346 research outputs found

    Immune systems inspired multi-robot cooperative shepherding

    Get PDF
    Certain tasks require multiple robots to cooperate in order to solve them. The main problem with multi-robot systems is that they are inherently complex and usually situated in a dynamic environment. Now, biological immune systems possess a natural distributed control and exhibit real-time adaptivity, properties that are required to solve problems in multi-robot systems. In this thesis, biological immune systems and their response to external elements to maintain an organism's health state are researched. The objective of this research is to propose immune-inspired approaches to cooperation, to establish an adaptive cooperation algorithm, and to determine the refinements that can be applied in relation to cooperation. Two immune-inspired models that are based on the immune network theory are proposed, namely the Immune Network T-cell-regulated---with Memory (INT-M) and the Immune Network T-cell-regulated---Cross-Reactive (INT-X) models. The INT-M model is further studied where the results have suggested that the model is feasible and suitable to be used, especially in the multi-robot cooperative shepherding domain. The Collecting task in the RoboShepherd scenario and the application of the INT-M algorithm for multi-robot cooperation are discussed. This scenario provides a highly dynamic and complex situation that has wide applicability in real-world problems. The underlying 'mechanism of cooperation' in the immune inspired model (INT-M) is verified to be adaptive in this chosen scenario. Several multi-robot cooperative shepherding factors are studied and refinements proposed, notably methods used for Shepherds' Approach, Shepherds' Formation and Steering Points' Distance. This study also recognises the importance of flock identification in relation to cooperative shepherding, and the Connected Components Labelling method to overcome the related problem is presented. Further work is suggested on the proposed INT-X model that was not implemented in this study, since it builds on top of the INT-M algorithm and its refinements. This study can also be extended to include other shepherding behaviours, further investigation of other useful features of biological immune systems, and the application of the proposed models to other cooperative tasks

    Swarm robotics:design and implementation

    Get PDF
    This project presents a swarming and herding behaviour using simple robots. The main goal is to demonstrate the applicability of artificial intelligence (AI) in simple robotics that can then be scaled to industrial and consumer markets to further the ability of automation. AI can be achieved in many different ways; this paper explores the possible platforms on which to build a simple AI robots from consumer grade microcontrollers. Emphasis on simplicity is the main focus of this paper. Cheap and 8 bit microcontrollers were used as the brain of each robot in a decentralized swarm environment were each robot is autonomous but still a part of the whole. These simple robots don’t communicate directly with each other. They will utilize simple IR sensors to sense each other and simple limit switches to sense other obstacles in their environment. Their main objective is to assemble at certain location after initial start from random locations, and after converging they would move as a single unit without collisions. Using readily available microcontrollers and simple circuit design, semiconsistent swarming behaviour was achieved. These robots don’t follow a set path but will react dynamically to different scenarios, guided by their simple AI algorithm

    Analysis of multi-agent systems under varying degrees of trust, cooperation, and competition

    Full text link
    Multi-agent systems rely heavily on coordination and cooperation to achieve a variety of tasks. It is often assumed that these agents will be fully cooperative, or have reliable and equal performance among group members. Instead, we consider cooperation as a spectrum of possible interactions, ranging from performance variations within the group to adversarial agents. This thesis examines several scenarios where cooperation and performance are not guaranteed. Potential applications include sensor coverage, emergency response, wildlife management, tracking, and surveillance. We use geometric methods, such as Voronoi tessellations, for design insight and Lyapunov-based stability theory to analyze our proposed controllers. Performance is verified through simulations and experiments on a variety of ground and aerial robotic platforms. First, we consider the problem of Voronoi-based coverage control, where a group of robots must spread out over an environment to provide coverage. Our approach adapts online to sensing and actuation performance variations with the group. The robots have no prior knowledge of their relative performance, and in a distributed fashion, compensate by assigning weaker robots a smaller portion of the environment. Next, we consider the problem of multi-agent herding, akin to shepherding. Here, a group of dog-like robots must drive a herd of non-cooperative sheep-like agents around the environment. Our key insight in designing the control laws for the herders is to enforce geometrical relationships that allow for the combined system dynamics to reduce to a single nonholonomic vehicle. We also investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter the no-fly zones, the evader moves freely through the zones to avoid capture. Using tools for Voronoi-based coverage control, we provide an algorithm to distribute the pursuers around the zone's boundary and minimize capture time once the evader emerges. Finally, we present an algorithm for the guaranteed capture of multiple evaders by one or more pursuers in a bounded, convex environment. The pursuers utilize properties of the evader's Voronoi cell to choose a control strategy that minimizes the safe-reachable area of the evader, which in turn leads to the evader's capture

    Contextually Aware Intelligent Control Agents for Heterogeneous Swarms

    Full text link
    An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain a low-computational ceiling while increasing the swarm's abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm-control intelligent agent. The intelligent control agent (shepherd) first uses swarm metrics to recognise the type of swarm it interacts with to then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. information contents) of the control agent without sacrificing the low-computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.Comment: 37 pages, 3 figures, 11 table

    Contextually aware intelligent control agents for heterogeneous swarms

    Get PDF
    An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm’s abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.</p
    • …
    corecore