
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Figure 4.2.1. Schematic diagram of FMNT formation: (A) Step 1 ─ self-assembly of 

DC8,9PC into nanotubes; (B) Step 2 ─ addition of (NH4)2Fe(SO4)2; (C) Step 3 ─ reactions 

of H2O2; (D) Step 4 ─ thermal exposure to 550 °C for 0.5 hour. TEM images of 

nanotubes in each step are show in A'-D'. 
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Figure 4.2.2. X-ray diffraction (XRD) of FMNTs (A) and Fe3O4 (B). 
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Figure 4.2.3. Selected area electron diffraction (SAD) of FMNTs. 
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Figure 4.2.4. (A) High-resolution TEM image of FMNT surface and images (A') and (A'') 

demonstrate enlarged images of selected area where insert images a' and a'' show their 

diffraction patterns. a' reveals a diffraction pattern in 400 lattice spacing of 2.09 Å and 
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311 lattice spacing of 2.53 Å, while a'' represents the 111 lattice spacing of 4.85 Å, 220 

lattice spacing of 2.95 Å, and 511 lattice spacing of 1.61 Å; (B) and (B') TEM images of 

FMNT wall structures; (C) and (C') schematic diagram of structures of FMNT, which 

consist of concentric multilayered carbon sheet and iron oxide layers. Gray squares 

represent iron oxide single crystals and black rings represent carbon layers. 
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Figure 4.2.5. (A) TEM image of FMNT; (B) height contrast TEM image of selected area 

on FMNT; (C) energy dispersive X-ray spectroscopy (EDS) of element distribution along 

the arrow as draw in B, where trace a, b, c and d represent Fe, C, O, and S elements, 

respectively.
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Figure 4.2.6. Mössbauer spectra of FMNTs recorded at various temperatures: (A) 295 K; 

(B) 240 K; (C) 180 K; (D) 130 K; (E) 77 K; (F) 40 K; (G) 4.2 K. 
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Figure 4.2.7. (A) Crystal lattice structure of magnetite: red-oxygen, blue-tetrahedral Fe
3+,

 

and green-octahedral Fe
2+

/Fe
3+

; (B) Polyhedral network of magnetite. 
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Figure 4.2.8. Raman spectra in the 900-200 cm
-1

 region (A) and 2000-1000 cm
-1

 region 

(B): (a) FMNT; (b) FMNT after acid reactions; (c) PL powder annealed at 550 °C; (d) 

standard Fe3O4. 



 115 

 

A

B

C

B'

C'

 

Figure 4.2.9. (A) Schematic diagram of measuring conductivity of a nanotube; (B) 

focused ion beam (FIB) image of FMNT; (B') Current-voltage (I-V) characteristics of 

FMNT; (C) FIB image of FMNT after acid treatment; (C') I-V characteristics of FMNT 

after acid treatment. 
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Figure 4.2.10. A. Electrical resistivity and conductivity comparisons: (A) FMNT; (B) 

FMNT after HCl reactions; (C) standard magnetite; (D) multi-walled carbon nanotube 

(MWNT). B. Saturation magnetization (Mr) comparisons: (A) FMNT; (B) FMNT after 

HCl reactions (paramagnetic behaviors and the magnetization value recorded at the 

magnetic field of 10k Oe); (C) standard magnetite; (D) multi-walled carbon nanotube 

(MWNT). 
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CHAPTER V 

MORPHOLOGICAL CONTROL OF FERROMAGNETIC NANOTUBES: WALL 

THICKNESS, DIAMETER, AND LENGTH 

Introduction 

Among synthetic routes to produce nanotubes the most common approach is to 

utilize tube-forming templates. Using this concept anodized aluminum oxide (AAO) 

templates were utilized to prepare magnetite (Fe3O4)/silica nanotubes,
1,2

 

cobalt/polystyrene nanotubes,
3
 Ni and Co nanotubes,

4
 FePt and Fe3O4 nanotubes,

5,6
 

NiFe2O4 nanocrystalline nanotubes,
7
 and magnetic carboxylated polypyrrole nanotubes 

containing Pd catalyst.
8
 Along the same lines, Fe3O4/polymer

9
 and Fe3O4/polypeptide 

nanotubes
10

 were prepared using layer-by-layer (LbL) assembly in the porous 

polycarbonate templates. Other approaches involved the template-based methods using 

pulsed laser deposition process of Fe3O4 onto MgO nanowires,
11

 mineralization of 

tobacco mosaic virus (TMV) template,
12

 bacterial Fe3O4 nanocrystal coated onto peptide 

nanotubes,
13

 and α-Fe2O3 precursors to prepare Fe3O4 and γ-Fe2O3 nanotubes by 

hydrothermal methods.
14

 Although on one hand the drawback of using templates is that 

the final product dimensions are typically dictated by the size and shape of the template, 

on the other hand, if a nanotube diameter, length, and the wall thickness can be controlled, 

this approach offers fairly attractive alternatives compared to other approaches. Using 

this approach, functionalizing outer or inner template surfaces has led to Fe3O4/silica
1
, 

Fe3O4/polypeptide
10

 and superparamagnetic Fe3O4/polymer
9
  nanotubes. 

Recent studies revealed that biologically active phospholipids (PL) nanotubes
15

 

can effectively serve as precursors to produce ferromagnetic Fe3O4/carbon/Fe3O4  
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nanotubes (FMNTs),
16

 where using simple synthetic approaches a carbon layer sheet was 

sandwiched between the magnetite layers, thus resulting in concentric nanotubes. Since 

geometry and size considerations are important factors in achieving desirable magnetic 

properties, the ability to control the wall thickness, diameter, and the length are critical. 

Because equilibrium magnetization states identified as a uniform state with magnetic 

moments parallel to the tube axis and a flux-closure vortex state, the overall 

magnetization depends on the wall thickness and the aspect ratio.
17-20

 Typically, the 

parallel orientation of magnetic moments with respect to the tube axis exists in the middle 

part of a nanotube, whereas the ends exhibit a vortex state.
21,22

 In the context of these 

considerations a diameter is also significant, and as shown, preferential parallel magnetic 

orientation in composite cobalt/polystyrene nanotubes with small diameters and isotropic 

magnetic features for larger diameters was observed.
3
 In view of these considerations, 

these studies describe a new synthetic platform allowing the control of wall thickness, 

length, and diameter of Fe3O4/carbon/Fe3O4 nanotubes. 

Experimental  

1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) was 

purchased from Avanti Polar Lipids, Inc. Ammonium iron (II) sulfate hexhydrate 

((NH4)2Fe(SO4)2·6H2O), hydrogen peroxide (H2O2) (30 wt. % in water), and cobalt 

napthenate 6%were purchased from Aldrich Chemical Co. Extruder and polycarbonate 

membranes were obtained from Avanti Polar Lipids. Derakane polyester resin and methyl 

ethyl ketone peroxide (MEKP) were purchased from Ashland. 

The procedures for preparation of FMNTs were followed the published 

previously.
16

   DC8,9PC nanotubes were obtained using the literature method.
15,23

 10 mL 

of an aqueous dispersion with 1.1 mol/L DC8,9PC nanotubes was purged with N2 for 0.5 
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hr, followed by the addition of 0.5 mL of 0.4 mol/L ammonium iron (II) sulfate 

hexhydrate aqueous solution, which served as a reducing agent. After 0.5 hr, the final 

step involved the addition of 0.2 mmol of hydrogen peroxide, which acted as an oxidizing 

agent to react with the reducing agent. The reaction continued for 1 hour after which time 

the product was collected by centrifuging and dialysis to remove excess ions. Finally, 

nanotubes were freeze dried and annealed at 550 °C for 0.5 hour.  

In order to vary the thicknesses of the carbon layers, PL concentration and solvent 

environment were changed when preparing DC8,9PC nanotube templates. DC8,9PC 

nanotubes were obtained in 2 and 5 mg/mL PL in 85% methanol as well as 2 mg/mL PL 

in 70% ethanol solutions, respectively. The PL/Fe
2+

/H2O2 molar ratios were altered from 

1:20:20, 1:40:40, 1:60:60, to 1:80:80, respectively. The diameter changes of PL 

nanotubes were obtained by incorporating saturated phospholipid spacers 1,2-

dinonanoyl-sn-glycero-3-phosphocholine (DC7PC) and 1,2-diundecanoyl-sn-glycero-3-

phosphocholine (DC9PC) into DC8,9PC templates, which nanotube preparations were 

followed the literature procedures.
24

 FMNTs were dispersed in water, followed by 

extruding nanotube/water solution using two 1 mL syringes through a 3 µm porous 

polycarbonate membrane without and within magnetic field paralleling to the membrane, 

respectively. FMNT/polyester nanocomposites were prepared by mixing FMNTs (4 % 

w/w) with Derakane polyester resin, followed by adding MEKP and cobalt napthenate 

6%. The composite were then deposited onto a mold and allowed to be cured in the 

presence of magnetic field along the mold long axis. After fully curing, the second layer 

of the composite was applied above the cured layer, where the magnetic filed direction 

was 90˚ with respect to the mold long axis. 
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Morphologies of nanotubes were obtained using a Jeol JEM-2100 transmission 

electron microscope (TEM) operated at 200 kV, and a FEI Quanta-200 scanning electron 

microscope (SEM). Magnetic hysteresis measurements were performed using a 

MicroMag Model 2900 alternating gradient magnetometer (AGM, Princeton 

Measurement Corp.) at room temperature. 

Results and Discussion 

Using the previously established protocol
16

 we prepared templates of 1,2-

bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) phospholipid 

nanotubes that were further utilized to produce FMNTs. As depicted in Figure 5.1, 

FMNTs are concentric magnetite nanotubes separated by a carbon sheet concentric layer 

with the uniform diameter, wall thicknesses, and length. In an effort to vary the thickness 

of the carbon layer, magnetic nanotubes were prepared using DC8,9PC nanotube 

templates by changing the PL concentration and solvent enviroments.
25

 Figure 5.2, A, B, 

and C illustrate TEM images of magnetic nanotubes obtained from DC8,9PC nanotubes in 

2 and 5 mg/mL PL in 85% methanol as well as 2 mg/mL PL in 70% ethanol solutions, 

respectively. As seen in the enlarged images A', B' and C', nanotubes exhibit three 

concentric layers, where the darker layers are due to magnetite phase with a higher 

electron density and carbon layers (lighter). The thickness of the carbon layer increases 

from 6 to 12, to 50 nm, respectively, as the PL concentration changes from 2 to 5 mg/mL 

in methanol solutions and 2mg/ml in ethanol solutions.  The ability to control geometry 

of the nanotubes is attributed to self-assembly of the PL template, which results from 

single-bilayered, double-bilayered, to multi-bilayered PL nanotubes and is achieved by 

changing PL concentration levels and solvent polarity, thus altering PL solubility. 
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Since PL is an amphiphatic molecule containing the hydrophilic phosphocholine 

head group and two hydrophobic hydrocarbon chains. The formation of PL nanotubes is 

attributed to the alcohol/water ratio which controls suitable solubility of PL. Also, the 

polarity of the alcohol plays a significant role. Considering formation of single and 

double vs multi-layered PL nanotube structures, it is apparent that the choice of solvent 

significantly affects PL structural features. For example, upon sonication of PL in H2O, 

micelle or liposome solutions form. Addition of ethanol will change the solubility 

equilibrium such that the single or double-bilayered PL nanotubes can be formed. But no 

multi-bilayered nanotube formation exists due to strong affinity of methanol that prevents 

hydrophilic-hydrophilic interactions between PL bilayers. This is reflected in the 

solubility parameters due to hydrogen bonding interaction (δH) value of 11.0 (cal/cm
3
)
1/2

 

for methanol,
26

 which exhibits strong affinity to form H-bonding interactions with the PL 

head groups, thus, allowing formation of single bilayers. As the PL concentration 

increases, two bilayers have an opportunity to approach each other, thus facilitating the 

formation of double bilayered structures. In contrast, ethanol with the δH value of 4.3 

(cal/cm
3
)
1/2

 
26

 will promote solubility of hydrophobic ends. Thus, the PL δ value of 18.0 

(cal/cm
3
)
1/2

 with respect to methanol and ethanol δ exhibits favorable interactions leading 

to  the formation of single and double layers for methanol and multi-layers for ethanol. 

To schematically illustrate this process, Figure 5.3, A, B and C depicts the nanotube 

formation of 2 and 5 mg/ml PL in methanol solutions, and 2 mg/mL PL in ethanol 

solution, respectively. While detailed interactions between PL and alcohols are shown in 

Figure 5.3, A', B', and C', the H-bonding responsible for single, double, and multi-layers 

are illustrated in Figure 5.3, A'' and C''. As seen in Figure 5.3, A' and A'', the stronger H-
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bonding interactions between methanol and PLs provides denser packing of methanol 

molecules around PL bilayers, thus allowing each bilayer to be apart to form a stable 

single-bilayered structure. At higher PL concentrations, as shown in Figure 5.3, B', 

bilayers pack closer, thus leading to double-bilayered structures. In contrast, PL bilayers 

in ethanol/water form multi-bilayers due to significantly weaker interactions between 

ethanol and PL, as is depicted in Figure 5.3, C' and C''.  

The magnetite phases of inner and outer layer thicknesses of magnetic nanotubes 

can also be altered by varying concentration levels of the reactive species. Figure 5.4, 

Images A-D, illustrate morphologies of nanotubes produced by changing the 

PL/Fe
2+

/H2O2 molar ratios from 1:20:20, 1:40:40, 1:60:60, to 1:80:80 after the redox 

reactions, respectively. Figure 5.4, Images A'-D', demonstrate the respective nanotubes 

annealed at 550 °C. As seen in Images A-D, the increasing concentrations of the reactive 

species result in the greater amorphous iron oxide layer thickness which changes from 12 

to 45 nm. The variable thickness results from the ionic interactions between the 

phosphate groups of PL and precursors.  

The kinetic studies indicated that the formation of DC8,9PC nanotubes occurs 

through a reversible first-order phase transition from a disordered chain-melted Lα phase 

(multilamellar vesicles) to the ordered chain-frozen Lβ' phase, where the cooling rate 

determines the length of the nanotube.
27

 Upon cooling through the phase transition 

temperature, bilayer ribbons form an intermediate, which spontaneously twist into helixes 

due to the chirality, followed by continuous growth to form nanotubes. The slower 

cooling rate allows ribbons to have greater growth time to form longer nanotubes. 

However, as the brittle PL nanotubes are easily damaged upon agitation during the 
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synthesis of FMNT, the control of their length by varying the cooling rate is often hard to 

achieve. In view of these considerations, we have chosen an alternative solution in which 

the nanotubes were extruded through a porous polycarbonate membrane, thus facilitating 

the length alternation by mechanical force. Figure 5.5, A-A' and B-B', illustrate SEM 

images of FMNT extruded through a 3 µm membrane without and with the presence of 

magnetic field parallel to the membrane, respectively. As seen in Figure 5.5, A and A', 

FMNTs after passing through a 3 µm membrane exhibit average length of 10 µm. In 

contrast, upon applying parallel magnetic field (Figure 5.5, B and B'), a uniform length of 

3 µm is obtained. Since the long axis of FMNTs are aligned parallel to the pores of the 

membrane along the magnetic field direction, when FMNTs are forced to pass through 

the 3 µm pores, the lengths of nanotubes are split into a 3 µm size same as the membrane 

pore size. Thus, the combination of extrusion through a porous membrane and the 

magnetic field provides the ability to control the length of FMNTs and various lengths 

can be further obtained by changing the pore size of membranes.  

It is well established that the formation of DC8,9PC tubular structures is attributed 

to the chirality of the PL bilayers which leads to unparallel packing, and consequently the 

tilting of the molecules with regard to their neigbours.
15

 As a result of the chirality, 

diameter changes of PL nanotubes can be obtained when altering the magnitude of the 

chirality by incorporating saturated phospholipid spacers into DC8,9PC templates.
24

 

Figure 5.6, A, B and C reveal nanotube morphologies prepared from 1,2-dinonanoyl-sn-

glycero-3-phosphocholine (DC7PC)/DC8,9PC, 1,2-diundecanoyl-sn-glycero-3-

phosphocholine (DC9PC)/DC8,9PC, and DC8,9PC phospholipids and show that the 

nanotube diameter varies from 50, 70 to 500 nm, respectively.  
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As indicated earlier, magnetite layer thickness changes have a significant effect 

on nanotube magnetization properties. Figure 5.7, Traces A-D, manifest the hysteresis 

loops of nanotubes with various magnetite layer thicknesses ranging from 12-45 nm, as 

shown in Figure 5.4, A'-D'. The significant increase of the saturation magnetizations (Ms) 

for Traces A, B, C to D are detected, with the Ms values ranging from 40, 43, 63, and 79 

emu/g. This is the result of the increased magnetite amount with respect to the carbon 

phase. In addition, the remanent magnetization (Mr) shown in Traces B, C and D with the 

Mr values at about 8 emu/g slightly increases with respect to Trace A with a Mr value at 2 

emu/g. The coercivity (Hc) illustrated in Trace B, C and D with the Hc values at about 

145 Oe also slightly increases with regard to Trace A with a Hc value of 27 Oe. 

Two equilibrium magnetization states for magnetic nanotubes have been 

identified as a uniform state with all the magnetic moments parallel to the tube axis and a 

flux-closure vortex state, where the geometry of nanotubes has a significant influence.
17-

20
 The geometry parameter β is equal to the ratio of internal to external radius of a 

nanotube and a vortex state were found to be maximized with the β value of 0.546, while 

the vortex state decreases away from this value.
17

 The average β values for the external 

and internal magnetite layer of FMNT are 0.9 and 0.93, respectively. Thus, a parallel 

magnetization state is preferred for FMNTs, where β values are far away from maximum 

value for vortex state. Furthermore, the length and the aspect ratio of nanotube were also 

found to affect their evolution in external magnetic field. Usov et al revealed that for the 

nanotubes with the aspect ratio < 20, the vortex state dominates at the ends of tubes and 

propagates toward the middle of the nanotube, and for nanotubes with the aspect ratio of 

70-100, the propagation of head-to-head domain wall along the nanotube length was 
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found during the magnetization reversal process.
20

 The diameter of FMNT is 

approximately 500 nm and due to controllable lengths ranging from 5 to 40 µm, the 

aspect ratio of FMNTs varies from 10-80.  Based on the theory, FMNTs with the aspect 

ratio ranging from 10-20 may exhibit a dominant vortex state at the end, and FMNTs 

with the larger aspect ratio from 70-80 may show a parallel magnetization state, while 

both vortex and parallel states could be found for FMNTs with the medium aspect ratio 

from 20-70. 

Due to ferromagnetic properties, FMNT can be aligned directionally, which 

provides opportunities for creating composites with desirable magnetic properties. 

FMNT/polyester nanocomposites were prepared and the alternating alignment of FMNT 

in the matrix were obtained by a two-step process, where the magnetic field direction 

were 0˚ and 90˚ with respect to the film long axis in two steps, respectively. While Figure 

5.8, A, demonstrates a schematic diagram of alternating alignments of two layers, Figure 

5.8, B illustrates SEM images of the cross-section of resulting films revealing a two-

layered distinguished morphologies with detailed morphologies shown in Figure 5.8, B1 

and B2 . As seen in Image B1, FMNTs are stable and well dispersed in the polymer 

matrix and all nanotubes are parallel to the specimen long axis which is parallel to the 

magnetic field direction. In contrast, as seen in Image B2, no nanotubes are observed, but 

as anticipated a number of holes resulting from the open ends of FMNTs are observed, 

which is due to the FMNT alignment at 90˚ direction with respect to the magnetic field. 

For reference purpose, Figure 5.8, C, shows a SEM image of a cross-section of 

FMNT/polyester composite in the absence of magnetic field, where random orientation of 

FMNTs are observed. These data demonstrated that using alternating magnetic field 
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direction a two-layered films containing alternating alignment of FMNTs were prepared 

and using such approach a number of desirable alignments of FMNTs can be obtained by 

simply varying the magnetic field directions.  

Conclusions 

These studies illustrated a new approach to achieve controllable diameter, wall 

thickness, and length of FMNTs. Changing concentration and solvent environments, the 

thicknesses of the carbon layers were altered from 6, 10 to 50 nm, respectively. Also, 

changing synthetic conditions the thicknesses of magnetite layers ranging from 12 to 45 

nm was obtained. The lengths of FMNTs were controlled by extrusion through a porous 

polycarbonate membrane under a parallel magnetic field. The diameter changes of 

nanotubes were obtained by incorporating saturated phospholipid spacers such as DC7PC 

and DC9PC into PL templates, where diameters of nanotubes were 50 and 70 nm, 

respectively.  As well, their magnetic properties can be varied by changing the thickness 

of magnetite layers and geometries. The saturation magnetizations are found with values 

ranging from 40, 43, 63, and 79 emu/g by increasing magnetite layer thickness from 12 to 

45 nm. The geometry parameter β which is the ratio of internal to external radius of a 

nanotube for the external and internal magnetite layer of FMNT are around 0.9 and 0.93, 

respectively, and a parallel magnetization state is preferred for FMNTs. In view of the 

lengths and aspect ratios of FMNTs, which were found to affect their evolution in 

external magnetic field, the aspect ratios of FMNTs varied ranging from 10-80, and a 

parallel magnetization or a vortex state were obtained as a result of aspect ratio changes. 

In addition, by alternating magnetic field direction, the preparation of FMNTs/polyester 

nanocomposites containing alternating alignment of FMNTs was demonstrated.  
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Magnetite

Carbon Layer
 

Figure 5.1. Schematic diagram of FMNT, which is a concentric magnetite nanotube 

separated by a carbon sheet concentric layer. 
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 Figure 5.2. TEM images of nanotubes prepared from: (A) 2 mg/mL PL in 85/15 

methanol/water; (B) 5 mg/mL PL in 85/15 methanol/water; (C) 2 mg/mL PL in 70/30 

ethanol/water. Each enlarged image is shown in A', B' and C'. Respective thickness of 

carbon layers are: 6 nm (A), 10 nm (B), and 50 nm (C). 
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Figure 5.3. Schematic diagram of nanotubes prepared from (A) 2 mg/mL PL in 

methanol/water; (B) 5 mg/mL PL in methanol/water; (C) 2 mg/mL PL in ethanol/water. 

Images A', B' and C' illustrate interactions between PL and solvents, respectively. A'' and 

C'' show the H-bonding interactions between PL and methanol as well as PL and ethanol. 
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Figure 5.4. TEM images of nanotubes prepared with various PL: Fe
2+

: H2O2 molar ratios 

of (A) 1:20:20; (B) 1:40:40; (C) 1:60:60; and (D) 1:80:80; Images A', B', C', and D' 

illustrate corresponding nanotubes after further annealing at 550 °C.  
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A

B B'

A'

Figure 5.5. SEM images of FMNTs extruded through a 3 µm polycarbonate membrane 

without magnetic field (A) and (A'), and within magnetic field paralleling to the 

membrane (B) and (B'). 
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Figure 5.6. TEM images of nanotubes prepared from (A) DC7PC/DC8,9PC,  (B) DC9PC/ 

DC8,9PC, and (C) DC8,9PC. 
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Figure 5.7. Magnetic hysteresis loops of FMNTs prepared with various PL: Fe
2+

: H2O2 

molar ratios of (A) 1:20:20; (B) 1:40:40; (C) 1:60:60; and (D) 1:80:80, which have 

increasing thickness of magnetite layers from 12 to 45 nm. 
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x

Magnetic Field

 

Figure 5.8. A. Schematic diagram of FMNT alternating alignment in polyester in the 

presence of magnetic field; B. SEM images of FMNT alternating alignment in polyester 

and enlarged images shown in B1 and B2; C. SEM image of FMNT in polyester without 

the presence of magnetic field.  
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CHAPTER VI 

FORMATION OF ANTIBACTERIAL SURFACES ON CARBON BASED 

NANOMATERIALS: THE EFFECT OF ANTIBIOTICS ON CYTOTOXICITY  

Introduction 

Recent studies examined carbon nanotubes and C60 interactions with living cells 

or other biosystems, and revealed that this is a complex process. It appears that 

cytotoxicity of carbon nanotubes and C60 is more complex than anticipated and size,
1,2

 

shape,
3,4

 and surface functionalization
5,6

 have been attributed to their non-conclusive 

toxic behavior.
7-10

 Aside from cytotoxicity, even test methods
11,12

 raised some questions, 

but most studies conducted on nanotubes, and to some extend on C60, agreed that these 

materials exhibit antimicrobial properties.
2,10,13

 For example, highly purified single-

walled and multi-walled carbon nanotubes were found to show antimicrobial activity 

against Escherichia coli (E. coli) and their cytotoxicity resulted from a direct contact with 

the bacterial cell membranes, causing the severe cell membrane damage.
2,10

 

Regardless of the mechanisms of cytotoxicity and antimicrobial activity, size and 

shape of nano-objects may play an important role which is often difficult or even 

impossible to control. One approach to minimize geometrical considerations is to 

chemically modify surfaces of nano-objects and allow surface chemistry overcome 

cytotoxicity and antimicrobial properties. One of the useful surface modifications are 

microwave plasma reactions, which are fast and maintain the bulk properties as well as 

require no volatile solvents. Furthermore, the plasma reactions in the presence of suitable 

monomers such as maleic anhydride are able to produce acid groups which highly 

desirable for further reactions. Using this approach, poly(dimethylsiloxane) (PDMS),
14,15
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 poly(vinylidene fluoride) (PVDF)
16

 and poly (tetrafluoroethylene) (PTFE)
17,18

 were 

effectively modified,  this allowing further surface reactions.  Carbon nanotubes have 

been modified using radio-frequency or microwave plasma reactions,
19-24

 but the primary 

purpose of these studies was to enhance dispersibility of multi-wall carbon nanotubes 

(MWNT) and mechanical properties of epoxy composites.
19

  

Due to many potential applications in biomedical technologies and considering 

the fact that the bacterial growth on surfaces of various materials often results in 

detrimental infections, these studies examine the effectiveness of surface reactions of C60, 

MWNT, nano-carbon fibers, and ferromagnetic nanotubes (FMNT)
25

 against microbial 

film formation as well as cytotoxicity. 

Experimental 

MWNT, nano-carbon fiber, C60, maleic anhydride (MA), polyethylene glycol 

(PEG) (MW 200 and 600), and penicillin V (PEN), thionyl chloride (SOCl2),  

triethylamine, 4-(dimethylamino)-pyridine (DMAP) and N,N′-dicyclohexylcarbodiimide 

(DCC) were purchased from Aldrich Chemical Co. FMNTs were prepared from DC8,9PC 

nanotubes, which have been previously reported.
25

 C60 MWCN, nano-carbon fiber, and 

FMNT samples were dispersed in chloroform and spread on a glass side, which was 

allowed to dry overnight.  

The process of surface modification of FMNT is shown in Figure 6.1 and C60, 

MWNT, and nano-carbon fiber followed the same reaction procedure. In step 1, the glass 

slide containing FMNTs and 100 mg of solid maleic anhydride which were separated 8.5 

cm apart were placed into a microwave reactor chamber. Plasma reactions were 

performed using open reactor conditions, as described elsewhere.
14,18

 In a typical 
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experiment, the reactor was evacuated to 150 mTorr, followed by purging it with Ar gas 

in order to obtain a steady-state pressure of 250 mTorr at a flow rate of 2.96 mL/min. 

Then, plasma formation occurred when applying microwave radiation at 600 W of power 

with an output frequency of 2.45 GHz. Under these conditions, the reaction chamber 

pressure increased continuously during the microwave plasma discharge. In an attempt to 

keep plasma environment during longer exposure times, a vacuum was applied 

continuously to maintain pressure conditions during the experiment. After plasma 

reactions, the sample was hydrolyzed in water for 30 min in order to generate carboxylic 

acid groups as well as remove excess and physisorbed MA on the sample as monomeric 

and polymeric forms of MA are soluble in water, and then stored in a desiccator under 

ambient conditions. 

In step 2, in an attempt to facilitate esterification reactions, carboxylic acid groups 

were converted to carboxylic chloride groups in the presence of thionyl chloride under 

reflux conditions at 65 °C for 6 h. Then, the sample was washed using chloroform to 

eliminate excess thionyl chloride. The esterification reactions between the samples and 

PEG containing a 1:1 molar ratio of linear PEG with molecular weight=200 and 600 were 

employed in chloroform at room temperature for 18 h. A small amount (1-2 drops) of 

triethylamine was introduced into the reaction in the beginning of the reaction in order to 

neutralize hydrochloric acid that was produced during the reaction. The sample was 

washed with chloroform to remove excess PEG, followed by using distilled water for 30 

min. 

In an effort to chemically bond PEN onto the samples, an esterification reaction 

using DMAP catalyst and DCC coupling agent were utilized, as shown in step 3.
26

 The K 
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salt of PEN (1.5 mmol) was dissolved in a small amount of water, cooled, and acidified 

with 0.1 M HCl. Then, precipitated PEN was filtered and dried in a vacuum oven at room 

temperature for 1 h.
27

 The specimen and DMAP (0.25 mmol) were placed into a 100 mL 

flask with 20 mL of methylene chloride, followed by addition of PEN during stirring and 

cooling in an ice-water bath. After adding DCC (1.3 mmol), the reaction occurred and the 

mixture was continuously stirred for 4 h. Final samples were washed in methylene 

chloride sequentially for 30 min, dried for 24 h for further analysis. 

Morphologies of nanotubes were analyzed using a Jeol JEM-2100 transmission 

electron microscope (TEM) operated at 200 kV, in which samples were diluted and 

deposited on formvar/carbon coated copper grids. Attenuated total reflectance Fourier 

transform infrared (ATR FT-IR) spectroscopy measurements were performed using a 

Bio-Rad FTS-6000 FT-IR single-beam spectrometer with 4 cm
-1

 resolution. The surfaces 

were analyzed using a 2 mm Ge crystal with a 45° angle maintaining constant contact 

pressure between the crystal and the specimens. All spectra were corrected for spectral 

distortions using software for the Urban-Huang algorithm.
28

 Quantitative ATR FT-IR for 

each sample were performed and detailed regarding volume concentration measurement 

were described elsewhere.
15

 The extinction coefficient for 1728, 1105, 1780 cm
-1

 due to 

COOH, PEG, and PEN, respectively, were previously determined to be 544.32,
16

 

944.68,
29

 778.58 L/mol·cm.
29

 Using double Kramers-Kronig transformation (KKT) and 

previously developed algorithm for quantitative analysis employing ATR FT-IR 

spectroscopy,
28

 volume concentration levels for each step were determined.  

The antimicrobial activities of samples were analyzed. Staphylococcus aureus 

(RN 6390) were allowed to grow overnight in Luria-Bertani (LB) broth, and agar (0.7%) 
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was melted and mixed with LB broth, followed by addition of 50 μL of staphylococcus 

aureus. This culture was spread over agar plates containing specimens, which were 

incubated for 16 h at 37 ˚C.  In order to examine cytotoxicity of specimens, mouse 

embryonic stem cells were grown on cover glasses coated with specimens, which was 

cultured for 3 days and then stained with TB.  

Results and Discussion 

As stated in the Introduction, these studies focus on the modification of nano-

objects to create chemically controlled antimicrobial activity as cytoxtoxicity. The 

general approach is illustrated in Figure 6.1 for a single FMNT, but the sequence of 

reactions 1 through 3 will be the applicable for C60, MWNT, and nano-carbon fiber. As 

illustrated in Figure 6.1, Step 1, COOH were created on the surface using surface 

microwave plasma conditions in the presence of maleic anhydride, followed by surface 

hydrolysis.
14,18

 The advantage of having COOH groups on a surface is that other OH-

containing species can be further reacted. However, it is first desirable to convert COOH 

to COOCl in the presence of SOCl2 (Step 2) in order to facilitate easier reactions with 

hydroxyl groups, followed by the esterification reactions between COOCl and hydroxyl 

groups of PEG with 200 and 600 MW. The final Step 3 involves the esterification 

reactions of PEG-functionalized surfaces with PEN in the presence of DCC catalyst and 

DMAP coupling reagent. In order to increase antimicrobial activity of PEN, 

biocompatible PEG is introduced as a flexible spacer between surface and PEN. Using 

different length PEG facilitates molecular roughness resulting in the increased surface 

area ultimately leading to enhanced activity of PEN molecules against microbial film 

formation.  
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Figure 6.2 illustrates TEM images of C60, MWNTs, nano-carbon fiber and FMNT 

before (A-D) and after (A'-D') the sequence of reactions shown in Figure 6.1. As seen in 

Figure 6.2, A', B', C', D' upon the PEN attachment, morphologies remain stable and 

increased wall thickness is observed. The increased thickness of PEN-MWNT and PEN-

carbon fiber as shown in Figure 6.2, B' and C' are around 2 and 4.2 nm, respectively.   

However, as seen in Figure 6.2, D', the thickness of the layer of PEN-FMNT is not 

uniform and fluctuates between 6.5-9.5nm.  

The same process was utilized to modify C60, MWNTs, and carbon fibers. In 

order to analyze the extent of the surface reactions, ATR-FTIR spectra of C60, MWNTs, 

carbon fibers, and FMNTs were recorded after each step shown in Figure 6.1. The results 

are shown in Figure 6.3, A, B, C and D.  Figure 6.3.A, Traces A and B, illustrate the 

spectra of C60 before and after plasma reactions, respectively. As seen in Trace B, the 

bands at 1781 and 1728 cm
-1

 resulting from anhydride C=O and acid C-O stretching 

vibrations are detected, thus showing that C60 were chemically modified via a C=C bond 

opening of the maleic anhydride ring, followed by its hydrolysis. This is confirmed in 

Figure 6.3.A, Trace C, which illustrates IR spectrum with the bands at 1734 cm
-1

 due to 

C=O ester vibrations resulting from the esterification reaction. In the final step, PEN was 

attached to PEG-functionalized C60, and Trace D illustrates the presence of the bands at 

1648, 1734, and 1780 cm
-1

 resulting from amide, ester, and β-lactam C=O stretching 

vibrations, respectively, thus confirming the formation of PEN-PEG bands. The same 

data were collected on chemically modified MWNT, carbon fiber, and FMNT, which are 

illustrated in Figure 6.3, B, D, and D, and the presence of the same vibrational features 
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signify the attachment of PEN to carbon-based nanomaterials, and retention of the β-

lactam ring remains intact during the reactions. 

ATR FT-IR measurements provide a unique opportunity to quantitatively 

determine the extend of surface coverage, regardless of shape and size of a given object. 

This analysis requires the knowledge of the extinction coefficients of the 1728, 1105, 

1780 cm
-1

 bands due to COOH, PEG, and PEN, respectively, which were previously 

determined to be 544.32,
16

 944.68,
29

 778.58 L/mol·cm.
29

 Using this approach, the volume 

concentration of a given surface species can be quantitatively analyzed by using Beer-

Lamber’s law for ATR FT-IR analysis. Figure 6.4 illustrates COOH, PEG, and PEN 

volume concentration changes for C60, MWNT, carbon fiber, and FMNT. As seen, 

COOH volume concentrations for FMNT after Step 1 in Figure 6.1 is highest with a 

value of 9.81×10
-4

 mg/cm
3
, which indicates that the iron oxide surface exhibits higher 

reactivity with MA in plasma reaction. The COOH volume concentrations for C60, 

MWNT, and carbon fiber are 8.10×10
-4

, 6.59×10
-4

, and 3.75×10
-4

 mg/cm
3
, respectively. 

C60 exhibits higher volume concentration than MWNT and carbon fiber and similar 

tendency for their PEG and PEN volume concentrations were observed. Due to the 

overlap of the band at 1105 cm
-1

 resulting for PEG and the band of FMNT, volume 

concentration for PEG-FMNT were not calculated.  

In an effort to examine antimicrobial activity of C60, MWNT, carbon fiber, and 

FMNT upon PEN attachment, these specimens were exposed to gram-positive 

staphylococcus aureus bacteria. As controls, non-modified specimens were exposed to 

the same conditions and Figure 6.5, A, B, C, and D illustrate the results. As seen, Figure 

6.5.A and 6.5.D of C60 and FMNT show the growth of bacteria. FMNT have iron oxide 



146 

 

outer layers which are not toxic for cells. However, Figure 6.5.B and 6.5.C of MWNT 

and carbon fiber indicate the slightly bacterial inhibition, which are consistent with the 

earlier reported.
2,10,13

   For example, multi-walled carbon nanotubes were reported to 

inhibit Escherichia coli (E. coli) cell growth resulting from a direct contact with bacterial 

cell membranes, thus causing the cell membrane damage and leakage.
2
  In contrast,  

Figure 6.5, A', B', C', and D' demonstrate the antibacterial test of C60, MWNT, carbon 

fiber, and FMNT after PEN reactions, which indicate the inhibition of bacterial growth 

around the specimen region resulting from the effectiveness of PEN against the bacterial. 

Compared with unmodified samples in Figure 6.5, A-D, samples with PEN surface 

modification illustrated in Figure 6.5, A'-D' exhibit enhanced and well-controlled 

antibacterial features, which demonstrates these carbon-based materials upon PEN 

modification are potentially utilized in biosystems. 

The cytotoxicity of C60, MWNT, carbon fiber, and FMNT were also examined 

and the specimens were exposed to partially differentiated mouse embryonic stem cells. 

Figure 6.6, A-D' illustrates the results of C60, PEN-C60, MWNT, PEN-MWNT, nano-

carbon fiber, PEN-nano-carbon fiber, FMNT, and PEN-FMNT. The cell growth in all 

samples was observed using an optical microscope, where cells in all samples were intact 

and no apparent toxicity were observed. Figure 6.6, d and d' illustrate the optical 

micrograph of FMNT and PEN-FMNT.  As seen in Figure A/A' and C/C', C60 and PEN-

C60 as well as nano-carbon fiber and PEN-nano-carbon fiber show a very similar cell 

density around 0.9. It should be noted that due to the slightly detachment of cell during 

the washing process the cell number may vary within 0.1 experimental errors. In contrast, 

PEN-MWNT in Figure 6.6, B' shows a higher cell number (1.1) compared with MWNT 
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(0.86) in Figure 6.6, B.  Although significant efforts have been made to study cytotoxicity 

of carbon nanotubes which may be attributed to size,
1,2

 shape,
3,4

 surface 

functionalizations,
5,6

 and even the choice of a test method,
11,12

 no apparent toxicity was 

observed for MWNT, as shown in Figure 6.6, B. The increased cell numbers of PEN-

MWNT in Figure 6.6, B' elucidate the PEN attachments on MWNT offer a biocompatible 

environment and decrease the potential cytotoxicity. Similar observations were found in 

FMNT and PEN-FMNT, as shown in Figure 6.6, D and D', where a higher cell number 

(1.2) is obtained for PEN-FMNT compared with FMNT (0.9), thus demonstrating the 

cytotoxicity of FMNT upon PEN attachments significantly decreases. In view of above 

cytotoxic results, no apparent toxic effects were detected for these carbon-based materials, 

and significantly enhanced biocompatibility was obtained for PEN-MWNT and PEN-

FMNT, thus manifesting the effectiveness of PEN on decreased cytotoxicity.  

Conclusions 

Antibiotics such as PEN were demonstrated to be functionalized onto surfaces of 

C60, MWNTs, carbon fibers, and FMNTs. Upon surface modification with PEN through 

PEG spacer, these samples revealed highly effective and well-controlled anti-bacterial 

activity toward gram-positive Staphylococcus aureus bacteria. Furthermore, cytotoxic 

tests demonstrated no apparent toxic effect were found for all the samples, and 

significantly enhanced biocompatibility was obtained for PEN-MWNT and PEN-FMNT, 

thus manifesting the effectiveness of PEN attachments on decreasing cytotoxicity.  
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Figure 6.1. Schematic diagram of surface reactions on FMNTs: Step 1, Ar microwave 

plasma reaction and hydrolysis of MA-modified FMNTs; Step 2, conversion of acid 

group and PEG reaction; Step 3, PEN reaction. 
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Figure 6.2. TEM images of (A) C60; (A') PEN-PEG-MA-C60; (B) MNCTs; (B') PEN-

PEG-MA-MNCTs; (C) carbon fibers; (C') PEN-PEG-MA-carbon fibers; (D) FMNTs; (D') 

PEN-PEG-MA-FMNTs.
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Figure 6.3. A. ATR FT-IR spectra of (A) C60; (B) MA-C60; (C) PEG-MA-C60; (D) PEN-

PEG-MA-C60. B. ATR FT-IR spectra of (A) MWNTs; (B) MA-MWNTs; (C) PEG-MA-

MWNTs; (D) PEN-PEG-MA-MWNTs. C. ATR FT-IR spectra of (A) carbon fibers; (B) 

MA-carbon fibers; (C) PEG-MA-carbon fibers; (D) PEN-PEG-MA-carbon fibers. D. 

ATR FT-IR spectra of (A) FMNTs; (B) MA-FMNTs; (C) PEG-MA-FMNTs; (D) PEN-

PEG-MA-FMNTs.
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Figure 6.4. The volume concentration for C60, MWNT, carbon fiber and FMNTs for each 

step. 
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Figure 6.5. Photographs of agar plates containing (A) C60; (A') PEN-PEG-MA-C60;  (B) 

MWNTs; (B') PEN-PEG-MA-MWNTs; (C) carbon fibers; (C') PEN-PEG-MA-carbon 

fibers; (D) FMNTs; and (D') PEN-PEG-MA-FMNTs in staphylococcus aureus cultures. 
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Figure 6.6. Cytotoxicity analysis of specimens:  (A) C60; (A') PEN-PEG-MA-C60;  (B) 

MNCTs; (B') PEN-PEG-MA-MNCTs; (C) carbon fibers; (C') PEN-PEG-MA-carbon 

fibers; (D) FMNTs; (D') PEN-PEG-MA-FMNTs; Optical images of cell growth on the 

specimens: (d) FMNTs; (d') PEN-PEG-MA-FMNTs. 
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CHAPTER VII 

CONCLUDING REMARKS 

Although a number of efforts focused on smart nanomaterials with sustainable 

biocompatibility that exhibit stimuli-responsiveness as well as a specific recognition, 

there are many advances to be made. The majority of studies are concerned with 

biological systems, where specific recognitions between individual entities were 

established using a sequence of empirical methods, recognition of synthetic molecules 

and naturally occurring species remain to be uncharted area. One of the challenges will 

be how to mimic biologically active species using synthetic materials at molecular levels 

and in view these considerations and limited literature data, PLs are of particular interest 

due to their unique structural features, biocompatibility, and the ability to self-assembly, 

which are capable of forming bilayers, micelles, liposomes, and tubules. The 

incorporation of biocompatible PL as stabilizing agents into colloidal dispersions offers a 

potential opportunity to prepare novel biomaterials, which may exhibit stimuli-responsive 

features and selectively recognitions.  

As described in Chapter II and III, PL stratification resulted in the formation of 

preferentially orientated crystalline entities at p-MMA/nBA film interfaces, which were 

capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA 

copolymer backbone and crystallizing at the monomer interface. These entities were 

responsive to external stimuli such as the combined effects of ionic strength, enzyme, and 

pH, thus affecting their mobility and stratifications.  The incorporation of ab initio 

calculations and spectroscopic studies revealed the origin of PL recognition, where the 
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two neighboring MMA and nBA units along the polymer backbone provided conducive 

environments to signal and attract amphiphilic groups of PL.  

Furthermore, due to their unique structural and morphological features, PL may 

serve as templates for developing nanomaterials with tailored properties thus offering 

novel avenues for creating new materials with diverse shapes which may exhibit stimuli-

responsive features. Using bioactive nanotube-forming PL as templates, concentric 

ferromagnetic magnetite/carbon/magnetite nanotubes (FMNTs) were synthesized and 

their structural and morphological features were further investigated. Since geometry and 

size considerations are important factors in achieving desirable magnetic properties and 

applications, controllable and uniform diameter, wall thickness, and length of FMNTs 

were obtained using the synthetic approaches. Regardless of the mechanisms of 

cytotoxicity and antimicrobial activity, size and shape of nano-objects may play an 

important role which is often difficult or even impossible to control. One approach to 

minimize geometrical considerations is to chemically modify surfaces of nano-objects 

and allow surface chemistry overcome cytotoxicity and antimicrobial properties. Thus, 

the surface modifications of different nano-objects such as C60, multi-walled carbon 

nanotubes, FMNTs, and carbon fibers were performed to attach polyethylene glycol 

spacer and penicillin, which resulted in inhibition of gram positive bacteria and 

cytotoxicity.  

As new developments in nanotechnologies progress, the formation of 

nanomaterials with diverse shapes with sustainable and biocompatible properties 

continues to be a challenge. The incorporation of bioactive PLs into nanomaterials 

provides promising opportunities in creating shapes by serving as stabilizing agents for 
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colloidal dispersions as well as templating of depositing other species, which may open 

new avenues in development of nanomaterials with various shapes.  
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