186 research outputs found

    BioAssay templates for the semantic web

    Get PDF

    The Digitalization of Bioassays in the Open Research Knowledge Graph

    Get PDF
    Background: Recent years are seeing a growing impetus in the semantification of scholarly knowledge at the fine-grained level of scientific entities in knowledge graphs. The Open Research Knowledge Graph (ORKG, orkg.org) represents an important step in this direction, with thousands of scholarly contributions as structured, fine-grained, machine-readable data. There is a need, however, to engender change in traditional community practices of recording contributions as unstructured, non-machine-readable text. For this in turn, there is a strong need for AI tools designed for scientists that permit easy and accurate semantification of their scholarly contributions. We present one such tool, ORKG-assays. Implementation: ORKG-assays is a freely available AI micro-service in ORKG written in Python designed to assist scientists obtain semantified bioassays as a set of triples. It uses an AI-based clustering algorithm which on gold-standard evaluations over 900 bioassays with 5,514 unique property-value pairs for 103 predicates shows competitive performance. Results and Discussion: As a result, semantified assay collections can be surveyed on the ORKG platform via tabulation or chart-based visualizations of key property values of the chemicals and compounds offering smart knowledge access to biochemists and pharmaceutical researchers in the advancement of drug development

    Information Retrieval Service Aspects of the Open Research Knowledge Graph

    Get PDF
    Information Retrieval (IR) takes a fresh perspective in the context of the next-generation digital libraries such as the Open Research Knowledge Graph (ORKG). As scholarly digital libraries evolve from document-based to knowledge-graph-based representations of content, there is a need for their information technology services to suitably adapt as well. The ORKG enables a structured representation of scholarly contributions data as RDF triples - in turn, it fosters FAIR (Findable, Accessible, Interoperable, and Reusable) scholarly contributions. This thesis has practically examined three different IR service aspects in the ORKG with the aim to help users: (i) easily find and compare relevant scholarly contributions; and (ii) structure new contributions in a manner consistent to the existing ORKG knowledge base of structured contributions. In the first part, it will evaluate and enhance the performance of the default ORKG “Contributions Similarity Service.” An optimal representation of contributions as documents obtains better retrieval performance of the BM25 algorithm in Elasticsearch. To achieve this, evaluation datasets were created and the contributions search index reinitialized with the new documents. In its second part, this thesis will introduce a “Templates Recommendation Service.” Two approaches were tested. A supervised approach with a Natural Language Inference (NLI) objective that tries to infer a contribution template for a given paper if one exists or none. And an unsupervised approach based on search that tries to return the most relevant template for a queried paper. Our experiments favoring ease of practical installation resulted in the conclusion that the unsupervised approach was better suited to the task. In a third and final part, a “Grouped Predicates Recommendation Service” will be introduced. Inspired from prior work, the service implements K-Means clustering with an IR spin. Similar structured papers are grouped, their in-cluster predicate groups computed, and new papers are semantified based on the predicate groups of the most similar cluster. The resulting micro-averaged F-measure of 65.5% using TF-IDF vectors has shown a sufficient homogeneity in the clusters

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The OpenTox Framework, developed by the partners in the OpenTox project (<url>http://www.opentox.org</url>), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing.</p> <p>Results</p> <p>The following related ontologies have been developed for OpenTox: a) Toxicological ontology – listing the toxicological endpoints; b) Organs system and Effects ontology – addressing organs, targets/examinations and effects observed in <it>in vivo</it> studies; c) ToxML ontology – representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology– representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink–ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology.</p> <p>OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources.</p> <p>The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists).</p> <p>Availability</p> <p>The OpenTox toxicological ontology projects may be accessed via the OpenTox ontology development page <url>http://www.opentox.org/dev/ontology</url>; the OpenTox ontology is available as OWL at <url>http://opentox.org/api/1 1/opentox.owl</url>, the ToxML - OWL conversion utility is an open source resource available at <url>http://ambit.svn.sourceforge.net/viewvc/ambit/branches/toxml-utils/</url></p

    Application of Semantics to Solve Problems in Life Sciences

    Get PDF
    Fecha de lectura de Tesis: 10 de diciembre de 2018La cantidad de información que se genera en la Web se ha incrementado en los últimos años. La mayor parte de esta información se encuentra accesible en texto, siendo el ser humano el principal usuario de la Web. Sin embargo, a pesar de todos los avances producidos en el área del procesamiento del lenguaje natural, los ordenadores tienen problemas para procesar esta información textual. En este cotexto, existen dominios de aplicación en los que se están publicando grandes cantidades de información disponible como datos estructurados como en el área de las Ciencias de la Vida. El análisis de estos datos es de vital importancia no sólo para el avance de la ciencia, sino para producir avances en el ámbito de la salud. Sin embargo, estos datos están localizados en diferentes repositorios y almacenados en diferentes formatos que hacen difícil su integración. En este contexto, el paradigma de los Datos Vinculados como una tecnología que incluye la aplicación de algunos estándares propuestos por la comunidad W3C tales como HTTP URIs, los estándares RDF y OWL. Haciendo uso de esta tecnología, se ha desarrollado esta tesis doctoral basada en cubrir los siguientes objetivos principales: 1) promover el uso de los datos vinculados por parte de la comunidad de usuarios del ámbito de las Ciencias de la Vida 2) facilitar el diseño de consultas SPARQL mediante el descubrimiento del modelo subyacente en los repositorios RDF 3) crear un entorno colaborativo que facilite el consumo de Datos Vinculados por usuarios finales, 4) desarrollar un algoritmo que, de forma automática, permita descubrir el modelo semántico en OWL de un repositorio RDF, 5) desarrollar una representación en OWL de ICD-10-CM llamada Dione que ofrezca una metodología automática para la clasificación de enfermedades de pacientes y su posterior validación haciendo uso de un razonador OWL

    Imaging ontology, contributing to "reasonable" semantics for biomedical repositories

    Get PDF
    Ontologies are required for precise description of image resources in repositories. The Imaging Ontology describes image acquisition instruments as used in the life sciences and complements ontologies that are used for describing the content. We show how we can reason over optical resolution to assist in experiment planning or knowledge discovery. Use of adjacent classes helps the overall structure of the ontology and its extendibility.Computer Systems, Imagery and Medi
    corecore