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Abstract

Certain tasks require multiple robots to cooperate in order to solve them. The

main problem with multi-robot systems is that they are inherently complex and

usually situated in a dynamic environment. Now, biological immune systems pos-

sess a natural distributed control and exhibit real-time adaptivity, properties that

are required to solve problems in multi-robot systems. In this thesis, biological

immune systems and their response to external elements to maintain an organ-

ism’s health state are researched. The objective of this research is to propose

immune-inspired approaches to cooperation, to establish an adaptive cooperation

algorithm, and to determine the refinements that can be applied in relation to co-

operation. Two immune-inspired models that are based on the immune network

theory are proposed, namely the Immune Network T-cell-regulated—with Mem-

ory (INT-M) and the Immune Network T-cell-regulated—Cross-Reactive (INT-X)

models. The INT-M model is further studied where the results have suggested

that the model is feasible and suitable to be used, especially in the multi-robot

cooperative shepherding domain. The Collecting task in the RoboShepherd sce-

nario and the application of the INT-M algorithm for multi-robot cooperation

are discussed. This scenario provides a highly dynamic and complex situation

that has wide applicability in real-world problems. The underlying ‘mechanism

of cooperation’ in the immune inspired model (INT-M) is verified to be adaptive

in this chosen scenario. Several multi-robot cooperative shepherding factors are

studied and refinements proposed, notably methods used for Shepherds’ Approach,

Shepherds’ Formation and Steering Points’ Distance. This study also recognises

the importance of flock identification in relation to cooperative shepherding, and

the Connected Components Labelling method to overcome the related problem

is presented. Further work is suggested on the proposed INT-X model that was

not implemented in this study, since it builds on top of the INT-M algorithm

and its refinements. This study can also be extended to include other shepherd-

ing behaviours, further investigation of other useful features of biological immune

systems, and the application of the proposed models to other cooperative tasks.
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Chapter 1

Introduction

1.1 Background

One of the main issues being studied in Multi-Robot System is cooperation be-

tween mobile and autonomous robots in order to achieve a common goal or to

maximise the utility for each agent. Robots can also be viewed as agents, specif-

ically embodied agent situated in the physical world. Agents can be defined as

a situated computational system which is capable of autonomous action in some

environment in order to achieve its design objectives [109]. Thus, Multi-Robot Sys-

tems can actually comprise of several homogeneous or heterogeneous self-interested

agents. However, this research proposes an application area of dynamically chang-

ing environments such that the self-interested agents shall be of homogeneous in

nature and the environment is continuous so that processing and decisions must

be done in real-time.

There are several reasons why systems consisting of group of agents are of

interest, and two of them are as follows [13]:

• tasks may be inherently too complex (or impossible) for a single agent

• building and using several simple agents can be easier, cheaper, more flexible

and more fault-tolerant

Cooperation can be defined as a form of interaction, usually based on some

form of communication [63]. But this definition is still quite general. Another more

specific definition is taken from Robotics study whereby cooperative behaviour is

as follows [13]:

1
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“Given some task specified by the designer, a multiple-robot system

displays cooperative behaviours if, due to some underlying mechanism

(i.e. the ‘mechanism of cooperation’), there is an increase in the total

utility of the system.”

Effective cooperation entails that the total utility of the system is increased,

but at the same time the goal of each single agent is not totally abandoned nor

delayed too long. It also requires that competition for resources among agents is

minimised.

1.2 Problem Formulation

This research is interested in the use of an effective algorithm for cooperation in a

team of robots in order to achieve its design objectives. This problem have indeed

been studied by many researchers both in the robotics and multi-agent systems

areas. The main research problems identified in this study are listed below.

1. Complexities that exist in multi-robot systems

In multi-robot systems, interaction between robots is highly problematic. The

robots may be of different types, have different actuators, sensors or just have

different capabilities. These differences lead to several complications, such as the

inability to detect other robots and communication breakdown. Therefore, the

problem within a team of multiple robots is quite difficult to overcome. However,

it is still possible to make reasonable attempts at this problem provided that

several assumptions and simplifications are introduced.

2. Dynamic environmental changes that are faced by robots

Another problem in multi-robot cooperation is the adaptation to environmental

changes. Whenever the situation has changed, the ability to cooperate between

robots must not be affected. It is understandable that the interaction of the robots

will inevitably be affected by the changing environment, but it is intended that

the robots would still be able to cooperate even at the minimal level in order to

achieve its design objectives and complete the task at hand. Thus, the mechanism

of cooperation must be able to withstand and be robust enough to overcome such

problem.
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3. Comprehensive interaction required in a multi-robot cooperation

Method of interaction in multi-robot cooperation should be more versatile and

inclusive. It should not be too simple, as in a one-to-one interaction, but should

involve all related robots that can affect the situation at hand. This research

considers local group interactions as important so that emergent group behaviours

that are optimal for the local environment can be achieved. Biological immune

system manifests emergent cooperative behaviours in the form of the virus-fighting

cells in the body. Hence, it is suitable as a method to approach the problem and

is discussed in the following chapters.

Other than that, identifying suitable tasks that can be performed is also taken

into consideration in studying multi-robot cooperation, since the task selected

should be representative and can be scaled to bigger real world problems.

Figure 1.1: The research areas identified: interest is on the central overlapping
area

Therefore, this study can be described as the use of immunology-based algo-

rithm in achieving adaptive cooperation in a group of robots. Figure 1.1 shows

the main research interest of this study that involves three main research areas.

Meanwhile, Figure 1.2 shows the focus of this research.

1.3 Research Objectives

This study aims to overcome the problems listed earlier through three objectives.

They are listed following the stages of the research whereby firstly an immune
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Figure 1.2: Hierarchical view of the research focus

systems approach is defined for robot cooperation, then properties of the algo-

rithm is investigated to establish adaptive cooperation in a specific cooperative

task, and finally the refinements of the immune-inspired cooperation behaviour is

determined. Listed below are the objectives of this research:

1. To propose immune-inspired approaches to cooperation.

2. To establish an adaptive cooperation algorithm in multi-robot systems.

3. To determine the refinements that can be applied related to cooperation.

In terms of multi-robot cooperation tasks, the intention of this study is to

have a representative task scenario that is applicable in other problem domains.

Therefore, properties and requirements of cooperative tasks are investigated and

the RoboShepherd task scenario is selected. This is presented in the following

chapters.

1.4 Motivations

This research is mainly interested in the importance of overcoming or at least at-

tempting to overcome the problems pertaining to cooperation in a team of robots.

The challenges that motivate this research are described here.

1. The need of robots to cooperate or coordinate their action is vital in ad-

vancing their usability to the next level. Moreover, the abundance of robots
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that are available today makes it almost inevitable for interactions between

robots to occur.

2. The potential use of multi-robot systems that can autonomously cooperate

is enormous. For example, such a system is useful in hazardous situations,

space explorations, military operations, and even in our homes where several

robots can be operating at the same location. These wide potential appli-

cations make the study even more important as it is quite possible to have

an impact on the socio-economics of the society along with the technological

advancements that could be achieved.

3. The biological immune system is a suitable candidate for a cooperation

metaphor as it is proved that the task at hand (or rather its design ob-

jective) in most circumstances, is well achieved. The immune system cells

have the magnificent property to autonomously coordinate their actions to

achieve their common objective.

This research proposes that the cooperation among the robots is using ap-

proaches that have their roots in biology, specifically the Immune Systems. There

indeed exist many models or frameworks proposed by others in the literature relat-

ing to cooperation. Some of them are MAPS [101], RETSINA [92], STEAM [97],

and CORDA [75]. However, these models do not utilise the adaptive behaviour

that can be derived from biology such as; in this case; the immune systems. Fur-

thermore, this research is also driven by the fact that immune systems are not yet

widely researched in the multi-robot systems domain.

1.5 Contributions

In this research, the use of immune systems inspired algorithms in order to achieve

adaptive cooperation is in focus. This provides a new insight in multi-robot sys-

tems research, as a perspective that derives from immune systems is studied in

order to realise a team of cooperating robots. Furthermore, interactions between

multiple robots in such scenarios are also investigated because of its wide appli-

cability in the real world.

The background understanding on the use and application of immune systems

in multi-robot systems areas in this research can lead to further study on immune

and multi-robot systems research interactions. The main contributions of this

research are listed below.
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1. Two immune-inspired models are proposed, and one of the model, the INT-

M model is implemented and evaluated.

2. The implementation of the cooperative shepherding used in this research is

using local ground view; except for the proposed flock identification method

which rely on a ‘bird’s eye view’. This sets the study apart from other

research, whereby such implementation is indeed difficult but it is more

similar to real world situations.

3. The implementation of the immune inspired group behaviour takes into ac-

count all the nearby shepherds (i.e. within the communication radius) which

is more realistic compared to other works that only uses a one-to-one commu-

nication that happens when the shepherds are in contact with one another.

4. The ‘cooperation mechanism’ underlying the immune inspired model (INT-

M) is verified to be adaptive in a dynamic multi-robot scenario and support-

ing experimental data are provided.

5. Refinements related to multi-robot cooperative shepherding are identified

and tested.

6. This study recognised the importance of flock identification in relation to

cooperative shepherding task and a method to overcome the problem is

discussed.

7. The implementation of this study is done on the Player/Stage robotics sim-

ulation platform. This means that it can be applied onto real robots with

minor changes required.

The findings of the research is significant in the view that immune inspired

approach to adaptive cooperation is tested and evaluated. The area of multi-

robot systems cooperation now have a new and improved model to use in order

to establish the intended interaction in a team of robots. Furthermore, an in-

depth study of refinements on the cooperative shepherding behaviour had been

conducted and is presented in this thesis.

1.6 Thesis Structure

This thesis is structured in the following way. In chapter 2, we will first review

the current research in multi-robot systems in general. Then the central theme
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of cooperation is defined which is later followed by a general description of the

immune systems as the main concern of this study. Then discussions are made on

the several multi-robot cooperation techniques available.

In chapter 3, discussions are presented on the proposed immune systems in-

spired cooperation model that is considered as feasible to be implemented. The

model is described in general and will be studied and discussed more deeply in

later chapters. Simulation results and verification of the ‘cooperation mechanism’

of the model are presented in chapter 4. In chapter 5, several refinements to the

cooperative shepherding behaviour are proposed. The proposed model together

with the refinements are again simulated and results are presented. In the latter

part of the chapter, another refinement focusing on flock identification is proposed

and its results are discussed. A second proposed model based on immune systems

inspired cooperation is described at the end of chapter 5.

The final chapter, chapter 6, is where the works done in this study are sum-

marised and the main contributions are listed. The chapter also provides several

suggestions for future research works.



Chapter 2

Literature Review

2.1 Introduction

This chapter discusses other literatures that are related to this study. Two main

themes that are crucial in this study are cooperation techniques or approaches,

and immune systems literature in the area of multi-robot systems.

There are several overview on multi-robot systems research, as discussed by Cao

et al. [13], Arai et al. [3], Wang et al. [106] and Lima and Custódio [55]. These

papers are largely concerned with the diversity, usage, and impact of multi-robot

systems research.

Multi-robot systems are being studied and applied in a vastly different do-

mains, such as RoboCup [44], Search and Rescue [45, 96], Unmanned Aerial Ve-

hicle (UAV) [14, 71], and military applications for example the DARPA Grand

Challenge [6].

The Robot World Cup (RoboCup) is an international competition of soccer

playing robots where the main goal is to have a team of autonomous humanoid

robots that can beat the winner of FIFA World Cup by the year 2050. There are

multitude of challenges and one of it is how the robot teams can cooperate to plan a

strategy during game play. There are promising research on robot teams [97, 104],

but other challenges remain such as learning and quick adaptation to dynamically

changing environments.

There is also a variant competition of RoboCup known as RoboCup Rescue

that focuses on humanitarian use of robotics, specifically in disaster mitigation

8
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problem. The goal is to achieve multiple heterogeneous and antonomous robots

that can be involved in search and rescue operations. This competition is more

challenging since it is based on real-world scenarios and involves other autonomous

robots and humans in the rescue operations.

On a related area, multiple Unmanned Aerial Vehicles (UAVs) pose interesting

challenges with regard to autonomy and team coordination [47, 49]. In terms

of autonomy, most UAVs still have human-in-the-loop operation. However, the

goal to achieve operational autonomy or decision autonomy for UAVs is gaining

attention [4], especially for military operations.

Multiple autonomous robots can be used in various military operations. Hence,

the Defense Advanced Research Projects Agency (DARPA) had initiated the

DARPA Grand Challenge competition in the year 2004. The goal was to build

autonomous vehicles that can assist humans. The challenge was to manoeuvre

in an open and rugged terrain. The team that won the competition in the sec-

ond year by successfully completing the route was a group from Stanford with its

autonomous vehicle named Stanley [102, 103]. This is followed by the DARPA

Urban Challenge competition introduced in 2007 with the task for autonomous

vehicles to navigate in an urban environment [18]. There is a new competition in

2013 called the DARPA Robotics Challenge (DRC) [17]. It was inspired from the

Fukushima nuclear power plant meltdown. It consists of several challenges that

are all related with responding to emergency situations in a hazardous location.

The first to win this challenge is a robot from Japan named Schaft [100].

2.1.1 Cooperation

After reviewing related literatures, it is clear that there are two main terms being

used interchangeably to define the concept of multiple robots cooperating together

in order to execute a certain task. The first term is cooperation and the second term

is coordination. These two terms are used in various contexts, and subsequently

the definitions are not rigid. This leads to a minor confusion regarding which term

is appropriate for this research context.

There is another set of multi-robot systems which is obviously not being consid-

ered that is the non-cooperative systems. These non-cooperative systems would

normally fall into the category of competitive systems, such as soccer playing

robots where there are competition between robots in order to achieve their goals.

As this research is only looking at robots that are designed to cooperate, the
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deep understanding and definition of that concept is discussed in the following

paragraphs.

The term cooperation can be loosely defined as [69]:

“robots that operate together to perform some global task”

Meanwhile, taking the definition from the field multi-agent systems, the term

coordination can be defined as [27]:

“cooperation in which the actions performed by each robotic agents

in such a way that the whole ends up being a coherent and high-

performance operation”

These two definitions are not exhaustive nor are they able to cover all aspects

of the concept in various contexts. Nonetheless, these two definitions are suffice

enough in differentiating the two terms. So, we can deduce that coordination

is cooperation with the specific intention of operating coherently between team

members and performing better as a whole group. Hence, we can safely conclude

that in our context, coordination is a subset of cooperation. However, this study

looks into the general concept of cooperation in its usage and effects, even though

the algorithms would mean applying it to achieve a coordinated behaviour of the

robots. Furthermore, the field of Cooperative Robotics is already established in

the robotics research that encompasses the context applicable in this study.

Next, we should look into the classification of the various types and levels of

cooperation in multi-robot systems. This classification gives us an insight on the

overall picture of the research being undertaken.

The multi-robot system classification proposed in [24] which focused on coor-

dination, is relevant and useful in describing this study. The taxonomy is divided

into two dimensions, namely the coordination dimension and the system dimen-

sion. The coordination dimension aims at characterising the type or form of coor-

dination in multi-robot systems. In other words, this dimension classifies based on

‘how’ the coordination is being done. The latter group; system dimension, is the

taxonomy based on the features of the system that are relevant to its development.

This system dimension cares about ‘what’ are being coordinated, that inevitably

influence the system development.
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Figure 2.1: An MRS taxonomy focused on coordination [24]

Referring to Figure 2.1, the top level is regarding the ability of the system to

cooperate. This distinguishes cooperative systems from non-cooperative ones (e.g.

competitive). In this study, only cooperative systems are being considered. The

second level is concerned with the knowledge of each robot about other robots

in the group. However, this does not entail communication between robots. This

level can also be further detailed as local or global information if the robot is aware

of its team mates.

The third level is about the ‘mechanism of cooperation’, which distinguishes

the system based on the underlying coordination protocol. A system that is Not

Coordinated has no coordination protocol whatsoever, while a Weakly Coordinated

system may be able to recognise other robots but does not have a model of the

team mates. The final level is concerned with the way the decision system is

realised in multi-robot systems. In a Weakly Centralised system, more than one

agent is allowed to take the role of the leader during task execution.

In this taxonomy, coordination is similar to the concept of explicit cooperation

as suggested by Mataric [62] while the concept of cooperation is similar to implicit

cooperation. Another group of taxonomy which is called the system dimension is

a classification based on features that include communication, team composition,

system architecture and team size that are relevant to system development.
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In terms of communication feature, it can be classified into direct and indirect

communication. In indirect communication, usually the concept of stigmergy is

used. In the robotics field, stigmergy can be generally defined as communication

between two or more robots by sharing of information through inferring from

modifications or changes made in the environment. However, communication can

also be characterised in more detail with regard to topology, range and bandwidth

as suggested by Dudek et al. [23]. The second feature in the system dimension

is on team composition, that classify the team based on whether the multi-robot

system consists of homogeneous or heterogeneous entities. However, a more precise

classification can be achieved by using Social Entropy metric values as suggested

by Balch [5]. Social Entropy concept is to get the diversity value of the robot

society which is inspired by Information Entropy theory by Shannon [89].

In terms of system architecture, the system can be categorised into deliberative

and reactive categories. Deliberative architecture uses an overall long-term plan

for coping with environmental changes while in reactive architecture each robot

pursues an individual approach to reorganise its own task in order to accomplish

the goal assigned to it. The last feature is team size whereby classification is based

on whether many robots are explicitly considered or not during the system design.

Team size can also be simply measured quantitatively by the number of robots in

the system.

2.2 Computational Intelligence Techniques

Several literatures that proposed cooperation approaches using soft computing

techniques are reviewed since this study is a cross discipline work between multi-

robot system and computational intelligence areas. The approaches in this cat-

egory can be grouped into biologically and non-biologically inspired, as given in

later subsections.

2.2.1 Non Bio-inspired Cooperation Approaches

Parker [72, 73] proposed the ALLIANCE approach that models teammate capa-

bilities and performance and use the models to select tasks to execute that is ben-

eficial to the group as a whole. Explicit communication is not required for the task

selections. This seems to have a slight overhead since the robot need to observe its

team members before executing a task. Another type of approach is the market-
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based approach. Kalra et al. [40] provides a comprehensive overview of market-

based multi-robot coordination works. Market-based approaches in multi-robot

coordination uses the benefits of market economies, such as flexibility, efficiency,

responsiveness, robustness, scalability, and generality. This type of approach had

been implemented in several application areas such as robot exploration and soc-

cer. However, the mechanism of market-based approach seems to be quite complex

and not suitable for this research.

2.2.2 Bio-inspired Cooperation Approaches

There are several types of bio-inspired approaches that are related to cooperation.

Some of them are discussed in this subsection.

One of the most notable bio-inspired approach is based on the the Ant Colony

Optimization (ACO) algorithm [9, 66]. It is used in robotics research such as

for path planning or multi-robot cooperation problems [56, 110]. It is based on

mimicking a colony of ants and how they interact with each other and produce

emerging optimal behaviour. It is advantageous in terms of the similarity of multi-

robot problems, but does not seem to have optimal local group behaviour.

Meanwhile, another interesting approach inspired by nature is the Fish Swarm

Algorithm (FSA). An overview of the FSA is discussed by Neshat et al. [68]. This

approach uses the metaphor of swarms of fish in solving robotics problem such as

Multi-Robot Task Allocation [111].

Artificial Bee Colony (ABC) optimisation algorithm is another approach that

is used in robotics path planning problems [8]. It mimics the communication

behaviour among bees in their colony.

Potter et al. [74] uses Artificial Neural Networks (ANN) to select appropriate

behaviours in mobile robots, while Schultz et al. [88] uses Genetic Algorithms

(GA) for learning the control methods for herding behaviours. However, these

methods only consider herding with a few shepherds and hence cannot be applied

to this study.

These bio-inspired approaches have their advantages but immune inspired ap-

proach is found to be more suitable for the multi-robot cooperative shepherding

task that is being investigated in this research as described in later sections.
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2.2.3 Why Immune Systems

The interest to study immune inspired approaches stems from the characteris-

tics of the biological immune systems. Prominent characteristics of the immune

system is that there is no central control of the lymphocytes in fighting antigens

that invade the host and the systems adaptability in responding to various kind

of antigens. The B-cells cooperatively merge at the affected area and produce ap-

propriate antibodies for that particular antigen. This phase of immune response

exhibits cooperative and self-organising behaviours of the related cells. Obviously,

in immune network the processing of information is done in real-time and in a

distributed manner; as what a multi-robot system requires. Details about the

immune system is discussed in subsection 2.3.1. As for immune systems related

approach, several works are done that uses immune systems as metaphor to achieve

some level of cooperation [32, 107, 108]. Examples of robotic problems that uses

the immune inspired approach are path planning, fault-tolerance and coopera-

tive box-pushing [38, 41, 42, 76]. An overview of robotics related applications of

immune-inspired approaches is thoroughly discussed by Raza and Fernandez [77].

However, most of these works are limited either only to a single robot or does

not consider a highly dynamic environment such as the RoboShepherd scenario.

It is found that the simulations done for most works in the literature uses non-

robotics based simulation platform or it is applied onto single robots. Furthermore,

none of the immune inspired approaches have looked into the Memory Cells and

Learning aspects of the immune system. In one of the proposed approach in this

thesis, a specific memory mechanism is used in order to retain the appropriate

action for relevant environment condition.

2.3 Biological Immune Systems

2.3.1 Immune Systems

An immune system is a system that eliminates foreign substances from an organ-

ism’s body. These foreign substances such as bacteria, fungi or virus cells that can

harm the host are called pathogens. When such substance activates an immune

response it is called antigen, which stimulates the system’s antibody generation.

Each antigen has a unique set of identification on its surface called epitope. These

antigenic determinant is where the host’s antibodies would attach to by using its
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paratope (see Figure 2.2). Antibodies are cells in the immune system that kill anti-

gens in order to maintain the host homoeostatic state; i.e. balancing the body’s

health status.

Figure 2.2: Antigen-antibody binding and Jerne’s Idiotypic Network Theory

The immune system can be divided into two general categories, innate im-

munity and adaptive immunity. Innate immunity is the first line of defence of

the immune system. Generic pathogens that can be recognised and killed by the

innate immunity cells would not be able to harm the host further. However, cer-

tain disease carrying antigens would bypass this defence mechanism because the

innate immunity does not adapt to antigens that originate from various types of

illnesses. The adaptive immunity would then play its role through the use of lym-

phocytes which are white blood cells. Lymphocytes have two main types, T-cells

that mainly help in recognising antigen cells and B-cells that mainly produce an-

tibodies to fight specific antigens. In humans, T-cells are primarily produced in

the thymus while B-cells in the bone marrow. These two immune responses make

up an effective and important defence mechanisms for living organisms.

The immune response basically can be viewed in six phases of recognition and

activation (see Figure 2.3). Pathogen is digested by Antigen Presenting Cells

(APCs) where it is broken down into peptides [20]. These peptides will then

bind to Major Histocompatibility Complex (MHC ) molecules, then present on the

APC surface. T-cells recognise these different APC receptors and thus become

activated. They divide and release lymphokines that transmit chemical signals
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to stimulate other immune system components to take action. B-cells would then

travel to the affected area and be able to recognise the antigen. This would activate

the B-cells which then mature into plasma cells. Plasma cells are the ones which

release specific antibody molecules that neutralise the particular pathogens.

Figure 2.3: Basic biological immune systems response [20]

This immune response cycle results in the host’s immunity against the anti-

gen which triggers it, thus having protection in future attacks [20]. Prominent

characteristics of the immune system is that there is no central control of the lym-

phocytes in fighting antigens that invade the host and the system’s adaptability in

responding to various kind of antigens. The B-cells cooperatively merge at the af-

fected area and produce appropriate antibodies for that particular situation. This

phase of immune response exhibits cooperative behaviour of the related cells.

2.3.2 Immune Network Model of B-cell

Studies in immunology have shown that antibodies are not isolated but commu-

nicate with each other. Each type of antibody has its specific idiotope, an antigen

determinant (see Figure 2.2). Jerne, who is an immunologist, proposed the Idio-

typic Network Hypothesis which views the immune system as a large-scale closed

system consisting of interaction of various lymphocytes (B-cells) [39]. Referring to

Figure 2.2, idiotope of antibody i stimulates antibody i+ 1 through its paratope.

Antibody i+ 1 views that idiotope (belonging to antibody i) simultaneously as an

antigen. Thus, antibody i is suppressed by antibody i+ 1. These mutual stimula-

tion and suppression chains between antibodies form a controlling mechanism for
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the immune response [20].

Farmer et al. [25] proposed differential equations to Jerne’s idiotopic network

hypothesis. These equations consist of antibodies’ stimulus and suppression terms,

antigen-antibody affinity, and cell’s natural mortality rate [25]. This large-scale

closed system interaction is the main mechanism that can be used for cooperation

of multi-robot systems.

Si (t) = Si (t− 1) +α
N∑

j=1

(mijsj(t−1))

N
− α

N∑
j=1

(mjisj(t−1))

N
+ βgi (t)− ki

 si (t− 1) (2.1)

si (t) =
1

1 + exp (0.5− Si (t))
(2.2)

Equation 2.1 is the first equation where i, j = 1 · · ·N , N is the number of

antibody types, Si(t) is the stimulus value of antibody i, si(t) and sj(t) are the

concentration of antibodies, mij is the mutual stimulus coefficient of antibody i

and j, gi is the affinity of antibody i and antigen, α, β are parameters of response

rate of other antibody and antigen respectively, while k is the natural extinction

coefficient. The values of mij and mji are not necessarily the same, as can be seen

in the works of Luh and Liu [59], Luh et al. [61]. In Equation 2.2, the concentration

of antibody i at time t is calculated as si(t).

This section has discussed the definition and taxonomy of cooperation, and

the immune systems approaches to achieve multi-robot cooperation. The Jerne’s

Idiotypic Network Hypothesis and also its derived equations by Farmer et al. [25]

have been described. The next section will further discuss the immune inspired

approaches to the problem.

2.4 Multi-Robot Cooperation

This study also covers a research area that can be known as Immunorobotics which

is considered appropriate. Other immune systems related terms that have been
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coined are immunocomputing and immunotronics. The term Immonocomputing

was coined by Tarakanov et al. [98, 99] and it is similar to the term Artificial

Immune Systems (AIS) that is widely used. The term Immunotronics was appro-

priately used by Bradley and Tyrell [10, 11] in the electronics hardware research

area. This section discusses several cooperation techniques that have been devel-

oped by others. Cooperation techniques that are inspired by immune systems are

included.

One multi-robot cooperation technique was proposed by Nagao and Miki [67]

that uses local communication for a distributed multi-agent system. It uses what

is called a state-based cooperation mechanism. The experiments were done using

computer simulations for a surrounding task where robots need to surround a static

target or beacon. This task is quite similar to a mine detection task by Srividhya

and Ferat [94] that will be mentioned later.

In terms of specific cooperation that involves shepherding behaviour, Miki

and Nakamura [65] proposed a shepherding method that requires shepherd to

follow simple rules. The implemented flocks behaviour exactly follow the boids

distributed behavioural model by Reynolds [85]. The experiments were done us-

ing computer simulations but the scenario involved only one and two shepherd.

However, it is interesting that the work was later implemented using a real robot

platform [64].

An interesting multi-robot shepherding algorithm which is inspired by the herd-

ing commands and techniques used by actual shepherds was proposed by Bennett

and Trafankowski [7]. Simulations were performed and comparisons were made

with the shepherding methods proposed by Lien et al. [51, 53] and Miki and Naka-

mura [65]. There are not that many work on robotics cooperation that utilises the

immune systems metaphor.

However, there are several interesting articles on immune inspired cooperation

such as the works done by Gao and Wei [28] that proposed the Artificial Immune

Network (AIN) model for Dynamic Task Allocation. The proposed model was

applied to an emergency handling scenario that requires several robots to diffuse

static alarms (targets) which is similar to the surrounding task earlier and the mine

detection task mentioned later. The details of several works that specifically uses

immune inspired approach in cooperation are described in subsections 2.4.1, 2.4.2

and 2.4.3.
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2.4.1 Swarm-Immune Algorithm

Lee and Sim [48] have proposed a simple immune network-based algorithm to

achieve a swarm-like group behaviour. The algorithm is simple enough, however

its main feature is that the decision making process is communicated throughout

the local group of robots.

The useful part of this work is that it details all the relevant components of

the immune networks and its application in the multi-robot systems domain. The

components that are described in detail are antigen, antibody, mutual stimulus

coefficient, antigen-antibody stimulus, excellent and inferior robots.

Another main feature of Lee and Sim’s work is that the swarm group behaviour

is achieved through local information so no global knowledge is required regard-

ing the experimental area. This is advantageous as the robot need less a priori

information and communication overhead and complexity is low.

However, the approach is limited to a task with the objective that is similar to a

grazing behaviour whereby the robot searches for static target location and reacts

based on the number of target detected at a particular site. Furthermore, the local

group is limited with a one-to-one robot communication. Further discussions on

this work with related diagrams are presented in section 3.3.

2.4.2 Immune Network Model of B-cell and T-cell

Sun et al. [95] have proposed a model based on Farmer et al. [25, 26] immune net-

work equation as described in subsection 2.3.2; particularly Equations 2.1 and 2.2.

The model involves T-cells as a control parameter which provides adaptation abil-

ity in group behaviour.

Si (t) = Si (t− 1) +α
N∑

j=1

(mijsj(t−1))

N
− α

N∑
j=1

(mjisj(t−1))

N
+ βgi (t)− ci (t− 1)− ki

 si (t− 1) (2.3)
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si (t) =
1

1 + exp (0.5− Si (t))
(2.4)

ci (t) = η (1− gi (t))Si (t) (2.5)

In Equations 2.3 and 2.4, Si(t) is the stimulus value of antibody i where

i, j = 1 · · ·N , N is the number of antibody types. mij is the mutual stimulus

of antibody i and j, that can represent different values [59, 61]. gi is the affinity

of antibody i and antigen, α, β are parameters of response rate of other antibody

and antigen respectively, while k is the natural extinction coefficient. si(t) is the

concentration of antibody i. The difference with Farmer et al. [25, 26] immune

network in Equation 2.1 is that sj(t) is not the concentration of self-antibody, but

that of other robot’s antibody obtained by communication. Equation 2.5 is the

added T-cell model whereby ci(t) is the concentration of T-cell which control con-

centration of antibody. α, β, and η are constants. In biological immune system,

helper T-cells activate B-cells when antigen invades, and suppressor T-cell prevent

the activation of B-cells when the antigen has been eliminated.

The advantage of adding the T-cell model is that the system adapts quickly to

the environment by recovery of antibody concentration to the initial state, when

antigens have successfully been removed. Thus, the system is more adaptable to

environmental changes.

However, the drawback of this approach is that the objective of the task is

only to locate and find the target which is static. Furthermore, communication

between robots only occurs on a one-to-one basis if they happen to meet each

other during execution of the task. The dynamic element is introduced in the task

by putting back a set of target in the experiment area when the objective has been

completed in the previous cycle.

2.4.3 Immune Network and Potential Field

Li et al. [50] have proposed an immune network based decision making for each

robot coupled with potential field for the robots’ local navigation. The main

feature of this work is that the approach is applied to a very interesting problem.
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The scenario selected is the dog-sheep problem which is very dynamic and offers a

realistic challenge for a multi-robot cooperation approach. The dog-sheep scenario

is discussed in detail in subsection 3.5.1.

Figure 2.4: An example of how the combinatin of immune network and potential
field exhibits cooperative behaviour [50]

The deployment of immune network together with potential field in a dog-sheep

scenario is beneficial as it is similar to other real world situation such as soccer and

military. Furthermore the study looks into both simulation and uses real robot

experiments to verify the approach. An example of the real robot experiments

is shown in Figure 2.4. This is useful, because it proves that immune inspired

approach can be applied on multi-robot systems domain.

However, the article discussion is more focused on potential field approach

rather than immune network. Furthermore, there is little information about the

details of how the immune network is applied to the group of robots coordination

mechanism. Other than that, because it introduces the potential field as a robot’s

local navigation strategy, the approach seems to need a lot of calculation overhead

for each iteration.

Another work by Luh and Liu [58] is also related whereby the Potential Field

Immune Network (PFIN) approach is proposed for mobile robots motion planning.

They later proposed another immune-based method for reactive mobile robot nav-

igation called the Reactive Immune Network (RIN) [60]. The general architecture

of the system is shown in Figure 2.5. These works are for robot navigation and did

not directly study robot cooperation behaviours, but they are valuable nonetheless

in understanding the different roles that the immune network can assume.
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Figure 2.5: Architecture of the Reactive Immune Network (RIN) system for mobile
robot reactive navigation [60]

2.5 Conclusion

This chapter has discussed several computational intelligence techniques that are

related to cooperation problem. It then looked into other immune systems inspired

cooperation models. In this chapter, it is argued that immune systems based

cooperation techniques are applicable in multi-robot systems area bringing with

it the advantages that are inherent in the biological immune systems. This also

shows that a lot more other techniques inspired from the immune systems can be

researched and applied, as only a few features and models of it have been studied.



Chapter 3

Immune Inspired Model for

Cooperation

3.1 Introduction

This chapter discusses immune system inspired model for multi-robot cooperation.

Several cooperative tasks that are relevant and suitable to be experimented to test

the proposed algorithm are described in general. The new Immune Network T-

cell-regulated—with Memory (INT-M) algorithm is proposed in this study and it

is described in subsequent sections.

3.2 Immune Systems Approach

The relationship of the immune systems with multi-robot systems is evident where

obstacles, robots and their responses are antigens, B-cells and antibodies respec-

tively. Table 3.1 lists the parallel of MRS and immune systems terminologies.

Immune Network Theory as described in subsection 2.3.2 is suitable as a basis

for emulating cooperative behaviour in a multi-robot environment. This is because

the immune network uses affinity measures that are dependent on other cells

concentration and location in determining the next action. Other than that, multi-

robot systems require recognition ability of obstacles and other robots, which is

parallel to the immune system recognition and activation phase of an immune

response. Obviously in immune network, processing of information is done in

23
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Table 3.1: Relationship between Immune Systems and MRS

Immune Systems Multi-Robot Systems

B-cell Robot
Antigen Robot’s Environment
Antibody Robot’s action
T-cell Control parameter
Plasma cell Excellent robot
Inactivated cell Inferior robot
Immune network Robots interaction
Stimulus Adequate stimulation among robots
Suppression Inadequate stimulus from robots

real-time and in a distributed manner, as what a multi-robot system requires.

3.2.1 Immunoid: the Immune Network based Robot

One of the earliest works on distributed behavioural model is by Reynolds [85] that

focuses on the flocking behaviours of bird-like objects. Reynolds coined the term

‘boids’ that refers to simulated bird-like or “bird-oid” objects. The study achieved

the aggregate motion of a simulated flock that emerges based on interactions of

relatively simple behaviours of the individual boids.

In quite the same purpose, the term Immunoid was introduced by Ishiguro

et al. [33, 34, 35, 36, 37]. Immunoid is simply defined as an autonomous mobile

robot that have an “immune network-based action selection mechanism”.

Figure 3.1: Immunoid: a robot with an action selection mechanism [35]

Although Ishiguro et al. deployed a different approach of immune network

in their experiments, the term is very suitable to be used in this study. Each
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immunoid acts similar to B-cells in the biological immune systems, but specifically

utilising the immune network paradigm in interacting with other immunoids and

coping with environmental changes. The use of the term ‘Immunoids’ is suitable

to show that the robots are using immune network approach both internally and

in interacting with each other.

3.3 Immune Network for Group Behaviour

Figure 3.2 shows the state transition of group behaviour in multi-robot systems.

The immune network is deployed as the group control algorithm, while each im-

munoid utilises the Clonal Selection approach for detecting environmental changes,

but then communicates and is also affected by other nearby immunoids for action

strategies selection phase. The task execution phase is currently simplified; as

long as the immunoid is able to find and carry out the tasks scattered around

them. The overall objective is for the group of immunoids to be able to detect

and execute all the tasks in the workspace with appropriate group behaviour se-

lected depending on the changes in local environment. This can be regarded as

a general collective search problem. Each phase is covered in more detail in the

following sections.

Figure 3.2: State diagram of group behaviour

3.3.1 Definition of Task

For task execution phase, currently the tasks are not detailed out. It can be

anything, depending on the application domain. The only requirements are that

the objective is to find and carry out all the task in the area or workspace. carry

out is left to as anything, however it obviously needs to be allocated a standard
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amount of time to be executed (e.g. an arbitrary value of 15 unit time per task

execution).

For the current approach, it is assumed that all immunoids can execute all

the task at hand. This can be extended for example only certain immunoids are

capable of executing certain tasks or that a few of them need to attend a single task

or any variations of these. In the mine detection application using the AISIMAM

model [94], each ‘mine’ (i.e. task) needs to be ‘diffused’ (i.e. task execution) by four

robots (by simply detecting and going to the task’s location). Furthermore, the

allocation of tasks are done instantaneously, therefore there are no planning and

scheduling overheads in assigning tasks to robots. Moreover, another assumption

for the mine detection problem is that the tasks are static in their location (i.e. not

moving about). The element of dynamically changing environment is introduced

by placing another set of tasks into the workspace, whereby the immunoids need

to adapt to that new situation.

The detail definition of task assignment and execution falls into the research

area of Multi-Robot Task Allocation (MRTA) [29], which currently is not the

focus of this study. Thus, for this study it is defined as: Single-Task robots and

Single-Robot tasks with Instantaneous Assignment of the tasks, or shortened as

ST-SR-IA. The total number of task is also global, in the sense that all immunoids

have a priori knowledge of the total number of task in the experiment (e.g. 500

tasks are spread out in the workspace).

3.3.2 Definition of Antigen

As for the antigen, it depends on the environment of the workspace. In this

approach, it is considered the density of task distribution that the immunoid

have locally detected. This task density is divided into four levels, namely High,

Medium, Low and None. For each of these environment condition, the immunoid

needs to select the appropriate action strategies (i.e. the antibodies). Table 3.2 lists

the general relationship of task density being detected and the resulting stimulus

value, gi.

Therefore, the affinity of antibody i and antigen (the term gi(t) in Equation 2.3

and also Equation 3.1) can be derived by using a stimulus function. An example

to get the value of gi(t) is by using the stimulus function as shown in Figure 3.3.

The simple step function used to assign the antigen to antibody affinity values,

i.e. gi is as shown in Table 3.3.
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Table 3.2: Basic task density and gi relationship

Task density High stimulus value

High Aggregation, g0

Medium Searching, g1

Low Dispersing, g2

None Homing, g3

Figure 3.3: Stimulus function of antigen to antibody, gi [95]

Table 3.3: Antigen-antibody affinity stimulus function, gi (other index values re-
main as 0.0)

Task Detected (%) Task Density gi values

(66 – 100] High g0 = 1.0
(10 – 66] Medium g1 = 1.0
( 0 – 10] Low g2 = 1.0

0 None g2 = 1.0, g3 = 0.5
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The percentage of task detection is calculated from the number of locally de-

tected tasks over the total number of tasks which is known a priori. This cal-

culation would need to be done at some standard time interval so that current

environment changes are considered in evaluating action strategies. This time in-

terval can arbitrarily be assigned (e.g. every 40 unit times), but should obviously

take into account the appropriate interval depending on the scenario at hand.

3.3.3 Definition of Antibody

The antibody is defined as the action strategies that are available to the im-

munoids. After sensing the environment for a specific time-period, the immunoid

needs to consider what action strategy is well suited for that current situation.

This is when the Clonal Selection approach is executed within the immunoids’

internal state, which can use the stimulus function as shown in Figure 3.3.

However, the immunoid needs to consider other local immunoids antibody

evaluation. This is the immune network part of the approach. This step is done

via communicating the related information with other nearby immunoids. The

default antibody which is assigned the highest stimulus value and hence being

selected at the beginning is the Random Search strategy.

Table 3.4: Mutual stimulus coefficient, mij

robot i \ robot j Ab0 Ab1 Ab2 Ab3

Aggregation, Ab0 1 -0.4 -0.2 -0.4
Search, Ab1 -0.4 1 -0.4 -0.2

Dispersion, Ab2 -0.2 -0.4 1 -0.4
Homing, Ab3 -0.4 -0.2 -0.4 1

If two robots have high stimulus values for Ab0 which is Aggregation mode,

then that behaviour is stimulated. The coefficient values of this mutual stimulus,

mij is shown in Table 3.4 which follows Sun et al. [95]. The coefficients are high

(i.e. stimulus), if the antibodies of the two robots, i and j are the same. Otherwise,

they have low values (i.e. suppressed). These values are assigned arbitrarily and

can be changed accordingly depending on the scenario. The degree of stimulation

or suppression that is intended can be guided by how we view the similarity or

difference of two behaviours. For example, if one robot has Aggregation (Ab0)

behaviour and the other robot has Search (Ab1) behaviour, then this should be

mutually suppressed (if that is what we intended, such as in a Herding task). If
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the scenario is to have the robots cover a wide area (such as in Covering task),

then different behaviours from the two robots should be stimulated instead.

The mutual stimulation (or suppression) guarantees that the action being se-

lected is appropriate with the local environment and also an emergent local group

behaviour is executed, thus the task execution at that local site is (nearly) opti-

mal. The interaction of antigen-antibody in one immunoid, and antibody-antibody

among immunoids is depicted in Figure 3.4. After all the interaction and calcula-

tion, the antibody with the highest stimulus value is selected for execution. The

values are the same as in subsection 2.4.2, whereby mij is the mutual stimulus

of antibody i and j. gi is the affinity of antibody i and antigen while si is the

concentration of antibody i. ci is the concentration of T-cell which control the

concentration of antibody and β is the parameter of response rate of other anti-

gens.

Figure 3.4: Immune Network which includes T-cell and B-cell models [95]

3.3.4 Group Control Algorithm

The group control or coordination phase is done in a distributed manner via

local communication between nearby immunoids. When an immunoid encounters
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another immunoid and both have the same or similar strategy, this strategy is

stimulated; if not, the strategy is suppressed. This facilitates the group to self-

organise towards a common action which is optimal for the local environment. If

an immunoid is stimulated beyond a certain threshold which makes it an excellent

immunoid, its behaviour is regarded as adequate in the system such that it can

transmit its strategy to other inferior immunoids. This is a metaphor of the plasma

cell in the biological immune systems. However, there is no central point of control

in coordinating the group behaviour.

Figure 3.5: Immune Network-based Cooperative Robots [48]

Figure 3.5 shows a general overview of a possible scenario in an Immune

Network-based Cooperative Robots during its execution. The immunoids would

detect their own local surroundings for tasks and determine their density, then

communicate with other nearby immunoids which can then determine either to

stimulate further or suppress the neighbouring immunoids’ action selections. This

cycle will continue until all the tasks in the workspace are covered.

Algorithm 3.1 shows the general algorithm of immune network that utilise the

B-cell and T-cell modelling. The algorithm is for each immunoid. This will then

interact with others as and when appropriate. Si(t) in the algorithm is the stimulus

value of antibody i at time t (referring to Equation 3.1), where i = 1 · · ·N , N

is the number of antibody types. si(t) is the concentration of antibody i at time

t. ci(t) is the T-cell model that represents the concentration of T-cell at time t,

which control the concentration of antibody.
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Algorithm 3.1 General Immune Network Algorithm—for each immunoid

Require: t = 0, Si(0) = si(0) = 0.5 for i = 0 · · ·N − 1, N is number of actions
Ensure: Ab with highest concentration is executed

1: Abmax ← Ab1 //at start Ab1 is selected
2: loop
3: Execute Abmax

4:
5: for i← 0 to N − 1 do
6: Calculate Si(t) //refer Eq.(3.1)
7: Calculate si(t) //refer Eq.(2.4)
8: Calculate ci(t) //refer Eq.(2.5)
9: end for

10:
11: if Si(t) > τ̄ then //stimulated above upper threshold, refer Eq.(3.2)
12: immunoid ← excellent

//can transmit Ab when encounter immunoidinferior

13: else if Si(t) < τ then //below lower threshold, refer Eq.(3.3)
14: immunoid ← inferior

//receives good Ab when encounter immunoidexcellent

15: if immunoid encounter immunoidexcellent then
16: for all i do
17: receive Abi //receives all Ab from immunoidexcellent

18: renew si(t) //renews concentration of each Ab
19: end for
20: end if
21: end if
22:
23: if Abi has max(si(t)) then //select Ab with maximum concentration
24: Abmax ← Abi
25: end if
26:
27: t← t+ 1 //each iteration is standard (e.g. 40 unit time)
28: end loop

Si (t) = Si (t− 1) +α
N∑

j=1

(mij−mji)sj(t−1)

N
+ βgi (t)− ci (t− 1)− ki

 si (t− 1) (3.1)

The stimulus term and suppression term in Equation 2.3 are combined as

the second term shown in Equation 3.1, because mij is plus (stimulus) or minus

(suppression) value. mij is referred to in Table 3.4 that adopts the values used
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by Sun et al. [95] and can be assigned arbitrarily. As usual, i, j = 1 · · ·N and sj is

concentration of other immunoid’s antibody. α and β are parameters of response

rate of other immunoid and the environment (antigen) respectively.

Equations 3.2 and 3.3 are the functions and values for the upper (τ) and

lower (τ) thresholds in determining whether an immunoid becomes an excellent

(i.e. plasma cell) or an inferior (i.e. inactivated cell) robot. These equations are

following Sun et al. [95] that determine if a robot is able to transmit (i.e. influence)

other robots (if it is excellent) or be influenced by other robots (if it is inferior).

This is because, if a robot has a strategy that is very strong, it should transmit

that to others. However, if the robot has low stimulation for all its strategies then

it should be following other nearby excellent robots (if there is any). This will

ensure that optimal behaviours can emerge for the local situation.

τ =
1

1 + e−0.5

= 0.622 (3.2)

τ =
1

1 + e0.5

= 0.378 (3.3)

3.4 Immune Systems Inspired Cooperation

Model

This study’s proposed approaches are based on Sun et al. [95] algorithm, with the

extension of Memory ability so that quick response can be achieved in the future

and also Learning in order to provide generalisation.
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3.4.1 The INT-M Model: Immune Network with

Memory

In order to improve the algorithm as described in algorithm 3.1, a specific memory

mechanism is proposed in order to retain the appropriate action for a specific en-

vironment condition. This mechanism should be introduced after the immunoids

have gone through a cycle of action-selection phase since it requires that a pre-

viously successful action had been triggered (i.e. the immunoids are either in the

activated/normal or excellent state).

Figure 3.6 displays the Clonal Selection process, whereby various B-cells try

to identify the antigen. Once the appropriate B-cell is selected, it is activated and

multiply (proliferate), so that adequate immune response could be mounted later.

The activated B-cells will proliferate and differentiate into Plasma cells that will

secrete specific antibodies and Memory cells which will be in the host body for

quite a long time [20]. These memory cells will act as catalysts in mounting a

quick immune response to the same antigen in the future.

Figure 3.6: B-cell activation and differentiation into Memory and Plasma cells [20]

This approach is termed as Immune Network T-cell-regulated—with Memory

(INT-M) as it involves modelling the memory part of the biological immune sys-

tems. The algorithm is shown in algorithm 3.2 which is an extension of algo-

rithm 3.1 which is to be performed in each immunoid in the group.
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Algorithm 3.2 Immune Network T-cell-regulated—with Memory (INT-M)

Require: t = 0, Si(0) = si(0) = 0.5 for i = 0 · · ·N − 1, N is number of actions
Ensure: retain previous Ab if immunoid is not inferior within similar environ-

ment, execute Abmax

1: Abmax ← Ab1 //at start Ab1 is selected
2: immunoid ← inferior //at start immunoid is inferior
3: environment ← similar //at start environment is similar (i.e. static)
4: loop
5: Execute Abmax

6:
7: //immunoid is activated (normal) or excellent
8: if immunoid 6= inferior then
9: //environment sensed is similar to previous

10: if gi(t) ≈ gi(t− 1) then //refer Figure 3.3
11: Si(t)← Si(t− 1) //use previous Stimulus values
12: si(t)← si(t− 1) //use previous Ab concentration values
13: ci(t)← ci(t− 1) //use previous T-cell concentration values
14: else
15: environment ← changed //need to re-evaluate action
16: end if
17: end if
18:
19: //immunoid is inferior or environment has changed
20: if (immunoid = inferior) ‖ (environment = changed) then
21: //use line 5–21 in Algorithm 3.1
22: end if
23:
24: if Abi has max(si(t)) then //select Ab with maximum concentration
25: Abmax ← Abi
26: end if
27:
28: t← t+ 1 //each iteration is standard (e.g. 40 unit time)
29: end loop

The lines 8–17 in algorithm 3.2 is the added memory part of the algorithm.

Its function is to use the previous action for the currently similar environment

situation. The similarity is evaluated based on the gi(t) function whereby Table 3.3

is referred. This extension will enable quicker action-selection process whereby

the previous Si(t), si(t) and ci(t) values are used and eliminating the need to

recalculate their values. If the current situation is different then the algorithm

simply flag the environment variable, thus re-evaluating the related equations.

The memory ability is only triggered in immunoids that are activated (i.e.

normal) or excellent. Immunoids that are inferior are deemed not suitable to use

their previous action as they have low stimulus values or they have used the values
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received from other excellent immunoids. Therefore, it is only appropriate that

the utilisation of memory is only for those immunoids that are not in the inferior

category. An immunoid is considered inferior when it has low stimulation values

for all its strategies, as discussed at the end of subsection 3.3.4.

In the biological immune systems, the Clonal Selection process is local whereby

although the immune cells are distributed throughout the organism, only cells that

are located near the infection site in involved in the process [19]. This is reflected in

the proposed INT-M algorithm in which the memory ability is for each immunoid,

thus maintaining the appropriate response for its local environment.

Another approach that models the Immune Learning ability in the group

behaviour which is named as Immune Network T-cell-regulated—Cross-Reactive

(INT-X) approach is also proposed in this study. The INT-M algorithm is initially

studied and later further refinements to it are proposed as discussed in chapter 5.

Therefore, the INT-X approach is deferred since it builds on top of the INT-M

algorithm and it’s refinements. However, the details of the second proposed ap-

proach is available in section 5.5.

3.5 Cooperative Tasks

The proposed approaches are suited for specific task scenario in order to test the

methods. There are various multi-robot cooperative tasks ranging from garbage

collecting, formation control, patrolling to shepherding and perimeter detection.

The feature that would be needed in a viable and beneficial test scenario are coop-

erating robots, dynamic elements, no central commands, measurable performance

and most importantly can clearly reflect real-world scenarios applicability.

The task scenario that would be related to other real-world scenarios, hence

suitable for investigation are the RoboShepherd test scenario and the Perimeter

Detection and Tracking problem. This section discusses how the proposed algo-

rithms are to be implemented in the experimental setup.

3.5.1 RoboShepherd

The RoboShepherd task scenario provides a dynamic environment with two types

of robots in the scenario, the dogs and the sheep. The dog and sheep problem is
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a typical problem in distributed autonomous robotics system. Furthermore, there

can be multiple dogs and sheep robots to test cooperative behaviours. The basic

shepherding task is described in this subsection.

Figure 3.7: The dog-sheep problem scenario, the red ovals are the dogs and the
blue circles are the sheep

The objective is for the robot dogs (i.e. the shepherd) to guide the robot sheep

into an area called the grazing site or safety zone within a limited amount of

time [88]. The robot sheep reacts by performing simple evasion or disperse be-

haviour to the presence of nearby shepherd providing a dynamic environment.

Otherwise, the sheep exhibits random walk behaviour. The robot dogs must con-

trol the sheep so that they do not move far away from the grazing site. The

number of robot dogs and sheep can be changed.

In this study, the scenario will require multiple robot dogs to perform cooper-

ative behaviour in order to shepherd multiple sheep into the grazing site as shown

in Figure 3.7. This is known as the Collecting task in the RoboShepherd prob-

lem [51]. These shepherds will need to coordinate their action so that optimal and

effective group behaviour can be achieved in executing the task. This requires that

the robot dogs have the positional information about the sheep in their detecting

range, which involves distance and heading or azimuth [50].

This problem is highly dynamic and obviously requires the robots to have

real-time processing of partial information of the environment. Our proposed

algorithm is based on immune network theories that have many similarities with
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the multi-robot systems domain. The research proposes a memory-based immune

network that enhances a robot’s action-selection process and can obtain an overall

a quick group response. The algorithm which is named as Immune Network T-

cell-regulated–with Memory (INT-M) is applied to the sheepdog scenario [78, 80].

Figure 3.8: The INT-M states, the greyed states are bypassed when the memory
mechanism is triggered resulting in the dashed arrow lines

The INT-M model is based upon the work by Sun et al. [95], and it involves

modelling the memory part of the biological immune systems. A specific mem-

ory mechanism is proposed in order to retain the appropriate action for relevant

environment condition. This mechanism is introduced when the newly sensed en-

vironment is similar to the previous environment. Thus, a quick action-selection

process can be executed without the need of re-evaluating the new situation, as

shown in Figure 3.8.

The two proposed models which are Immune Network T-cell-regulated–with

Memory (INT-M) and Immune Network T-cell-regulated–Cross-Reactive (INT-X)

would require that each robot dogs to use the immune-based algorithms so that

they can choose which behaviour to select and communicate with other robot dogs

in order to maintain the sheep’s progress towards the safety zone. Even though

the dog-sheep problem is dynamic in the sense that the target (i.e. sheep) are

constantly moving, the environment is sensed at specific time step therefore at

each iteration the target would essentially be static. This enables the variables of

the INT-M and INT-X algorithm to be evaluated normally. However, the basic

behaviour of searching is changed to include pursuit or chasing element. This

is shown in algorithm 3.3 which is used in algorithms 3.2 and 5.1, i.e. when the

selected antibody is Ab1, Seaching behaviour.
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Algorithm 3.3 Search strategy with pursuit behaviour

Require: Search state is currently selected by the immunoid
Ensure: Exhibit searching & execute pursuit behaviour when sheep is detected

1: loop
2: if no sheep detected then
3: perform random walking //move in random direction
4: else
5: select nearest sheep //determine steering point
6: perform pursuit behaviour //chase the selected sheep
7: end if
8: end loop

3.5.2 Cooperative Robots for Perimeter Detection and

Tracking

Perimeter detection and tracking is another relevant cooperative task that is suit-

able to be investigated. It is applicable in several areas, including military (i.e.

locating minefields or surrounding a target), nuclear or chemical industries (i.e.

tracking radiation or chemical spills), environment (i.e. tracking oil spills), and

space (i.e. planetary exploration) [15]. In many cases, humans are used to per-

form these usually dangerous tasks, but if robotic systems could replace humans,

it could be extremely beneficial.

A perimeter is an area enclosing some type of substance. There obviously

two types of perimeters, static and dynamic perimeters. A static perimeter does

not change over time, an example is a minefield. Dynamic perimeters vary over

time that expand or contract over time, like a radiation leak. This task provides

quite a challenge for cooperating robots to quickly detect and surround the whole

perimeter while it is changing.

In perimeter detection tasks, multiple robots locate and surround a substance,

while dynamically coordinating as additional robots locate the perimeter. In this

study substances are considered ground-based even though in the real world it

can be airborne or underwater. However, there are several limitations to this

tasks such as if the perimeter moves with a velocity greater than the robots can

move, then the perimeter cannot be tracked. Abrupt perimeter changes is also a

limitation because this requires sharp turns that the robots’ might not be able to

execute as it has limited turning radius [16].

Figure 3.9 shows an example of a perimeter detection and tracking problem

scenario. The substance is changing by expanding and contracting at different
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Figure 3.9: The perimeter detection and tracking problem scenario

area. The expansion and contraction rates can be assumed as a constant. Several

robots will need to effectively cooperate by spreading out in order to detect the

perimeter and then surround the substance. The performance criteria in this

scenario is the time limit in detecting and surrounding the whole perimeter; thus

‘containing’ it from further expansion (i.e. leak or spill).

The two models, INT-M and INT-X can be deployed in the robots such that the

dynamically changing perimeter’s location is considered for evaluating the action-

selection phase. The robots will also need to communicate with one another in

order to optimally position itself to achieve the objective.

This task provides dynamic challenging environment that requires the robots

to be able to quickly detect the environment and concurrently adapt to changes.

It is considered that this scenario might be quite complex because quite a lot of

changes and adaptation of the algorithm to suit the scenario that need to be done.

Therefore, this scenario is not implemented in the study but can be considered in

any future works.

3.6 Conclusion

This chapter have discussed the immune network based cooperation model in-

troduced by Sun et al. [95] and have proposed a memory extension to it. The

approach that utilises memory had been described. Relevant cooperative tasks

have been discussed, namely the dog-sheep problem (i.e. RoboShepherd) and the

perimeter detection and tracking scenario. The second approach (INT-X) is briefly
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mentioned and further discussion is in section 5.5. The INT-M and INT-X model

are suited for the relevant tasks but only the INT-M is investigated further. This

is because, the research is also focused on investigating any refinements to the be-

haviours that are related to cooperation. Moreover, the study of a second immune-

inspired model would be more appropriate when there is a deep understanding and

research done on any proposed refinements that can be identified whether it is from

bio-inspired or immune-inspired research.



Chapter 4

Experiments & Results of

Immune Inspired Models in

Multi-Robot Cooperation Tasks

4.1 Introduction

This chapter presents the results obtained and discusses the effect of the immune

system inspired model applied onto multi-robot cooperative shepherding. A dis-

tinct part of this study is that we are looking into the memory-based immune

network cooperation approach by the robots (i.e. dogs) in maintaining the herd

(i.e. sheep). This utilises the advantage of memory in the action-selection phase

and affects the resulting dynamic behaviour of both the robot dogs and the robot

sheep. Further verification of the ‘cooperation mechanism’ is performed to show

the ability of the immune inspired approach.

4.2 Simulation Setup

A few software tool-kits were tried out, such as the Optimization Algorithm Toolkit

(OAT) 1.4 [12]. This is basically a tool-kit for various optimisation algorithms,

such as Genetic Algorithm, Ant Colony Optimization, etc. However, the tool-

kit primarily focuses on optimisation problems and is not suitable for robotics

research.

41
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This research also studied the OpenSteer1 C++ implementation of Reynolds

[86] seminal works in autonomous steering behaviours2. The flocking behaviours in

this study closely follow the model mentioned in his work. However, the OpenSteer

platform is quite outdated hence it is not selected.

Another computational platform that is interesting is the RoboCup simulation

software. Robot Soccer World Cup (RoboCup) is a competition of robots playing

soccer that started in Japan by the works of Kitano et al. [43, 44]. The competition

involves real and simulated robots. For the simulation category, there are 2D and

3D versions of the platform3. The 3D simulation platform uses the open sourced

SimSpark4 generic application framework [70]. Another category under RoboCup

is the RoboCup Rescue competition which uses simulated robots [45, 96]. However,

since this study focuses on cooperation models instead of competitive behaviours

thus the RoboCup simulation platforms are not suitable for this research.

This research used the Player/Stage simulation platform on a Fedora 9 Linux

operating system [30]. The version being used is Player 2.1.2 and Stage 2.1.1

which are not the latest release of the software but are quite stable releases. The

simulation environment is released as an Open Source software. A snapshot of a

screen is as shown in Figure 4.1.

The Player/Stage environment is suitable because it supports a wide variety

of mobile robots and accessories. Moreover, the Player robot server is proba-

bly the most widely used robot control interface in the world5. Its simulation

back-ends, Stage and Gazebo, are also very widely used. Since they are both

Player-compatible, client programs written using one simulator can usually be

run on the other with little or no modification. The key difference between these

two simulators is that whereas Stage is designed to simulate a very large robot

population with low fidelity, Gazebo is designed to simulate a small population

with high fidelity. Thus, the two simulator are complementary, and users may

switch back and forth between them according to their needs.

Player provides a network interface to a variety of robot and sensor hardware.

Player’s client/server model allows robot control programs to be written in almost

any programming language and to run on any computer with a network connection

to the robot. Player supports multiple concurrent client connections to devices,

1http://opensteer.sourceforge.net/
2http://www.red3d.com/cwr/steer/
3http://sserver.sourceforge.net/
4http://simspark.sourceforge.net/
5http://playerstage.sourceforge.net/wiki/index.php/PlayerUsers

http://opensteer.sourceforge.net/
http://www.red3d.com/cwr/steer/
http://sserver.sourceforge.net/
http://simspark.sourceforge.net/
http://playerstage.sourceforge.net/wiki/index.php/PlayerUsers
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Figure 4.1: Player/Stage: the simulation environment being used

creating new possibilities for distributed and collaborative sensing and control.

Stage simulates a population of mobile robots moving in and sensing a two-

dimensional bit-mapped environment. Various sensor models are provided, in-

cluding sonar, scanning laser rangefinder, pan-tilt-zoom camera with colour blob

detection and odometry. Stage devices present a standard Player interface so

few or no changes are required to move between simulation and hardware. Many

controllers designed in Stage have been demonstrated to work on real robots.

Gazebo is a multi-robot simulator for outdoor environments. Like Stage, it is

capable of simulating a population of robots, sensors and objects, but does so in a

three-dimensional world. It generates both realistic sensor feedback and physically

plausible interactions between objects, which includes an accurate simulation of

rigid-body physics.

Furthermore, these platforms are licensed under the General Public Licence

(GPL), which means it is free to use, distribute and also modify. This entails

that it is possible to include the proposed Immune-based approach in the code

repository of the robot control component.

Figure 4.2 depicts the overall interactions between different components; namely

the Player server, the Stage and Gazebo simulations platform and robots hard-

ware [46]. The client commands interacts with the Player server via the Transmis-
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Figure 4.2: Player/Stage/Gazebo: the big picture [46]

sion Control Protocol (TCP) or User Datagram Protocol (UDP) depending on the

usage. The Player server can then interact with either Stage or real robot hardware

via TCP; using wired or wireless connections. Simulations can also be executed

in three-dimensions on the Gazebo platform using Shared Memory (SHM). The

Player server then sends the current data reading of the sensors; real or simulated;

back to the client control program for further processing.

In previous sections, we argued that the immune network is a suitable analogy

for multi-robot cooperation problems. Experimental data are presented in sec-

tions 4.4 and 4.5 that validate the applicability and efficiency of the proposed

algorithm. As mentioned in the final chapter, the study could be continued in this

area, whereby the robots tasks can be appropriately changed to suit other applica-

tion domains. Other than that, another future work that could be performed is to

transfer the simulation experiment onto mobile robots for further investigations.

4.3 RoboShepherd Test Scenario

The selected scenario was explained in general in subsection 3.5.1 where only the

Collecting task of the RoboShepherd scenario is considered in this study. Sev-

eral modifications were made from the original RoboShepherd scenario introduced

by Schultz et al. [88]. A few assumptions were also made to simplify the sim-

ulation, such as the sheep will stop once it arrived in the central grazing site.
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Subsection 4.3.1 describe the scenario setup for the simulation experiments that

were done.

4.3.1 Scenario Setup

The experiments are done for shepherding 2, 5 and 8 numbers of sheep. The shep-

herding behaviours are the immune-based and the local shepherding behaviour.

In local shepherding, the robot dogs will only chase the sheep within its range and

do not have any cooperation mechanism. The range for the robot dogs are set

to 5 metres for forward sight (i.e. laser) and 20 metres for emulating the sense of

hearing (i.e. communication radius).

Table 4.1: Simulation setup for RoboShepherd scenario

Features Details

Number of sheep 2, 5 & 8 (Colour: red)
Number of dogs always 4 (Colour: blue)
Dogs’ sensor 5 metres forward laser
Dogs’ communication 20 metres radius
Area / Field 40x40 metres (walled)
Grazing site centre with 5 metres radius (sheep will stop)
Time limit 5 minutes
Shepherding behaviours Immune-based & Local behaviour

The field is constructed of a walled field with the size of 40 metres each side.

The grazing site is situated at the centre with a radius of 5 metres and each

sheep that have entered it will stop. Each experiment is limited to a limit of 5

minutes and it is done for three times where the average values are then calculated.

Positions of both sheep and dogs are random for each trials. Table 4.1 summarises

the simulation setup for the RoboShepherd test scenario.

Figure 4.3 is a snapshot of one of the experiment done that shows the limited

behaviour of local shepherding. Other robot dogs do not sense the sheep that is

outside of the grazing site. The one robot dog that is chasing the particular sheep

is doing all the shepherding, which is not optimal as a group.
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Figure 4.3: The simulation experiment: involving 2 sheep (red)

4.4 Simulation Results

The performance is measured using two aspects. The average time of the first sheep

that is shepherd into the grazing site (which is known as Time for Completion),

and also the number of sheep left in the field (which is known as Incomplete Task)

after the maximum time is up. The reason that the first sheep is chosen is because

it is anticipated that there might be situation whereby the time it takes to herd

all the sheep into the grazing site would be too long. Therefore, the first sheep is

used to signify how quick the sheep can start to complete the overall task.

4.4.1 Average Time for Completion

The average time for completion is shown in Figure 4.4, where the point for local

behaviour with 8 sheep is not plotted because all sheep are unable to be shepherd

into the grazing site by using that approach. This result shows that the immune-

based approach can scale better compared to the local behaviour. The results also

show that too few sheep is not optimal, because they tend not to flock once they

are separated (this can be seen during the run of the experiments). Meanwhile

in the five sheep scenario, the sheep usually will either be in a big or small flock

thereby posing an easier shepherding task to the robot dogs. On the other hand,

if the ratio of sheep is too high compared to the available shepherd, the task

becomes more complex. But as shown in Figure 4.4, it is still manageable for the
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Figure 4.4: Average Time for Completion

immune-based method but not so for the local behaviour approach.

The number of sheep of 2, 5 and 8 were chosen to represent three types of

shepherding complexities. Two sheep in a flock to represent a small sheep-to-dog

ratio (i.e. 1:2) while five sheep representing an average complexity. Meanwhile,

eight sheep is to represent a highly complex dynamic situation where there are

more sheep than dogs, i.e. an underactuated scenario. It is considered that these

three numbers are suffice to represent the types of complexities that can occur for

such a situation.

4.4.2 Average Number of Incomplete Task

Another important performance to consider is the average number of incomplete

tasks that signify the ability to maintain the balance of the overall goal of shep-

herding all the sheep and also completing it in a short time. Figure 4.5 shows that

the immune-based approach has lower average incomplete task as the number of

sheep gets larger, meanwhile the local shepherding totally fail when the number of

sheep is set to eight which represents a highly complex situation. This result to-

gether with the result explained in the previous section signifies that the immune

network cooperation in shepherding on average can achieve better completion time
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Figure 4.5: Average Number of Incomplete Tasks (Time limit: 300 seconds)

without sacrificing the overall goal (i.e. having low rate of incomplete tasks). The

result in Figure 4.5 is based on a time limit of 300 seconds. It is expected that the

immune-based approach would have a much lower average incomplete task rate if

the time limit is set to be higher.

This subsection shows that the use of immune network cooperation in a shep-

herding task is quite robust to the sheep-to-dog ratio. The immune-based be-

haviour can still perform although the number of sheep is twice the number of

dogs. It must be noted that the type of shepherding being studied is the Collect-

ing task which is inherently complex as mentioned in subsection 3.5.1. The number

of sheep selected follows the previous subsection for the same reason, which is to

represent the three types of complexities that can occur in such a scenario.

4.4.3 Discussions

An observation from these results is that local shepherding behaviour would fail

when the number of sheep increases. Also, the Immune-based approach shows

that it is quick but without sacrificing overall goal of herding the sheep. A good

shepherding performance would always maintain the overall goal of shepherding

all of the sheep into the grazing site.
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One difficulty of the scenario that have been met is that the sheep distribution

in the field is randomly scattered. Therefore, the dogs task had been scattered all

over the area, trying to herd the nearest sheep (in relation to the grazing site).

This is known as a Collecting task category, similar to a garbage collecting task

(with a difference that the ‘garbage’ dynamically moves around) [51, 53].

Finally, the performance criterion can be diversified in order to obtain a more

holistic comparison of the approaches. Some of the performance criteria that might

be useful are:

1. the average distance of the flock for each time-step

2. the number of communication messages required by the robot dogs

3. the power/energy consumption of the robot dogs to complete the tasks

The average distance of the flock can show that the herding was well maintained

by the robot dogs, hence signifying a good herding approach. The communication

complexity can show the cost of achieving the cooperative shepherding by the robot

dogs. The same goes for the energy criterion, whereby this cost can be taken into

consideration for evaluating the performance of a particular shepherding approach.

The first performance criteria above is used in the experiment in section 5.3.

4.5 Verification of the Immune Inspired

Cooperative Mechanism

This section is to test the underlying immune inspired cooperative mechanism,

with regard to the stimulation and suppression of antibodies amongst the group

of robots. Simulation experiments without using the Player/Stage platform were

conducted to verify the proposed cooperation mechanism.

In this test, there are four robot dogs with no sheep involved. The presence

of sheep (i.e. the percentage of task detected) are hard coded into the robot dogs.

This is because, this test is to verify the underlying immune inspired cooperative

mechanism, specifically their response to environmental changes and whether the

robot dogs can influence (i.e. transmit their strategies) one another.

The values for the constants are α = 0.3, β = 0.05 η = 0.05 and k = 0.002

which follows Sun et al. [95] values, except for η which is our own value. Since
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α and β are response rates (of other antibody and antigen), therefore it is set to

a low number. It can be increased if we want to mimic a quick stimulation (or

suppression) rates, but it would then be not realistic for a real world problem. This

is the same for η which is a constant in calculating the concentration of T-cell,

ci. The value of k should be very low since it represents the natural extinction

coefficient of the immune cells. At the start of simulations, the values for gi are

set to 0.0 except for g2 (Dispersion) and g3 (Homing) are assigned 1.0 and 0.5

respectively. This is because, we want the robot dogs to initially disperse so that

they can find more sheep and not group together, hence they can shepherd more

sheep as a whole.

Robot 4 starts with not seeing any of the tasks (i.e. percentage of tasks detected

is 0.0%), although assumption is made that all robots are within each others’ com-

munication range. This may happen for instance when robot 4 is facing another

direction from the rest of the group. Meanwhile, the other robots are assumed

to have already detected 75.0% of the task at start time. Furthermore, it is as-

sumed that all robots remain geographically static over time. This is in order to

prevent the robot dogs from being out of each others’ communication range, since

the purpose of this test is to verify the workings of the underlying cooperative

mechanism.

Figures 4.6–4.9 display the average for each antibodies’ concentration value

(i.e. si) over time. The antibody (i.e. strategy) with the highest concentration

(i.e. maximum value) of si will be selected by the robot to be executed.

4.5.1 Response to Environmental Changes

In order to test the response of robot 1–3 towards changes in its environment, all

of the robots’ tasks detected values are changed to 0.0% at t = 50. Figure 4.6

shows the effects of this, whereby slower increase of robot 1–3 Ab2 (Dispersion)

value and the gradual decrease of their Ab0 (Aggregation) value can be seen. This

is due to the fact that only robot 4 is influencing this behaviour to the other three

robots.

For testing the response of robot 4 to environmental changes, the task detected

of all robots are assigned to 75.0% at t = 50. Figure 4.7 displays a steeper and

faster increase of Ab0 (Aggregation) and decrease of Ab2 (Dispersion) respectively.

This can be seen in Figure 4.7 that from the time of intervention at t = 50 the

concentration of antibody, Ab0 for robot 4 increase to 1 at around t = 70. On the
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other hand, the concentration of antibody Ab2 for robot 4 decrease significantly

within that time range. This signifies a higher level of influence onto robot 4 by the

other three robots. This is known because, the average concentration for antibody

Ab0 is very high and all the robots are within each others’ communication range

that enables them to influence each other. In real applications, this means that

when there are changes in the environment the robot dogs will adapt accordingly

to achieve optimal local group behaviour.

4.5.2 Propagation of Stimulation and Suppression of

Antibodies

Simulations are run to evaluate the propagation of stimulation and suppression

of various antibodies among the group of robots. These will show that the local

group behaviour is propagated within the neighbourhood. The idea for this test is

that, if neighbouring robot dogs have chosen Ab0 (Aggregation) they can strongly

influence robot 4 which currently chooses Ab2 (Dispersion) if that robot 4 is in an

inferior state. The situation for this test is the same as mentioned in the early

part of this section 4.5. In Figure 4.8 robot 4 gradually becomes excellent, then

at t = 50 it is set to be inferior. The definitions of excellent and inferior states

have been discussed at the end of subsection 3.3.4, whereby a robot dog becomes

excellent when any one of its strategy (i.e. antibody) stimulus value (i.e. Si) is

above 0.622 and it becomes inferior when it has none of its antibody stimulus values

are beyond 0.378 (see Equations 3.2 and 3.3). The figures in this section show

the antibody concentration value, si(t). The antibody stimulus values are used to

track the state of excellent or inferior robots during the simulation experiment.

The figure shows that in almost instantly robot 4 receives the ‘better’ strategy

(Aggregation, Ab0) from the other robots. The other robots can correctly sense

the task. However, since robot 4 local task detected remains 0.0%, Ab2 is still

stimulated. Robot 4 eventually becomes excellent again and thus selects Ab2

(Dispersion) once more; as it would much more ‘believe’ what it can sense. This

happens at t ≈ 110 as shown in Figure 4.8.

Figure 4.9 shows as robot 4 gradually becomes excellent, it continues to choose

(i.e. ‘believe’) Ab2 (Dispersion) strategy; which is suited to its locally sensed en-

vironment (i.e. no task detected). It remains to focus on it’s locally sensed envi-

ronment, however its Ab0 (Aggregation) is highly stimulated because of the prop-

agation of this strategy from the other robots. The other robots’ Ab2 strategy is
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also stimulated.

4.6 Conclusion

This chapter has discussed about the robotics simulation being used, and described

the test scenario that is implemented. The simulation results on RoboShepherd

test scenario as discussed in section 4.4 have shown that the INT-M model is

feasible to be implemented and used in multi-robot systems. Furthermore, the

underlying ‘cooperation mechanism’ of the INT-M model has been verified. The

next chapter will discuss about the refinements of the cooperative shepherding

behaviours in order to have a better performance of multi-robot systems.



Chapter 5

Cooperative Shepherding

Refinements

5.1 Introduction

In chapter 4, the immune inspired model of INT-M had been experimented. The

underlying cooperative mechanism had also been discussed. From the simulations

done, there are several limitations of multi-robot cooperative behaviour that had

been identified. These limitations are related to how the shepherds navigate and

determine steering points in order to push the flock towards the safety zone.

These limitations affects the behaviour of the shepherds as a group such as

several shepherds competing with each other in order to arrive at the same steering

point. It is much better if multiple shepherds cooperate in herding the flock in

an organized way, such as forming a line behind the flock. Other than that such

limitations also affect the behaviour of the sheep. For example if the shepherds

move too near towards the flock of sheep, then there is higher possibility that the

flock would get separated thus making the task of herding the flock more difficult.

This chapter discusses about the refinements proposed in the cooperative shep-

herding behaviour. These refinements are needed in order to achieve better shep-

herding. There are three refinements proposed in section 5.2 which are Shepherds’

Approach, Shepherds’ Formation and Steering Points’ Distance that are discussed

in subsections 5.2.1, 5.2.2 and 5.2.3 respectively. Other than that, further refine-

ments had been identified afterwards which is regarding flock identification that

is discussed in section 5.4. Furthermore, another proposed approach of modelling

57
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Immune Learning ability into the group behaviour is also discussed in the Immune

Network T-cell-regulated—Cross-Reactive (INT-X) approach in section 5.5.

5.2 Shepherding Behaviour’s Refinements

Figure 5.1: An example of the refinement of low-level shepherding behaviour:
robot dogs lining-up (the grazing site is located at the top-right corner)

Multiple shepherds pose a few underlying problems regarding the interaction

between the shepherds and the flock [53]. For example, flock separation can often

occur simultaneously at different parts of the flock when disturbed by several

shepherds. This makes it hard to control the flock and achieving the overall goal

of herding it. The task of multi-robot shepherding requires inherent cooperation

in which to achieve the objective, each robots in the team depends on the actions

of one another.

The proposed refinement of the INT-M model discussed in this section includes

Shepherds’ Approach, but mainly focused on the Shepherds’ Formation and Steer-

ing Points’ Distance aspects. These three refinements are then applied onto the

dog and sheep scenario.

The formation involves the robot dogs to line-up behind the group of sheep so

that the flock can be better controlled. Figure 5.1 is the depiction of the proposed

refinement of the approach by having the robot dogs forming a line behind the

group of sheep. The basic lining-up formation is shown in Figure 5.2, where the

red marker is the imaginary centre of the flock that needs to be herded.
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Figure 5.2: An example of the robot dogs lining-up; the red marker is the imagi-
nary flock centre (the grazing site is located at the bottom-right corner)

5.2.1 Shepherds’ Approach: Safe Zone

The shepherds’ approach towards the flock of sheep is also refined by making the

robot dog to obey an imaginary safe zone of the sheep. This is in order that the

sheep would not be too highly influenced by the incoming dog and resulting in the

sheep being separated. This is depicted in Figure 5.3 whereby Dog 2 is trying to

go to its steering point, but resulted in separating the flock. However, for Dog 1,

it obeys the safe zone of the sheep in the flock thus resulting with a curved path

towards its steering point.

This first refinement is achieved by setting a threshold value so that the shep-

herds do not get too near to the sheep. The safe zone of the sheep has been set

to 0.5 metres radius. This results in a lower flock separation occurrences, thereby

having better shepherding behaviour.

5.2.2 Shepherds’ Formation: Lining-up

This section discusses about the experiments done in order to choose between three

available lining-up methods as mentioned in Lien et al. [53] that are Global Dis-

tance Minimisation, Vector Projection and Greedy Distance Minimisation. These

three methods are ways that the shepherds can be assigned to the steering points

on the line behind the flock, in order to effectively herd that flock. This is impor-

tant as to achieve quicker time and shorter distance travelled by the shepherds to

reach their designated steering points. Moreover, the method chosen should min-
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Figure 5.3: Illustration of the use of safe zone in shepherds’ approach and the
occurrence of flock separation when it is not used

imise interference between the shepherds during their travel to their designated

steering points, as this may affect the shepherding behaviour.

Figure 5.4: An example of Global Distance Minimisation lining-up method

The Global Distance Minimisation is to get the most shortest total distance

travelled by all the shepherds. However, this means that there may be a time

overhead in doing the calculation. In Figure 5.4, to overall total distance of the

shepherds is minimised such that Dog1 is assigned to the bottom-most steering

point. In the Vector Projection method, steering points are simply assigned to

shepherds according to the matching of position from left to right. This is just
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Figure 5.5: An example of Vector Projection lining-up method

Figure 5.6: An example of Greedy Distance Minimisation lining-up method
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like when a group of people going towards a row of seat, where usually one will

sit on the chair that aligns to him or her, based on the number of seats and

person in the group. This method produces less interference amongst the shepherd

during travelling, and can be seen in Figure 5.5. The last method is the Greedy

Distance Minimisation whereby each shepherd will go to the nearest available

steering point. The method is simple but may cause disturbances to the shepherds

during their travel towards their designated points, as the routes may intersect one

another [53, 57]. In contrast to Figure 5.4, Dog1 is assigned to the steering point

that is nearer to it (i.e. greedy), as can be seen in Figure 5.6.

Figure 5.7: A graphical depiction at the start of the lining-up experiment; red
markers are steering points replacing sheep, and there are blue, yellow and ma-
roon robots to distinguish each team (both the shepherds and steering points are
randomly positioned; the grazing site at the centre of the field)

This experiment is done using C++ on the command line in order to verify

the shepherds’ formation performance. It is done using four randomly position

shepherds and a line where the steering points lies, which is also random. The

workspace size is 40x40 metres and each method is repeated for 1,000 times in

the simulation. Graphical depictions of this experiment is shown in Figures 5.7

and 5.8, which respectively display a before and after example situations.
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Figure 5.8: A graphical depiction after the lining-up experiment

Table 5.1: Summary of result for distance travelled, in metres (4 shepherds, 1000
iterations)

Method Mean Standard deviation

Global 91.41 23.72
Vector 92.50 23.60

Greedy 92.56 23.85



CHAPTER 5. COOPERATIVE SHEPHERDING REFINEMENTS 64

The summary of results in terms of total distance travelled is shown in Ta-

ble 5.1. The Global method achieved less distance, and the Vector Projection

method did quite well. It can be seen that the performance of the three methods

did not differ greatly.

However, as shown in Table 5.2 the Global method fared poorly in terms on

time taken to calculate the assignment of steering points for the line formation.

In contrast, the Vector Projection method achieved quicker time. Therefore, the

method that have been chosen for the Shepherds’ Formation refinement is Vector

Projection because of its low time overhead and a reasonable distance required for

the shepherds.

Table 5.2: Summary of result for time taken, in seconds (4 shepherds, 1000 itera-
tions)

Method Mean Standard deviation

Global 0.01687 0.004932
Vector 0.00130 0.003394

Greedy 0.00177 0.003819

5.2.3 Steering Points’ Distance

The final refinement to the shepherding behaviour is in terms determining the

best steering point’s distance. This is to minimise the interference between the

shepherds when they try to arrive at their designated points in order to form the

line. This affects the herding efficiency to the shepherds in the long run, as they

are moving about to stay clear of each other if the target points are not optimum.

This is shown as Distance Dog To Dog in Figure 5.9.

This experiment uses the three shepherds’ formation methods on the robotics

Player/Stage simulation platform. There are four shepherds involved in this exper-

iment with a pre-determined line formation position assigned in the 40x40 metres

workspace. There a four steering points distances that are evaluated which are

1.0, 1.5, 2.0 and 2.5 metres. Each lining-up method and steering points’ distances

are repeated 100 times with a 60 seconds limit for each run. The experiment is

to choose an optimal steering points’ distance between the shepherds in the line

formation so that better group shepherding behaviour can be achieved.

The results for time-step required to achieve the line formation as shown in Fig-

ure 5.10 is quite high when the steering points’ distances are set to 1.0 and 1.5
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Figure 5.9: The steering points’ distances in an example line-up formation
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Figure 5.10: Comparison of the steering points’ distances using the three different
methods in terms of timeStep
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Figure 5.11: Comparison of the steering points’ distances using the three different
methods in terms of total distance travelled

metres. This may largely be due to the high chance of a situation where the shep-

herds need to avoid each other during their movement towards their designated

points.

Meanwhile in terms of the total distance travelled, the results as shown in Fig-

ure 5.11, also suggests that the better option of steering points’ distances are

either 2.0 or 2.5 metres, since less that 2.0 metres may incur more distance to

travel by the group of shepherds. This is true for all the three lining-up methods.

However, a 2.5 metres distance may indeed affect the control of the flock (since

the shepherds are far between each other). Therefore, a steering points’ distance

of 2.0 metres is chosen in order to have a better shepherding behaviour.

5.3 Simulation Experiments

The proposed approach as described in algorithm 3.2 together with the refinements

mentioned in previous sections are applied to the dog and sheep problem and

adjusted where necessary. The Player/Stage simulation platform [30] on a Fedora

9 Linux operating system was used to test the refined model. This experiment is to
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study the performance of the INT-M cooperative shepherding after applying all of

the refinements mentioned earlier, namely the Shepherds’ Approach, Shepherds’

Formation and Steering Points’ Distance. Simulation data were collected and the

behaviours of the simulated robots were analysed.

5.3.1 Simulation Setup

There are four shepherds using the INT-M model are involved in the simulation,

with a sheep flock size from two to four. The range for the robot dogs are set

to five metres for forward sight (i.e. laser) and 20 metres for emulating sense of

hearing (i.e. communication radius). The field is constructed of a walled field with

the size of 40 metres each side. The grazing site is situated at the centre with a

radius of five metres and each sheep that have entered it will stop. Each run is

limited to a limit of five minutes (i.e. 300 seconds; as used in Figures 5.13 and 5.14)

and it is done for six times, then the average values are calculated. An example

of the simulation is shown in Figure 5.12 involving four sheep and four robot dogs

(but only two of the robot dogs are shown in the figure).

Figure 5.12: An example of the simulation setup with 4 sheep (red) and 2 dogs
(blue; another two dogs are not in the current view)
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5.3.2 Performance Criteria

The performance can mainly be measured on two aspects. The average distance

of the flock that is shepherd into the grazing site (which is known as Average

Distance to Origin), and also the average percentage of sheep left in the field

(which is known as Average Incomplete Tasks) after the maximum time is up. The

average percentage of incomplete tasks criterion signifies the ability to maintain

the balance of the overall goal of shepherding all the sheep and also completing it

within the specified time.

5.3.3 Results

Figure 5.13 shows the average distance of the flock (in relation to the origin) over

time. There are three flock sizes in the experiment; from two sheep up until four

sheep in a herd. The figure indicates that in average the group of sheep is able

to be contained within the flock. This reflects on the refinements applied to the

dogs’ shepherding behaviour. Furthermore, the average distance of flocks with four

sheep is quite stable over time. However, flocks of size two do show a relatively

smoother transition over time; indicating that the flock is quite manageable.
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Figure 5.13: Average Distance to Origin

Figure 5.14 shows the average percentage of sheep still outside of the grazing
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site over time. The figure suggests that in average there will at least be some

sheep that can be shepherd into the grazing site, because after the time is up all

of the flock sizes have less than 80% of incomplete tasks remaining. Nonetheless,

the average incomplete tasks percentage for all flock sizes are not less than 60%.

In general, flocks of size two can achieve lower incomplete task rate within the

time limit. On the other hand, flocks with four sheep display quicker response

that might indicate a trend.
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Figure 5.14: Average Incomplete Tasks

This current section discussed the refinements of the INT-M model to include

a better low-level shepherding behaviour. Three low-level behaviours that are

looked into are: Shepherds’ Approach, Shepherds’ Formation and Steering Points’

Distance. In particular, the formation of multiple shepherds selected is the Line

formation whereby the robot dogs would line-up behind the group of sheep so

that the flock can be better grouped together as mentioned by Lien et al. [53].

The Vector Projection method of assigning shepherds to their steering points is

chosen. Since the movement towards the (group of) sheep by each robot dogs will

influence the flock, the Safe zone approach method is selected as the Shepherds’

Approach refinement. This minimises the inherent problem of flock separation

that might happen when a robot dog approaches a group of sheep. The Steering

Points’ Distance has also been studied and the value of 2.0 metres between the

shepherds has been chosen. All of these refinements were applied in the simulation

experiments in this section. The performance of INT-M with refined cooperative
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shepherding behaviour is better compared to the initial performance as discussed

in section 4.4.

5.4 Flock Identification Refinements

Further refinements are identified based on the experiments done. One of them

is described in this section. The shepherd decides on how to move in order to

control the movements of the flock. This is known as shepherds locomotion. In

order to make the decision, the shepherd needs to identify the flock that he wanted

to manage. This task is known as flock identification. The purpose of flock

identification is to recognise and determine whether the sheep in the area are in

the same flock. It is important because it leads to shepherds locomotion decision.

Figure 5.15: Flock identification in a single shepherding scenario

Figure 5.15 shows a scenario of the flock identification phase in single shepherd-

ing. The purpose of flock identification is to recognise and determine whether the

individuals in the area are in the same flock. The shepherd (shown as a triangle)

needs to observe the area and identify which sheep (marked as white) belongs to

which flock (shown as black circles). It is important because it leads to shepherds

locomotion decision. Once the flock has been identified, then the shepherd can

decide which flock needed to be steered first. The flock centre will be calculated in

order to determine the steering point and push the flock towards the goal (shown

as the grey square near the top-right corner of Figure 5.15).

This section focuses on investigating on how to adapt the connected-components

method in image processing for flock identification in which the idea that each



CHAPTER 5. COOPERATIVE SHEPHERDING REFINEMENTS 71

sheep in the group can be viewed as a pixel in a digital image.

5.4.1 Other Approaches

Most of the studies use a bird’s eye views in terms of flock identification i.e.

seeing all the robot shepherd and robot sheep from the top view such as in studies

by Lien et al. [52, 54]. Harrison et al. [31] uses flock blobs which uses occupancy

grids which also is based on a bird’s eye view of the whole scenario. Lien et al. [52]

uses a mathematical model for flock identification called a compact area which is

based on the inverse of the packing circles in a circle problem. Meanwhile, Razali

et al. [80, 81] uses a different approach whereby the shepherds only have local

ground view of the flock, and thus uses a ‘perceived flock centre’ and the nearest

‘flock’ member as an anchor to determine the steering points.

5.4.1.1 Flock blobs

Harrison et al. [31] proposed a shepherding strategy, called DEFORM. In this

algorithm, the flock identification task is done by using flock blobs. Flock blob

(BF ) is the set of all grid cells occupied by members of the flock. Target blob (BT )

is the area to which the shepherds try to guide the flock. Target blob is formed by

using 8-connected set around the cell that contains the member of the flock which

is closest to the goal (fclosest). This technique is based on a bird’s eye view of the

whole scenario.

5.4.1.2 Compact area

Lien et al. [54] uses a mathematical model for flock identification. The shepherds

are often not able to keep the flock intact especially for large flocks. Thus, Lien

et al. came up with a technique called compact area. The compact area of a group

is the smallest circle that could contain all group members. All members outside

the compact area are considered as separated, in other words, they are not in the

same flock. This technique is based on the inverse version of the packing circles

in a circle problem.



CHAPTER 5. COOPERATIVE SHEPHERDING REFINEMENTS 72

5.4.1.3 Perceived flock

Razali et al. [80, 81] uses a different approach whereby the shepherds only have

local ground view of the flock, and thus uses a ‘perceived flock centre’ and the

nearest ‘flock’ member as an anchor to determine the steering points. This is

shown in Figure 5.16.

Figure 5.16: The current problem of perceived flock centre; the right-most &
top-most sheep are not detected to be in the same flock

5.4.2 Motivation

The problem of current approaches is that it is either quite complex or it is not

precise enough, such as the ‘perceived flock centre’ approach. This can be ex-

emplified by Figure 5.17. The red blob is the shepherd and will detect all sheep

within its radius including the separated blue-coloured sheep and assumes that

is the flock. This affects the determination of steering point later. However, by

using the connected components labelling method, only the white-coloured sheep

is known to be in the same flock, thus attention is given to that identified flock.

Therefore, this proposed approach tries to balance between having a simple flock

identification technique and obtaining a high degree of accuracy. Although this

proposed approach is using the ‘bird’s eye view’, it is limited by the communication

radius of the flock members, as discussed in the later sections.
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Figure 5.17: The problem of flock identification; the red blob is the shepherd and
the white-coloured sheep is an actual flock and the separated blue-coloured sheep
should be dismissed, which can be identified using the connected components
labelling method proposed.

5.4.3 Proposed Method

This section proposes a technique based on an existing method from a different

domain. Connected-components methods are well researched in the image pro-

cessing domain [22]. It is also known as connected components labelling. It is

based on graph-theory where the digital image pixels are viewed as vertices and

the connected neighbours are the edges. According to Di Stefano and Bulgarelli

[21], the definition of connected component relies on that of a pixels neighbour-

hood. It can be adapted for a more precise identification of flocks by viewing each

sheep as a pixel and using the sheep’s communication range to find the connected

neighbours.

5.4.3.1 Connected Components Labelling Method

In image analysis, specifically in binary images, one of the common problem is

to determine which parts of an object is physically connected. Human are gifted

with the ability to easily distinguish the differences and notice the similarities,

but not computers or robots. The connected components labelling is introduced

by Rosenfeld and Pfaltz [87] to solve this problem.

Connected components labelling is defined as a set of pixels that is said to be

connected in which each pixel is connected to their neighbouring pixels. A con-

nected components labelling of a binary image, B is a labelled image LB in which

the value of each pixel is the label of its connected components [93]. An algorithm

that takes in a binary image and outputs a new labelled image with distinct labels
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for each connected components is called a connected components labelling algo-

rithm [90]. There are two general algorithms for connected components labelling

which are recursive algorithm and row-by-row algorithm.

The first one is a straightforward algorithm known as the recursive algorithm.

A pixel is chosen from an image and from that pixel, we check its neighbours for

connectivity. As the image size grows, the time taken for the algorithm to execute

increases rather quickly. This is the disadvantage of the recursive algorithm.

5.4.3.2 Classical Connected Components Labelling

The other one is the row-by-row algorithm also known as the classical algo-

rithm [87]. It consists of two passes. During the first pass, the algorithm scans

the pixels from left to right, record the equivalences and assign temporary labels.

In the second pass, replacement of each temporary label is done by relabelling the

label of its equivalent class. Figures 5.18 and 5.19 show the flowchart of first pass

and second pass respectively. This classical algorithm uses the union-find data

structures which makes this algorithm more efficient [91].

In this section, the classical algorithm of connected components will be used

for the task of flock identification. Furthermore, this section only focuses on

8-connectivity neighbourhood definition because 4-connectivity is less precise al-

though it obviously performs faster than the 8-connectivity variant. The connected

components algorithm takes place when the shepherd sees a sheep from its cur-

rent location. It only takes place within the shepherd’s vision radius. Once the

shepherd has confirmed the number of sheep within its radius of vision, the First

Pass is executed.

During the First Pass, the shepherd will perform an 8-connectivity neighbour

checking technique using the sheep location as the centre of the 8-connectivity.

Whenever a neighbouring sheep is spotted, the current sheep will be assigned to

the neighbours label. This phase will continue until all the sheep has been labelled.

After completing the First Pass, the Second Pass will execute. This phase will

use the information from the union-find data structures in relabelling the sheep.

The shepherd will check each and every sheep in its vision radius. From the sheep’s

labels, the shepherd could find out whether the label is actually the parent or the

child of other labels.

The terms of the classical algorithm in image processing slightly differs from
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Figure 5.18: First Pass in the Connected Components Algorithm

Figure 5.19: Second Pass in the Connected Components Algorithm
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the terms of adapted algorithm in multi-robot shepherding but the functionality

or the roles of the terms are the same. Table 5.3 shows the comparison of con-

nected components terms between image processing domain and the multi-robot

shepherding domain.

Table 5.3: Comparison of terms

Image Processing Multi-Robot Shepherding

Image Workspace / Field
Pixels Sheep

Objects Flock
Base Pixel Location of the Shepherd

5.4.4 Performance Measures

In this section, in order to verify the usefulness and the effectiveness of the pro-

posed algorithm, the algorithm needs to undergo a process called performance

measurement.

5.4.4.1 Identification

The identification performance test is done to measure the accuracy of the algo-

rithm in the identifying task. The identifying task involves the number of flocks

detected by the algorithm and the number of flock members in each flock. The

results from the algorithm are compared with the testing data set which is done

manually.

The accuracy of the algorithm in flock identification for each run is calculated

based on the number of detected flocks. The results were then compared to the

actual number of flocks which had been manually identified. The formula for the

accuracy of the method in flock identification is shown in Equation 5.1. False

positive and false negative values can also be used to know more about flock

identification accuracy.

flockaccuracy =
flockdetected

flockactual

× 100% (5.1)
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Apart from the number of flocks, this test will also involve the flock members

in each flock. The accuracy of flock members identification is done by comparing

the number of detected flock members by the algorithm and the testing data set.

The formula of flock member identification is shown in Equation 5.2.

memberaccuracy =
memberdetected

memberactual

× 100% (5.2)

5.4.4.2 Time Taken

The time taken performance test is also done to measure the effectiveness of this

method. In this test, it involves the variation of workspace size that the algorithm

is working on. The accuracy of the flock and flock members identification is

assumed to be 100% since this test focuses on the time taken for the algorithm

to complete its task. The time taken for the algorithm to complete its task is

calculated as shown in Equation 5.3, where n scenarios are the number of different

sets of sheep positions.

timeworkspace =
timetotal

n scenarios
(5.3)

5.4.5 Results

In the first part of the experiment it is done only on C++ to test the connected

components algorithm. These experiments are done without integrating with

Player/Stage related base codes. The purpose of these tests is to measure the

accuracy of the connected components algorithm.

The testing data used for this experiment is obtained by manual identification

from the output of the system. The output generated by the system are then

compared to the testing data. Each run is measured according to three perfor-

mance measures which are discussed in subsection 5.4.4. The results from each

run for each performance measures are produced and recorded. The results are
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then further analysed.

Figure 5.20: Example of Player/Stage simulation run

The latter part of the experiment is performed on the Player/Stage [30, 105]

robotics simulation software to test the connected components algorithm together

with other robotics behaviours, such as obstacle avoidance, navigation, goal-

seeking, and lining-up. A total of 10 runs have been executed on a workspace

of size 40 × 40 metres. An example of a Player/Stage simulation run is shown

in Figure 5.20.

5.4.5.1 Flock Identification Results: Offline

This experiment involves a total of 40 runs which have been executed with 10 sets

of testing data for four different workspace sizes. Figures 5.21, 5.22 and 5.23 show

the average accuracy of connected components algorithm in flock identification,

flock member identification and average time taken of the algorithm to complete

its task respectively.

Based on the results in Figure 5.21, the proposed method has the highest

accuracy of flock identification in workspace of size 20 × 20 and has the lowest

accuracy of flock identification in workspace of 6 × 6. There is an increasing

pattern from workspace 6×6 to 20×20 but decreases when it comes to workspace

of 40 × 40. This probably occurred because of the spread of flock members are

more dispersed in the workspace of size 40× 40.

Based on the results in Figure 5.22, the proposed method has the highest
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Figure 5.21: Flock Identification accuracy for different workspaces

Figure 5.22: Flock Member Identification accuracy for different workspaces
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accuracy of flock member identification in workspace 20 × 20 and has the lowest

accuracy of flock member identification in the workspace of 10×10. The placement

of the flock members are oddly placed which results in irregular pattern.

Figure 5.23: Average Time Taken for different workspaces

Based on the results in Figure 5.23, it shows that the proposed algorithm

takes the longest time in workspace of 40× 40 while it takes the shortest time in

workspace of 6×6. Obviously, the bigger the workspace size, the more pixels that

it needs to process.

5.4.5.2 Flock Identification Results: using Player/Stage

Table 5.4: Comparison between with and without using Player/Stage, with an
average of two actual flocks in each 10 different scenarios

without P/S with P/S

Flock Identification (%) 85 70.58
Average Correct Flock Detected 2.10 1.00

Based on the results in Table 5.4, it shows that the proposed method without

the integration of Player/Stage base code performs better flock identification and

managed to detect higher number of correct flocks, on average. This is possibly

because of the integrated algorithm involves additional computational works that

are needed to be done to perform other navigational behaviours and the line-up

of the shepherds. The movements of both the sheep and shepherds might result

in the inaccurate identification of flocks.
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Table 5.5: Frequencies of flock identification in a 40×40 workspace (without using
Player/Stage)

Flock Exist Does not exist

Detected 22 1
Not detected 4 0

Total 26
Identification (%) ' 85

Tables 5.5 and 5.6 list the True Positive (correctly detecting flocks), False

Positive (detecting a flock when there is no flock, i.e. separated sheep), False

Negative (missing a flock) and True Negative (correctly not detecting a flock when

there is no actual flock) values related to flock identification.

Table 5.6: Frequencies of flock identification in a 40 × 40 workspace (using
Player/Stage)

Flock Exist Does not exist

Detected 12 1
Not detected 5 2

Total 17
Identification (%) 70.58

It is shown that this proposed method has a chance of performing good flock

identification in bigger workspaces but the drawbacks of performing in such a

workspace is that it consumes more time and more memory. The proposed

method seems to be feasible to perform acceptable flock member identification

in big workspaces.

In this section, the connected components method has shown its ability to

perform flock identification and flock member identification in a satisfyingly high

accuracy. The first part of the experiment proved that connected components la-

belling can be done and is feasible. The second part of the experiment showed that

connected components labelling can be used in a multi-robot shepherding scenario

by integrating with the Player/Stage robotics simulation platform and its related

base codes. The connected components method would perform better compared

to the previously used perceived flock centre method in terms of indentifying flocks

and subsequently finding the flock centres and optimal steering points. This can

be visually seen during the simulation runs of this section.
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5.5 The INT-X Model: Cooperation with

Immune Learning

The other proposed approach is on learning ability of the immunoids. This ap-

proach is based on the adaptation of the biological immune systems via the Clonal

Selection. The proposed idea is similar to a generalisation of reinforcement learn-

ing strategy.

Figure 5.24 shows the Primary, Secondary and Cross-Reactive responses of

the immune systems. When an antigen Ag1 invades the organism, a few specific

antibodies are selected to proliferate (i.e. low antibody concentration), but some

time is required until a sufficient immune response is mounted against antigen

Ag1. This required period to reproduce the related antibodies is called lag phase,

and is longer for the primary response as shown in the Figure 5.24.

Figure 5.24: Immune Learning after a few immune response have been
mounted [20]

In a future or secondary exposure to the same antigen Ag1, a faster (i.e.

shorter lag phase) and stronger (i.e. higher antibody concentration) response can

be mounted thus quickly and effectively killing antigen Ag1. Otherwise, if a new

antigen Ag2 is presented, then the response pattern would be similar to that of

primary response of Ag1 in terms of time and antibody concentration.

The immune response is specific in the sense that antibodies successful in

recognising a given antigen Ag1 are specific in recognising that antigen and a

similar one, Ag1′ . Thus, the response of the antibodies initially targeted for antigen
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Ag1 to a similar antigen Ag1′ would be similar to a secondary response to Ag1 which

is known as cross-reactive response in the AIS literature [19].

The cross-reactive response is similar to the generalisation capability of neural

networks. Cross-reactivity is important for the creation of models of the antigenic

universe similar to the importance of generalisation in neural networks for the

creation of models of the world. This approach is based on the cross-reactivity of

the immune cells in fighting antigen that is similar to the one it was exposed to.

This proposed approach is named as Immune Network T-cell-regulated—Cross-

Reactive algorithm, or in short the INT-X model (the X stands for Cross-Reactive

response). It introduces a stronger response in terms of local group reactions.

This reflects in higher concentration, si(t) which influence (i.e. reinforce) more

immunoids in the local area to act in the same way (i.e. Abi).

This is achieved by getting other nearby immunoids’ concentration of that

specific antibody, Abi via communicating their learnt appropriate action to one

another (i.e. reinforce). The approach is added after the memory part as discussed

in subsection 3.4.1, as it reinforces the actions that have been stored previously

and reinforces the behaviour among the local immunoids.

Algorithm 5.1 shows the algorithm for this approach, which extends algo-

rithm 3.2 in providing a stronger group response by reinforcing the selected ap-

propriate action. The lines 16–18 in algorithm 5.1 is the added part whereby

the stimulus and concentration values (Si(t) and si(t) respectively) for the spe-

cific antibody x, Abx (i.e. the previous selected antibody, Abmax) is recalculated.

However, previous T-cell concentration value, ci(t) is maintained since the T-cell

model would regulate the antibody concentration to its initial value after success-

fully executing the previous action.

In order to reinforce the learnt action, a higher concentration of that specific

antibody is needed (si(t)) and this uses the Equation 2.4. That in turn, requires

higher stimulus value of that antibody (Si(t)) which uses the Equation 3.1. This

requires a higher concentration average of that antibody in nearby immunoids,

sj(t) in equation Equation 3.1. This higher concentration average shows that

the appropriate action learnt, Abi is ‘agreed upon’ by nearby local immunoids

(i.e. achieving local ‘consensus’ ). By reinforcing the learnt action, the immunoid

will influence others and this leads to a stronger local group behaviour of that

particular action.

This approach can provide some generalisation to the previous INT-M ap-
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Algorithm 5.1 Immune Network T-cell-regulated—Cross-Reactive (INT-X)

Require: t = 0, Si(0) = si(0) = 0.5 for i = 0 · · ·N − 1, N is number of actions
Ensure: retain previous Ab if immunoid is not inferior within similar environ-

ment, execute Abmax

1: Abmax ← Ab1 //at start Ab1 is selected
2: immunoid ← inferior //at start immunoid is inferior
3: environment ← similar //at start environment is similar (i.e. static)
4: loop
5: Execute Abmax

6:
7: //immunoid is activated (normal) or excellent
8: if immunoid 6= inferior then
9: //environment sensed is similar to previous

10: if gi(t) ≈ gi(t− 1) then //refer Figure 3.3
11: Si(t)← Si(t− 1) //use previous Stimulus values
12: si(t)← si(t− 1) //use previous Ab concentration values
13: ci(t)← ci(t− 1) //use previous T-cell concentration values
14:
15: //use previous values for all i, recalculate only for x
16: x← Abmax //get the index of the previously selected Ab
17: Calculate Sx(t) //refer Eq.(3.1)
18: Calculate sx(t) //refer Eq.(2.4)
19: //use previous T-cell concentration value
20: else
21: environment ← changed //need to re-evaluate action
22: end if
23: end if
24:
25: //immunoid is inferior or environment has changed
26: if (immunoid = inferior) ‖ (environment = changed) then
27: //use line 5–21 in Algorithm 3.1
28: end if
29:
30: if Abi has max(si(t)) then //select Ab with maximum concentration
31: Abmax ← Abi
32: end if
33:
34: t← t+ 1 //each iteration is standard (e.g. 40 unit time)
35: end loop

proach. The INT-M approach provides shorter lag phase for a specific response

by retaining previous action while the INT-X approach can add some degree of

generalisation to the action-selection phase by communicating (i.e. influencing

and reinforcing) with other nearby immunoids. This can be seen in Figure 3.8

(which is only for a single immunoid) if INT-M approach is applied onto the Ro-

boShepherd task which was discussed in subsection 3.5.1. Meanwhile, INT-X had
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been discussed in this section that mimics the immune learning feature as shown

in Figure 5.24 with the label Cross-Reactive Response.

5.6 Conclusion

In applying the INT-M model for cooperative shepherding in the earlier chapter,

several low-level factors had been identified that affects the group shepherding

behaviour. Refinements were made to the cooperative shepherding as discussed in

this chapter, namely the Shepherds’ Approach, Shepherds’ Formation and Steering

Points’ Distance. The first refinement is just setting a threshold value so that

the shepherds do not get too near to the sheep. The other two refinements had

been tested and evaluated to get the optimum method and value as discussed

in subsections 5.2.2 and 5.2.3, respectively. Furthermore, all these refinements were

applied at the same time with the INT-M model and simulations were performed

to see whether the model is good for a multi-robot system problem.

Other than that, another factor had been identified later and studied that

is the Flock Identification. The refinement that have been proposed is using a

method in another domain and applying it in the shepherding problem. However,

the INT-X model that had been proposed and discussed in the earlier chapter

were not implemented in these latter sections. This is because, from the research

done there were various other improvements and modifications that can be further

studied in the multi-robot cooperative shepherding problem. Nonetheless, flock

identification is important as it affects the cooperative shepherding behaviour

(especially the shepherds’ locomotion) of the whole multi-robot system. It also

affects the task density detected by each shepherd thereby influencing the INT-M

model in terms of the stimulation and suppression of actions.
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Conclusion

In this research a refined memory-based immune inspired approach for shepherding

in multi-robot systems had been studied. I have described the basic concepts of

biological immune systems and argued that the immune network is a suitable

analogy for multi-robot shepherding problem. The underlying immune inspired

cooperative mechanism was described and tested. I have also proposed refinements

on the multi-robot cooperation algorithm; the INT-M model, and applied it to the

dog-sheep test scenario. Simulation experiments were carried out to evaluate the

cooperative mechanism and the whole approach.

6.1 Summary

This thesis has laid out the research direction and focus for the study. Immune

Systems are described and their applicability to Multi-Robot Systems domain

have also been discussed. The description of terminologies and its correspond-

ing robotics use have been stated. The study investigates the Idiotypic Network

Hypothesis so that the adapted Immune Network can be used in multi-robot co-

operation problems. The immune network is argued to be suitable in achieving

desired cooperative behaviour in robots.

The main task scenario that was deeply investigated is the dog-sheep problem.

This is because it is generic enough that other domains such as robot patrolling

can later be studied. The dog-sheep problem also provides configurable situations

such as the number of dogs, sheep, and safety zone. The dog-sheep problem poses a

highly dynamic environment for a multi-robot system. In retrospect, the research
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objectives set forth in section 1.3 have all been achieved and are restated here in

terms of works done.

1. I have proposed two immune-inspired approaches to cooperation.

In relation to the first objective, two models inspired by the immune systems have

been proposed in order to solve relevant dynamic cooperative tasks. These pro-

posed models namely the Immune Network T-cell-regulated—with Memory (INT-

M) model which is discussed in subsection 3.4.1 and Immune Network T-cell-

regulated—Cross-Reactive (INT-X) model which is described in section 5.5 use

the advantages of immune memory and immune learning respectively in order to

achieve appropriate local group behaviour. The details of immune inspired models

for cooperation have been discussed in chapter 3.

2. I have established an adaptive cooperation algorithm in multi-robot systems.

The ‘Collecting’ task in shepherding behaviour had been studied as the multi-

robot system scenario used in this research. Simulation experiments were carried

out to see the feasibility of the INT-M model to be used in such a scenario and the

results were presented in section 4.4. Furthermore, the underlying ‘cooperation

mechanism’ of the INT-M model had been verified in section 4.5 and is shown

to be adaptive to dynamic environmental changes. The discussions presented

in chapter 4 serves to fulfil the second research objective.

3. I have determined the refinements that can be applied related to cooperation.

The third research objective is regarding the refinements that can be done related

to the cooperative behaviour. Three refinements to cooperative shepherding have

been investigated in section 5.2, namely Shepherds’ Approach, Shepherds’ Forma-

tion and Steering Points’ Distance. These refinements were applied to the INT-M

model and simulation experiments were carried out as described in section 5.3. In

addition to that, a connected components labelling method for flock identification

had been proposed and studied in section 5.4. The details of these refinements

were presented in chapter 5.
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6.2 Main Contributions

This study provides an in-depth understanding of the immune systems and its

application in the robotics domain. Below are the main contributions of this

research.

1. Two immune-inspired models had been proposed, and one of the model, the

INT-M model was implemented and evaluated.

2. The implementation of the cooperative shepherding used in this research is

using local ground view; except for the proposed flock identification method

which rely on a ‘bird’s eye view’. This sets the study apart from other

research, whereby such implementation is indeed difficult but it is more

similar to real world situations.

3. The implementation of the immune inspired group behaviour takes into ac-

count all the nearby shepherds (i.e. within the communication radius) which

is more realistic compared to other works that only uses a one-to-one commu-

nication that happens when the shepherds are in contact with one another.

4. The ‘cooperation mechanism’ underlying the immune inspired model (INT-

M) had been verified to be adaptive in a dynamic multi-robot scenario.

5. Refinements related to multi-robot cooperative shepherding were identified

and tested.

6. This study had recognised the importance of flock identification in relation

to cooperative shepherding task and a method to overcome the problem was

discussed.

7. The implementation of this study is done on the Player/Stage robotics sim-

ulation platform. This means that it can be applied onto real robots with

minor changes required.

These contributions have shown that immune inspired multi-robot cooperative

shepherding; especially the INT-M model; is feasible and suitable to be used.

Several conference papers and articles had been published from this research study,

as listed in Appendix A. In the period of the study, several related research

activities were performed and achieved as listed in Appendix B.
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6.3 Suggestions and Future Work

There are other useful features of the biological immune systems that can be

further investigated such as the Danger Theory paradigm [1, 2], the B-cell muta-

tion to achieve adaptability during Clonal Selection phase and other interesting

processes. Further study can be done to investigate on immune systems based

algorithms to be used in multi-robot cooperation. The work so far has enabled a

general overview of the area and the feasibility of research in this domain.

The implementation and further study of the INT-X model is highly suggested.

It was not implemented in this study since it builds on top of the INT-M algorithm

and its refinements. Furthermore, the research is also focused on investigating any

refinements to the cooperative shepherding behaviours.

Other than that, other cooperative tasks should also be studied using immune

inspired approach, especially the Perimeter Detection and Tracking scenario men-

tioned in this thesis. Other approaches to multi-robot cooperative shepherding

could also be carried out and compared with the INT-M model in this study.

In terms of the shepherding behaviour, this research only studied one task type,

which is ‘Collecting’. The study can be extended to the other three task types,

namely Herding, Patrolling, and Covering tasks. Other than that, more advanced

study can be undertaken by using heterogeneous robots, especially extending this

research by integrating it with the ‘Capability Chain’ concept [41, 42].
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[55] Lima and Custódio (2005). Multi-Robot Systems. Innovations in Robot Mo-

bility and Control, pages 1–64.

[56] Liu, S., Mao, L., and Yu, J. (2006). Path Planning based on Ant Colony

Algorithm and Distributed Local Navigation for Multi-Robot Systems. In Pro-

ceedings of the 2006 IEEE International Conference on Mechatronics and Au-

tomation (ICMA 2006), pages 1733–1738.

[57] Lu, G. (2012). Multi-Robot Cooperation: Shepherd Formation. Master’s

thesis, Department of Computer Science, Loughborough University.

[58] Luh, G.-C. and Liu, W.-W. (2007). Motion planning for mobile robots in

dynamic environments using a potential field immune network. Proceedings of

the Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, 221(7):1033–1046.

[59] Luh, G.-C. and Liu, W.-W. (2008a). An Immunological Approach to Mobile

Robot Navigation, chapter 15. InTech.

[60] Luh, G.-C. and Liu, W.-W. (2008b). An immunological approach to mobile

robot reactive navigation. Applied Soft Computing, 8(1):30–45.

[61] Luh, G.-C., Wu, C.-Y., and Liu, W.-W. (2006). Artificial Immune System

based Cooperative Strategies for Robot Soccer Competition. In Proceedings of

The 1st International Forum on Strategic Technology, pages 76–79.

[62] Mataric, M. J. (1994). Interaction and intelligent behavior. PhD thesis,

Department of Electrical Engineering and Computer Science.

[63] Mataric, M. J. (1995). Issues and approaches in the design of collective

autonomous agents. Robotics and Autonomous Systems, 16:321–331.

[64] Miki, T., Nagao, M., Kobayashi, H., and Nakamura, T. (2010). A Simple

Rule Based Multi-Agent Control Algorithm and Its Implementation using Au-

tonomous Mobile Robots. World Automation Congress.



REFERENCES 96

[65] Miki, T. and Nakamura, T. (2006). An Effective Simple Shepherding Algo-

rithm Suitable for Implementation to a Multi-mobile Robot System. In Pro-

ceedings of the First International Conference on Innovative Computing, Infor-

mation and Control (ICICIC’06).

[66] Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneuborg, J.-L.,

and Dorigo, M. (2005). The Cooperation of Swarm-bots: Physical Interactions

in Collective Robotics. Robotics & Automation Magazine, IEEE, 12(2):21–28.

[67] Nagao, M. and Miki, T. (2010). Cooperative behavior generation method

using local communication for distributed multi-agent systems. In Proceedings

of the 2010 Systems, Man and Cybernetics.

[68] Neshat, M., Sepidnam, G., Sargolzaei, M., and Toosi, A. N. (2012). Arti-

ficial Fish Swarm Algorithm: A Survey of the state-of-the-art, hybridization,

combinatorial and indicative applications. Artificial Intelligence Review.

[69] Noreils, F. R. (1993). Toward a Robot Architecture Integrating Cooperation

between Mobile Robots: Application to Indoor Environment. The International

Journal of Robotics Research, 12(1):79–98.

[70] Obst, O. and Rollmann, M. (2005). Spark - A generic simulator for physical

multi-agent simulations. Computer Systems Science and Engineering, 20(5):347.

[71] Ollero, A., Lacroix, S., Merino, L., Gancet, J., Wiklund, J., Remuss, V.,

Perez, I., Gutierrez, L., Viegas, D., Benitez, M., Mallet, A., Alami, R., Chatila,

R., Hommel, G., Lechuga, F., Arrue, B., Ferruz, J., Martinez-De Dios, J., and

Caballero, F. (2005). Multiple eyes in the skies: architecture and perception

issues in the COMETS unmanned air vehicles project. Robotics & Automation

Magazine, IEEE, 12(2):46–57.

[72] Parker, L. (1998). ALLIANCE: an architecture for fault tolerant multirobot

cooperation. Robotics and Automation, IEEE Transactions on, 14(2):220–240.

[73] Parker, L. (2008). Distributed Intelligence: Overview of the Field and its

Application in Multi-robot Systems. Journal of Physical Agents, 2(1).

[74] Potter, M. A., Meeden, L., and Schultz, A. C. (2001). Heterogeneity in

the coevolved behaviors of mobile robots: The emergence of specialists. In

Proceedings of the 2001 International Joint Conference of Artificial Intelligence

(IJCAI 2001), pages 1337–1343.



REFERENCES 97

[75] Prencipe, G. (2000). A New Distributed Model to Control and Coordinate

a Set of Autonomous Mobile Robots: The CORDA Model. Technical report,

Universita di Pisa.

[76] Raza, A. and Fernandez, B. (2010). Immuno-inspired Heterogeneous Mobile

Robotic Systems. In 49th IEEE Conference on Decision and Control (CDC

2010), pages 7178–7183.

[77] Raza, A. and Fernandez, B. (2012). Immuno-inspired Robotic Applications:

A Review. CoRR, abs/1202.4261.

[78] Razali, S., Meng, Q., and Yang, S.-H. (2009a). Memory-based Immune Net-

work for Multi-Robot Cooperation. In Proceedings of the 7th International

Simulation Conference (ISC 2009), pages 91–96.

[79] Razali, S., Meng, Q., and Yang, S.-H. (2009b). Multi-robot cooperation

inspired by immune systems. AISB Quarterly, (128):3–5.

[80] Razali, S., Meng, Q., and Yang, S.-H. (2009c). Multi-robot cooperation us-

ing immune network with memory. In 7th IEEE International Conference on

Control and Automation (ICCA 2009), pages 145–150.

[81] Razali, S., Meng, Q., and Yang, S.-H. (2010a). A Refined Immune Systems

Inspired Model for Multi-Robot Shepherding. In Nature and Biologically In-

spired Computing (NaBIC), 2010 Second World Congress on, pages 473–478,

Kitakyushu, Japan.

[82] Razali, S., Meng, Q., and Yang, S.-H. (2010b). Shepherding: An Immune-

Inspired Robotics Approach. In The First UK-Malaysia-Ireland Engineering &

Science Conference (UMIES 2010), page 31. Published (Abstract).

[83] Razali, S., Meng, Q., and Yang, S.-H. (2012). Immune-Inspired Cooperative

Mechanism with Refined Low-level Behaviors for Multi-Robot Shepherding. In-

ternational Journal of Computational Intelligence and Applications (IJCIA),

11(1):1250007–1250022.

[84] Razali, S., Shamsudin, N. F., Osman, M., Meng, Q., and Yang, S.-H. (2013).

Flock Identification using Connected Componenets Labeling for Multi-Robot

Shepherding. In Proceedings of the 5th International Conference of Soft Com-

puting & Pattern Recognition (SoCPaR 2013), pages 299–304.

[85] Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Be-

havioral Model. In Proceedings of the ACM SIGGRAPH Computer Graphics

Conference, pages 25–34.



REFERENCES 98

[86] Reynolds, C. W. (1999). Steering Behaviors For Autonomous Characters. In

Proceedings of the Game Developers Conference, pages 763–782.

[87] Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in digital picture

processing. Journal of the ACM (JACM), 13(4):471–494.

[88] Schultz, A., Grefenstette, J., and Adams, W. (1996). Roboshepherd: Learning

a complex behavior. Robotics and Manufacturing: Recent Trends in Research

and Applications, 6:763–768.

[89] Shannon, C. E. (2001). A Mathematical Theory of Communication. SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55.

[90] Shapiro, L. (2000). Recursive Connected Components Algorithm for La-

beling Binary Images. CSE 326: Data Structures, Online Notes. accessed

Mar 1, 2013. http://courses.cs.washington.edu/courses/cse326/00sp/

assignments/prog1.html.

[91] Shapiro, L. G. and Stockman, G. C. (2001). Computer Vision. Prentice-Hall,

New Jersey.

[92] Shehory, O., Sycara, K., and Jha, S. (1998). Multi-agent coordination through

coalition formation. In Proceedings of the 4th International Workshop on Intel-

ligent Agents IV, Agent Theories, Architectures, and Languages, pages 143–154.

Springer-Verlag, London, UK.

[93] Sinha, U. (2010). Connected Component Labelling. AI Shack

website. accessed Feb 25, 2013. http://www.aishack.in/2010/03/

connected-component-labelling/.

[94] Srividhya, S. and Ferat, S. (2002). AISIMAM-An Aritificial Immune Sys-

tem based Intelligent MultiAgent Model and its application to a mine detection

problem. In Proceedings of the 1st International Conference on Artificial Im-

mune Systems (ICARIS–2002), pages 22–31.

[95] Sun, S.-J., Lee, D.-W., and Sim, K.-B. (2001). Artificial immune-based swarm

behaviors of distributed autonomous robotic systems. Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on, 4:3993–3998.

[96] Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh,

A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J.,

and Shimada, S. (2000). The RoboCup-Rescue project: a robotic approach to

the disaster mitigation problem. In IEEE International Conference on Robotics

and Automation, 2000. Proceedings. ICRA’00, volume 4, pages 4089–4094.

http://courses.cs.washington.edu/courses/cse326/00sp/assignments/prog1.html
http://courses.cs.washington.edu/courses/cse326/00sp/assignments/prog1.html
http://www.aishack.in/2010/03/connected-component-labelling/
http://www.aishack.in/2010/03/connected-component-labelling/


REFERENCES 99

[97] Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G. A., Marsella,

S. C., and Muslea, I. (1999). Building agent teams using an explicit teamwork

model and learning. Artificial Intelligence, 110(2):215–239.

[98] Tarakanov, A. and Nicosia, G. (2007). Foundations of Immunocomputing. In

Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium

on, pages 503–508.

[99] Tarakanov, A., Skormin, V., and Sokolova, S. (2003). Immunocomputing:

Principles and Applications. Springer.

[100] Technology, B. N. (2013). Google’s Schaft robot wins DARPA res-

cue challenge. accessed Sept 29, 2013. http://www.bbc.co.uk/news/

technology-25493584.

[101] Tews, A. and Wyeth, G. (2000). MAPS: a system for multi-agent coordina-

tion. Advanced Robotics, pages 37–50.

[102] Thrun, S. (2006). Winning the DARPA Grand Challenge. In Knowledge

Discovery in Databases (PKDD 2006), pages 4–4. Springer.

[103] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., et al.

(2006). Stanley: The robot that won the DARPA Grand Challenge. Journal of

Field Robotics, 23(9):661–692.

[104] Vail, D. and Veloso, M. (2003). Dynamic multi-robot coordination. In In

Multi-Robot Systems: From Swarms to Intelligent Automata, Volume II, pages

87–100.

[105] Vaughan, R. (2008). Massively multi-robot simulation in Stage. Swarm

Intelligence, 2(2-4):189–208.

[106] Wang, Z., Tianfield, H., and Jiang, P. (2003). A framework for coordi-

nation in multi-robot systems. In Industrial Informatics, 2003. INDIN 2003.

Proceedings. IEEE International Conference on, pages 483–489.

[107] Whitbrook, A. M., Aickelin, U., and Garibaldi, J. M. (2007). Idiotypic

Immune Networks in Mobile-robot Control. IEEE Transactions on Systems,

Man, and Cybernetics, Part B, 37(6):1581–1598.

[108] Whitbrook, A. M., Aickelin, U., and Garibaldi, J. M. (2010). Two-timescale

learning using idiotypic behaviour mediation for a navigating mobile robot.

Applied Soft Computing, 10(3):876–887.

http://www.bbc.co.uk/news/technology-25493584
http://www.bbc.co.uk/news/technology-25493584


REFERENCES 100

[109] Wooldridge, M. (2002). Introduction to MultiAgent Systems. John Wiley &

Sons.

[110] Yingying, D., Yan, H., and Jingping, J. (2003). Multi-Robot Cooperation

Method based on the Ant Algorithm. In Proceedings of the 2003 IEEE Swarm

Intelligence Symposium (SIS 2003), pages 14–18.

[111] Zheng, T. and Li, J. (2010). Multi-Robot Task Allocation and Scheduling

based on Fish Swarm Algorithm. In Proceedings of the 8th World Congress on

Intelligent Control and Automation (WCICA 2010), pages 6681–6685.



Appendix A

List of Publications

During the course of this study, the following original contributions were made.

Table A.1: List of publications in refereed academic journals

Details Publisher Status

IJCIA 2012 World Scientific Published [83]

International Journal of Computational Intelligence & Applications, 11(1)
“Immune-inspired Cooperative Mechanism with Refined Low-level Behaviors
for Multi-Robot Shepherding”

Table A.2: List of publications in scientific community periodicals

Details Publisher Status

AISB Magazine 2009 AISB, UK Published [79]

AISB Quarterly Magazine, February 2009, No. 128
“Multi-Robot Cooperation Inspired by Immune Systems”

101



APPENDIX A. LIST OF PUBLICATIONS 102

Table A.3: List of publications in refereed conference proceedings

Details Venue Status

ISC 2009 Loughborough, UK Published [78]

International Simulation Conference 2009
“Memory-based Immune Network for Multi-Robot Cooperation”

IEEE-ICCA 2009 Christchurch, New Zealand Published [80]

IEEE International Conference on Control & Automation 2009
“Multi-Robot Cooperation using Immune Network with Memory”

UMIES 2010 Belfast, UK Published (Abstract) [82]

UK-Malaysia-Ireland Engineering & Science Conference 2010
“Shepherding: An Immune-Inspired Robotics Approach”

NaBIC 2010 Kitakyushu, Japan Published [81]

World Congress on Nature & Biologically Inspired Computing 2010
“A Refined Immune Systems Inspired Model for Multi-Robot Shepherding”

SoCPaR 2013 Hanoi, Vietnam Published [84]

International Conference of Soft Computing & Pattern Recognition 2013
“Flock Identification using Connected Components Labeling for Multi-Robot
Shepherding”



Appendix B

List of Activities

Table B.1 shows a list of all the related research activities achieved.

Table B.1: List of related activities achieved

No. Activity Status

1. BCS-SGAI Forum, Cambridge University Presented
2. BCS-SGAI NCAF Forum, Aston University Accepted
3. Research Group Seminar, FK Meeting Room Presented
4. PGR Poster Competition, Loughborough University Participated
5. Poster Competition, Research School of Informatics Participated
6. Poster Session, Bundy Symposium Presented
7. TAROS 2008 Paper Submission, Edinburgh Accepted
8. Article submission, AISB Quarterly Magazine Published
9. Funding Award for Bundy Symposium, AISB Received
10. Progress Meeting 1, Director of Research Completed
11. Partnership Proposals submitted to three companies Completed
12. Faculty Grant Application (teaching & research) Successful
13. 21 Professional Development courses & workshops Attended
14. ISC 2009 Paper Submission, Loughborough Published
15. IEEE-ICCA 2009 Paper Submission, New Zealand Published
16. Simulation Code-base Completed
17. Transfer Viva, Department of Computer Science Completed
18. UKCI 2009, University of Nottingham Attended
19. Research Student Seminar, CS Department Presented
20. Poster Session, UMIES 2010, Queen’s University Belfast Presented
21. Oral Session, UMIES 2010, Queen’s University Belfast Presented
22. Virtual Poster Competition, RSI Participated
23. NaBIC 2010 Paper Submission, Japan Published
24. Article submission, IJCIA 11(1), 2012 Published
25. SoCPaR 2013 Paper Submission, Vietnam Published

103



APPENDIX B. LIST OF ACTIVITIES 104

Notes:

• No. 2: Accepted, was unable to present

• No. 7: Accepted for Poster session, decided not to proceed

• No. 9: The award covers travel, accommodation, poster printing & one-year

student membership

• No. 11: Wany Robotics (France)1, Merlin Systems (United Kingdom) &

Videre Design (United States)

• No. 12: The grant applied is for e-puck robots from GCtronics (Swiss)

• No. 14: Accepted as an Extended Paper

• No. 21: Abstract published

1Listed as 5 finalists: http://www.wanyrobotics.com/academic-partnership-program.
html

http://www.wanyrobotics.com/academic-partnership-program.html
http://www.wanyrobotics.com/academic-partnership-program.html

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Background
	Problem Formulation
	Research Objectives
	Motivations
	Contributions
	Thesis Structure

	Literature Review
	Introduction
	Cooperation

	Computational Intelligence Techniques
	Non Bio-inspired Cooperation Approaches
	Bio-inspired Cooperation Approaches
	Why Immune Systems

	Biological Immune Systems
	Immune Systems
	Immune Network Model of B-cell

	Multi-Robot Cooperation
	Swarm-Immune Algorithm
	Immune Network Model of B-cell and T-cell
	Immune Network and Potential Field

	Conclusion

	Immune Inspired Model for Cooperation
	Introduction
	Immune Systems Approach
	Immunoid: the Immune Network based Robot

	Immune Network for Group Behaviour
	Definition of Task
	Definition of Antigen
	Definition of Antibody
	Group Control Algorithm

	Immune Systems Inspired Cooperation Model
	The INT-M Model: Immune Network with Memory

	Cooperative Tasks
	RoboShepherd
	Cooperative Robots for Perimeter Detection and Tracking

	Conclusion

	Experiments & Results of Immune Inspired Models in Multi-Robot Cooperation Tasks
	Introduction
	Simulation Setup
	RoboShepherd Test Scenario
	Scenario Setup

	Simulation Results
	Average Time for Completion
	Average Number of Incomplete Task
	Discussions

	Verification of the Immune Inspired Cooperative Mechanism
	Response to Environmental Changes
	Propagation of Stimulation and Suppression of Antibodies

	Conclusion

	Cooperative Shepherding Refinements
	Introduction
	Shepherding Behaviour's Refinements
	Shepherds' Approach: Safe Zone
	Shepherds' Formation: Lining-up
	Steering Points' Distance

	Simulation Experiments
	Simulation Setup
	Performance Criteria
	Results

	Flock Identification Refinements
	Other Approaches
	Motivation
	Proposed Method
	Performance Measures
	Results

	The INT-X Model: Cooperation with Immune Learning
	Conclusion

	Conclusion
	Summary
	Main Contributions
	Suggestions and Future Work

	References
	List of Publications
	List of Activities

