7 research outputs found

    Ensemble of convolutional neural networks for bioimage classification

    Get PDF
    This work presents a system based on an ensemble of Convolutional Neural Networks (CNNs) and descriptors for bioimage classification that has been validated on different datasets of color images. The proposed system represents a very simple yet effective way of boosting the performance of trained CNNs by composing multiple CNNs into an ensemble and combining scores by sum rule. Several types of ensembles are considered, with different CNN topologies along with different learning parameter sets. The proposed system not only exhibits strong discriminative power but also generalizes well over multiple datasets thanks to the combination of multiple descriptors based on different feature types, both learned and handcrafted. Separate classifiers are trained for each descriptor, and the entire set of classifiers is combined by sum rule. Results show that the proposed system obtains state-of-the-art performance across four different bioimage and medical datasets. The MATLAB code of the descriptors will be available at https://github.com/LorisNanni

    Feature transforms for image data augmentation

    Get PDF
    A problem with convolutional neural networks (CNNs) is that they require large datasets to obtain adequate robustness; on small datasets, they are prone to overfitting. Many methods have been proposed to overcome this shortcoming with CNNs. In cases where additional samples cannot easily be collected, a common approach is to generate more data points from existing data using an augmentation technique. In image classification, many augmentation approaches utilize simple image manipulation algorithms. In this work, we propose some new methods for data augmentation based on several image transformations: the Fourier transform (FT), the Radon transform (RT), and the discrete cosine transform (DCT). These and other data augmentation methods are considered in order to quantify their effectiveness in creating ensembles of neural networks. The novelty of this research is to consider different strategies for data augmentation to generate training sets from which to train several classifiers which are combined into an ensemble. Specifically, the idea is to create an ensemble based on a kind of bagging of the training set, where each model is trained on a different training set obtained by augmenting the original training set with different approaches. We build ensembles on the data level by adding images generated by combining fourteen augmentation approaches, with three based on FT, RT, and DCT, proposed here for the first time. Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method. These networks and several fusions are evaluated and compared across eleven benchmarks. Results show that building ensembles on the data level by combining different data augmentation methods produce classifiers that not only compete competitively against the state-of-the-art but often surpass the best approaches reported in the literature

    NHL pathological image classification based on hierarchical local information and GoogLeNet-based representations

    Get PDF
    Background. Accurate classification for different non-Hodgkin lymphomas (NHL) is one of the main challenges in clinical pathological diagnosis due to its intrinsic complexity. Therefore, this paper proposes an effective classification model for three types of NHL pathological images, including mantle cell lymphoma (MCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). Methods. There are three main parts with respect to our model. First, NHL pathological images stained by hematoxylin and eosin (H&E) are transferred into blue ratio (BR) and Lab spaces, respectively. Then specific patch-level textural and statistical features are extracted from BR images and color features are obtained from Lab images both using a hierarchical way, yielding a set of hand-crafted representations corresponding to different image spaces. A random forest classifier is subsequently trained for patch-level classification. Second, H&E images are cropped and fed into a pretrained google inception net (GoogLeNet) for learning high-level representations and a softmax classifier is used for patch-level classification. Finally, three image-level classification strategies based on patch-level results are discussed including a novel method for calculating the weighted sum of patch results. Different classification results are fused at both feature 1 and image levels to obtain a more satisfactory result. Results. The proposed model is evaluated on a public IICBU Malignant Lymphoma Dataset and achieves an improved overall accuracy of 0.991 and area under the receiver operating characteristic curve of 0.998. Conclusion. The experimentations demonstrate the significantly increased classification performance of the proposed model, indicating that it is a suitable classification approach for NHL pathological images

    Bioimage classification with subcategory discriminant transform of high dimensional visual descriptors

    Get PDF
    BACKGROUND: Bioimage classification is a fundamental problem for many important biological studies that require accurate cell phenotype recognition, subcellular localization, and histopathological classification. In this paper, we present a new bioimage classification method that can be generally applicable to a wide variety of classification problems. We propose to use a high-dimensional multi-modal descriptor that combines multiple texture features. We also design a novel subcategory discriminant transform (SDT) algorithm to further enhance the discriminative power of descriptors by learning convolution kernels to reduce the within-class variation and increase the between-class difference. RESULTS: We evaluate our method on eight different bioimage classification tasks using the publicly available IICBU 2008 database. Each task comprises a separate dataset, and the collection represents typical subcellular, cellular, and tissue level classification problems. Our method demonstrates improved classification accuracy (0.9 to 9%) on six tasks when compared to state-of-the-art approaches. We also find that SDT outperforms the well-known dimension reduction techniques, with for example 0.2 to 13% improvement over linear discriminant analysis. CONCLUSIONS: We present a general bioimage classification method, which comprises a highly descriptive visual feature representation and a learning-based discriminative feature transformation algorithm. Our evaluation on the IICBU 2008 database demonstrates improved performance over the state-of-the-art for six different classification tasks
    corecore