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ABSTRACT

T
he emergence of coordinated action between interacting individuals or agents is a common
characteristic of everyday behaviour. Pivotal to the organisation of multiagent activity is the
ability of agents to effectively decide how and when to act, with robust decision-making often

differentiating expert from non-expert performance. In this thesis we investigated and modelled the
behavioural coordination and decision-making behaviour of human and artificial agents complet-
ing various herding tasks. Herding tasks involve the interaction of two sets of autonomous agents –
one or more herder agents are required to corral a set of heterogeneous target agents. Such activities
are ubiquitous in daily life and provide a prototypical example of everyday multi-agent behaviour.
We first propose a simple set of local control rules and target selection strategies that enable herder
agents to collect and contain a herd of non-cooperative, non-flocking target agents. We then inves-
tigated the robustness of the proposed control process to variations in herd size and the strength
of the repulsive force that herders imposed on targets. The effectiveness of the proposed approach
was also confirmed via ROS simulations and experiments using real robots. We then employed su-
pervised machine learning (SML) to predict the target selection decisions of human herders. The
findings demonstrated that the decision-making behaviour of human actors can be effectively pre-
dicted using SML at both short (< 1 s) and long (> 10 s) timescales, and that the resultant models
can be employed to endow artificial herders with "human-like" decision making capabilities. Fi-
nally, we employed explainable AI to understand the state information employed by human herders
when making target selection decisions. The findings revealed differences in how expert and novice
herders weight state information when making decisions and is the first study to highlight the po-
tential utility of explainable AI techniques for understanding human decision-marking behaviour
during multi-agent fast paced interactions.
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INTRODUCTION

The emergence of coordinated action between groups of interacting individuals or agents is a com-

mon characteristic of multi-agent systems, e.g. fish schools, bird flocks, insect swarms, or human

crowds [2, 36, 39, 130]. Commonly referred to as joint-action in the cognitive and psychological sci-

ences, such behaviour requires that co-actors reciprocally coordinate and adjust their actions with

respect to each other and to changing task demands [34, 127, 136, 139]. Thus, pivotal to the struc-

tural organisation of coordinated joint-action is the ability of co-actors to effectively decide how

and when to act, with robust decision-making often differentiating expert from non-expert perfor-

mance [35]. This is true whether one considers the simple activity of two or more family members

moving a piece of furniture together or setting a table [128, 137, 161] (see Figure 1.1), or the more

complex activities that elite athletes engage in during team sports [7, 174] or soldiers in military

units perform during high-stakes operations [173].

Understanding the decision-making processes that lead to effective joint- (and individual-) ac-

tion is therefore fundamental for developing a basic and applied understanding of task- and team-

working skills [97, 138], as well as human decision-making in general. However, identifying and

modelling the decision-making processes that lead people to make effective action decisions re-

mains a key challenge, particularly in complex multi-agent tasks that require a high level of situa-

tional awareness. This is because, in contrast to tasks that require practical reasoning or deliberative

decision-making (i.e., where an actor extensively evaluates all possibilities to determine the opti-

mal action), the decision-making that occurs during many multi-agent activities is fast-paced and

highly context dependent [157, 172], with actors spontaneously adapting their actions to achieve

task goals as “best as possible” (i.e., with little deliberative or conscious concern for what is actually

optimal [25]). Indeed, the actions performed by human co-actors during multi-agent behavioural

activities are essentially part of the decision-making process itself, and not simply a consequence

1



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Example of pairs performing coordinated joint actions in everyday life.

of decision-making events [14, 83, 85, 172]. Coherent with research on naturalistic decision mak-

ing [73–75], the effectiveness of action decisions during joint-action or multi-agent behaviour is a

function of an actor’s level of situational control and awareness [24, 96]. That is, task competence

reflects the trained attention or attunement of an actor to the information that specifies what action

possibilities (affordances) may be enacted to ensure task completion [68, 128, 150, 158, 176].

Due to the rapid advances in interactive robotic or artificial agents (AAs) and their increasing

presence within our social world, understanding and modelling human decision making during

joint-action also has significant implications for the development of interactive AAs [41, 43]. Indeed,

like human-human interaction, effective human-machine interaction rests on the ability of AAs to

not only predict the future actions or action decisions of human actors [19, 43, 122], but, in many

instances, also to enact human-understandable patterns of reciprocal behavioural action [15, 19, 62,

81, 109, 166]. One way of achieving this is to endow AAs with the same decision making processes

employed by human actors.

In addition to the general challenges associated with identifying and understanding human

decision making during joint-action, developing AAs capable of human-like decision making be-

haviour requires addressing a number of other key questions. First, how do different decision-making

processes and levels of expertise influence the collective behaviour (e.g. an autonomous distribu-

tion of workload) and the overall performance of a multi-agent system? Second, how to best develop

models of effective (and ineffective) joint-action behaviour and decision-making that cannot only

effectively predict human behaviour, but can be readily implemented into the control architecture

2



of AAs? And, finally, determine what specific task information should human actors or AAs leverage

to make effective decisions during multi-agent or joint-action behaviour.

In this Thesis, we begin to tackle these issues by understanding and modelling the coordinate

movement and decision-making behaviour of humans and AAs completing various herding tasks.

Herding tasks involve the interaction of two sets of autonomous agents – one or more herder agents

are required to corral and contain a set of heterogeneous target agents. Such activities are ubiqui-

tous in daily life and provide a prototypical example of everyday joint- or multi-agent behaviour.

Indeed, while the most obvious examples involve farmers herding sheep or cattle (see Figure 1.2),

similar task dynamics define teachers corralling a group of young children through a museum or

firefighters evacuating a crowd of people from a building [94].

Figure 1.2: Example of one human herder and one artificial herder agent corralling a flock of sheep
in a fenced arena.

The majority of research involving the herding task has focused on the modelling and design

of autonomous “herder” agents able to successfully corral a second set of flocking “target” agents.

Popular solutions, used to explore and design bio-inspired autonomous robotic or artificial sys-

tems capable of interacting with animal targets and other human (or animal) herders, span from

using a combination of virtual attraction forces [84, 151, 160], to exploiting path planning tech-

niques [67, 113], to non-linear feedback controllers [87, 120] and bio-inspired computation and dy-

namical models [53, 109]. In each case, herders’ actions are both explicitly embedded in the herder

dynamics and implicitly conveyed in how each herder selects which target to corral at each time

step; i.e., herders decision making or target selection strategy. Indeed, fundamental to the success of

such herding models is the target selection strategies adopted by herders, (i.e., which target or tar-

gets a herder or herders choose to corral at any point in time). This is particularly true when targets

do not exhibit collective flocking behaviour, which (as detailed elsewhere in this Thesis) signifi-

cantly simplifies the herding task (problem). However, despite the central role that target selection
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strategies play in the success of herding, the rules that have been employed when modelling hu-

man performance or developing AA-herders are typically derived and implemented heuristically

[67, 109, 129, 151], with almost no empirical research directed towards determining the validity of

these heuristic selection strategies.

Accordingly, the work presented in this Thesis is one of the first attempts (i) to consider the target

selection strategies (target action decision) of herders in non-flocking autonomous target herding

tasks. In addition, the Thesis explores (ii) how to couple herders’ local dynamics with target selec-

tion strategies that dynamically leverage computationally low-cost task information and (iii) how to

best model and understand target selection strategies of pairs and teams of human agents acting

as herders. The overall aim is to develop a deeper understanding of decision making during skilful

multi-agent behaviour and to aid in the design of AAs that are not only able to successfully corral

large or small herds of non-flocking targets but can work seamlessly with human co-actors (e.g.,

drones as in Figure 1.2).

1.1 Thesis outline

We start by providing an extensive overview of the herding literature in Chapter 2. Specifically, we

provide a general framework for the herding task, currently missing in the literature. In doing so, we

survey relevant state of the art herding solutions, highlighting how the limitations of these solutions

are due to assuming target flocking behaviour, and to herder decision strategies being a combi-

nation of simple rules that exploit such modelling hypothesis of flocking target agents (e.g., each

herder first corral the target farther from the herd to the herd).

We address the latter issue in Chapter 3 by designing artificial herder agents capable of success-

fully corralling a large non-flocking and freely roaming herd. The dynamics of each herder leads the

agent to corral one specific target at a time, while dynamic target selection strategies shape the col-

lective coordination between them. The local control laws describing herder motion were derived

from the more complex and highly non-linear phenomenological model proposed in [107, 109],

which replicates the emergent herding behaviour observed in human pairs. The derivation from

the original model to a simplified version and the motivation for adopting this simplified model are

presented in Appendix A. Innovatively, such local control laws and dynamic decision strategies ex-

ploit the spatial distribution of the herders without using formation control techniques or solving

(on-line or off-line) optimisation problems. Consequently, such models result in herding solutions

that are effective and can be easily implemented in physical systems, as demonstrated in Chapter 3

via simulations in ROS and experiments on real robots.

The possibility of solving the herding task by equipping AAs with the decision-making process

employed by real human actors is explored in Chapter 4. More specifically, we exploit supervised

machine learning (SML), and human herding data from [129], to train artificial neural networks

(ANNs) to model and predict the target selection strategies of expert and non-expert pairs of hu-
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man agents acting as herders. Extensive numerical simulations demonstrate how artificial herders

employing these human-inspired decision making models are not only as successful as the artificial

herders that employ the dynamic target selection strategies investigated in Chapter 3, but can do so

with lower computational costs by requiring only short sequences of partial state information.

The modelling approach presented in Chapter 4 represents an innovative “human-inspired”

solution for the design of AAs. Nevertheless, as noted above, key to the development of effective

human-machine interaction is developing a deeper understanding of human decision making be-

haviour, including identifying what differentiates expert from non-expert performance. Thus, in the

following two Chapters we demonstrate how explainable AI tools can not only be employed to iden-

tify differences in the decision making processes of expert and novice pairs of human herders in a

smaller-scale fast-paced herding game (Chapter 5), but also in human teams completing a larger-

scale, slower-paced herding task (Chapter 6). More specifically, we leverage SHapley Additive ex-

Planation [92] to identify how ANN models that are able to accurately predict the target selection

strategies of human actors weighted task information.

Finally, a summary of our results and a discussion of their implications, followed by directions

for future work, are presented in Chapter 7. Here it is highlighted how the results of this Thesis ben-

efited from the cotutelle agreement between the Department of Mathematical Engineering at the

University of Bristol (Bristol, United Kingdom) and the School of Psychological Sciences at Mac-

quarie University (Sydney, Australia), which provided the ideal context for this highly interdisci-

plinary research project to be conducted.

Note that in order to maximise the readability of the Thesis, some of the technical and method-

ologically details relating to model development and data analysis are provided in Appendix B. A

significant amount of additional simulation and data analysis work was also conducted to validate

the findings and conclusions detailed in Chapters 4-6, this supplementary material is reported in

Appendix C-E.

1.2 Publications

Part of the work presented in this Thesis were the subject of the publications listed below:

• Fabrizia Auletta, Davide Fiore, Michael J. Richardson, and Mario di Bernardo. “Herding stochas-

tic autonomous agents via local control rules and online global target selection strategies”. Au-

tonomous Robots, 1-13. 2022

(Chapter 3)

• Fabrizia Auletta, Mario di Bernardo, and Michael J. Richardson. “Human-inspired strategies

to solve complex joint tasks in multi agent systems”. In Proc. of the 6th IFAC Hybrid Conference

on Analysis and Control of Chaotic Systems (CHAOS), IFAC-PapersOnLine, 54(17), 105-110.

2021

(Chapter 4)
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• Fabrizia Auletta, Rachel W. Kallen, Mario di Bernardo, and Michael J. Richardson. “Employing

Supervised Machine Leaning and Explainable-AI to Model and Understand Human Decision

Making During Skillful Joint-Action”. Prepared for submission. 2021

(Chapter 5)

Other publications include:

• Francesco De Lellis, Fabrizia Auletta, Giovanni Russo, and Mario diBernardo. “An Application

of Control- Tutored Reinforcement Learning to the Herding Problem”. In Proc. of the 17th IEEE

International Workshop on Cellular Nanoscale Networks and their Applications (CNNA) (pp.

1-4). 2021
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THE MULTI-AGENT HERDING TASK

L
ong et al. in [90] have recently surveyed the state-of-the-art of multi-agent herding systems,

with a focus on the heuristic models and the simulation tools that have previously been used

to solve the multi-agent herding task. Still missing in the literature, however, is a general

mathematical formulation of the herding problem to help conceptualise and understand the task

problem and potential solutions within a common framework. Accordingly, in this Chapter we first

propose a general mathematical formulation of the herding task (Section 2.1). Using this formula-

tion we then review the possible modelling approaches (Section 2.2) that have been adopted to solve

the herding task, as well as survey the relevant herding literature with respect to potential solutions

that involve multiple (Section 2.3) and single herders (Section 2.4). Finally, in Section 2.5, we briefly

review the pursuit-evasion theory and encirclement problems related to solving the multi-agent

herding task.

2.1 Mathematical formulation of the herding problem

A crowd strolling through a mall, a school of dolphins foraging, or a pack of predators hunting in

the woods are all examples of multi-agent systems where the collective behaviour of the system

emerges via local agent interactions. A sub-category of such systems is the multi-agent herding sys-

tem where the individual and collective behaviour of a set of (passive) target agents is influenced via

interactions with a second set of (active) herder agents. Synonymous with farmers herding sheep or

cattle, or teachers herding students together during a field trip, such multi-agent herding scenario

always entail the following (irrespective of the specific agents involved or the environmental task

context):

(I) the interaction of two sets of heterogeneous dynamical agents, namely herders and targets,
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CHAPTER 2. THE MULTI-AGENT HERDING TASK

(II) the possibility of directly controlling the dynamics of the herder agents,

(III) the possibility of influencing the dynamics of the target agents (i.e., the herd) only through

their proximity to herder agents,

(IV) the existence of a goal region in space or herd density area in which the herder should contain

the targets (i.e., where all targets are considered to be successfully herded) needs to be satisfied

in finite time.

Here we will focus on the planar herding problem where agents move in a region D ⊆ R2. Thus,

more formally, using y j to represent the position of the j -th herder (NH ) and xi to represent the

position of the i -th target agent (NT ) within the herding task space, the herding problem can be

stated as follows.

Herding problem. Given NH autonomous herder agents

ẏ j (t ) = f (t ,x1, . . . ,xNT ,y1, . . . ,yNH ) j = 1, ..., NH , (2.1)

able to influence NT ≥ NH target agents, whose dynamics is expressed by

ẋi (t ) = g (xi (t ),y j (t )) i = 1, ..., NT , (2.2)

and a goal area G ⊆R2 we want to design the herder dynamics

f : R2NH ×R2NT ×R → R2NH (2.3)

so as to guarantee that

∃tg ≥ 0 : xi ∈G ∀i ,∀t ≥ tg . (2.4)

Here we choose G as the circular area of radius r⋆ and centred at x⋆ so that the goal is assumed

to be achieved if

∃tg ≥ 0 : ∥xi (t )−x⋆(t )∥ ≤ r⋆(t ) ∀i ,∀t ≥ tg (2.5)

where ∥·∥ denotes the Euclidean norm and x⋆(t ) and r⋆(t ) are the centre and radius.

A graphical representation of the herding task is depicted in Figure 2.1, and in Table 2.1 we pro-

vide a list of the task variables that will be used in this Chapter and in the rest of the Thesis.

2.1.1 Target agent modelling

Before reviewing the potential modelling solutions for herder agents, it is important to first briefly

detail how the behaviour of target agents has been modelled within the multiagent herding task lit-

erature. This is relevant, as further detailed later on in this Chapter and within the following Chap-

ters, because the ability of herders to corral and confine targets is highly dependent on both the

type of influence they exert on target agents and the manner by which target agents influence each

other.
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Figure 2.1: Graphical illustration of the herding task (problem) and its successful completion, with
regard to NH = 2 herders (yellow squares) tasked with corralling NT = 5 targets (green circles) in a
circular area of centre x⋆ and radius r⋆.

Variable Value Description

xi Cartesian position of target agent i
xg cm Cartesian position of herd centre of mass
x⋆ Cartesian position of goal position
x̃ Cartesian position of a targeted agent
y⋆j Desired trajectory of herder j

de = y⋆j −y j Distance between herder j desired and current trajectory

d j ,⋆ = y j −x⋆ Distance between herder j and goal x⋆

di ,g cm = xi −xg cm Distance between target i and herd centre of mass
d j ,g cm = y j −xg cm Distance between herder j and herd centre of mass
Ky1→y N Gains of herder dynamics (2.1)

Table 2.1: Notation and description of the main variables used to model multi-agent herding sys-
tems.

In most applications or proposed modelling approaches, the motion of targets (2.2) is the effect

of interacting potential-fields centred around each herder and target agent, and environmental ob-

stacles if present. These potential-fields then regulate the degree to which target agents are repelled

from herders and environmental obstacles, as well as the degree of attraction between targets, if

flocking is present. Importantly, this latter attractive force, independent of how it is actually imple-

mented or modelled, captures the assumed tendency of target herds to converge into flocks, based

on the theory of the selfish herd introduced by Hamilton [51], and later studied by King et al. [72].

Accordingly, such attraction is often hypothesised (explicitly or implicitly) to be fundamental to the

herding problem and/or necessary for the success of herders. For instance, this is explicitly stated

in [53, 67, 154], and implicitly conveyed elsewhere (e.g., [120, 151, 160]).

However, although this “flocking” assumption is representative of target herds in many real

world contexts (either animals or people), assuming that it is fundamental or necessary limits the

generalised applicability of many herding solutions. Indeed, the general “herding problem” is not

constrained to only those situations were flocking occurs within natural systems. For instance, teach-

ers who guide students on a field trip must compensate for their tendency to wander in a disor-
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derly fashion, a drone could be tasked to herd unknown aerial vehicles outside an unsafe region, or

robotic skimmers could be used to clean an oil spill. In such cases, the targets would not necessar-

ily exhibit the tendency to flock and the unknown, and/or diffusive stochastic, dynamics exhibited

should be integrated into the model (2.2).

A further limitation of assuming “flocking” behaviour has also been revealed from experiments

conducted on the interaction of a flock of sheep with a robot sheepdog by Evered et al. [42]. Ex-

perimental results showed that, over repeated trials, the repulsive action of the robot herder on the

animal targets (as consequently targets’ tendency to aggregate in flocks) gradually dropped to the

point sheep became accustomed to the robot herder.

While we highlight the limitations of assuming flocking behaviour, it is important to stress,

though, that modelling the dynamics of targets is not the focus of this Thesis, and to overcome

the above limitations, in Chapters 3-6 we will consider the most general case of targets (i) diffusing

randomly in the environment and (ii) being repulsed from herder agents with a strength inversely

proportional to their distance from them.

2.2 Overview of modelling approaches

Multi-agent herding problems can be classified based on a combination of the herding task goal,

how target agents are modelled, and the relative number of herder and target agents. Importantly,

the relative number of herder and target agents can affect the type of herding goal being achievable.

For example, when herder agents are equal in number to the target agents (i.e., NH = NT = 1 or NH =
NT > 1) the problem can be conceptualised as a pursuit-evasion problem; the pursuing (herder)

agent attempts to track the evading (target) agent, with the goal being achieved once the evader is

captured [26, 38, 69, 142]. In the case of herders exceeding the number of target agents, the task can

be conceptualised as an encircling task. That is, the goal of herder agents is to spread around the

target herd in order to build a repulsive “wall” around the herd, constraining the herd in an region

within the circle of herders [22, 95, 102, 141, 159].

A possible way to classify herding tasks is via the choice of containment region variables; namely

x⋆(t ) and r⋆(t ) in (2.5). To illustrate this possible classification method, the mathematical formula-

tion of a subset of possible task scenarios is reported in Table 2.2, with a summary of some possible

corresponding classification parameters detailed in Table 2.3. In what follows, we will refer indiffer-

ently to the herding task or problem as the case of NH ≥ 1 herder agents corralling an equal or larger

number of targets (NT ≥ NH ) to a fixed containment region (x⋆(t ) = x⋆ and r⋆(t ) = r⋆) and review

the related relevant literature for multiple herders (NH ≥ 2) in Section 2.3 and for a single herder

(NH = 1) in Section 2.4. Relevant solutions of the herding task cast as a pursuit-evasion problem or

an encirclement problem are further discussed in Section 2.5.
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Task Goal (2.5) definition Task description

Containment ∥xi (t )−x⋆(t ,x1, . . . ,xNT )∥ ≤ r⋆ To corral NT targets in a convex hull
(e.g., around their centre of mass)

Herding ∥xi (t )−x⋆∥ ≤ r⋆ To corral NT targets around a fixed
location

Navigation ∥xi (t )−x⋆(t )∥ ≤ r⋆ To corral and drive NT targets through
around a moving location

Encirclement ∥xi (t )−x⋆(t ,x1, . . . ,xNT ,y1, . . . ,yNH )∥ ≤ r⋆ To maintain corralled NT targets in a region
bounded by herder agents

Pursuit ∥x(t )−y(t )∥ ≤ r⋆ To capture evading target agents so that they remain
within a set distance from herders

Table 2.2: Classification of tasks based on the definition of the desired final condition (2.5) for NH

herders and NT ≥ NH targets.

2.3 Herding solution for multiple herders (NH > 1)

Of particular relevance in this Thesis is the case of multiple herders (NH > 1) tasked to corral NT >
NH targets. In this complex task scenario, individual herder agents need to be designed so as to

satisfy (2.5); at the same time, in order to achieve effective task outcomes, they must do so by coor-

dinating their behavioural actions with that of the other herders. In other words, herders must im-

plement decision-making strategies that consider the state of the targets, that of the other herders,

and environmental constraints.

An intuitive solution is to rely on formation control and path planning techniques [66, 67, 120,

162]. This is the case when herder agents are considered as a platoon of robots (e.g., aerial, ground)

and each robot follows a computed (either on-line or off-line) trajectory that will push targets in the

predefined containment region as it will be discussed in Section 2.3.1.

Taking inspiration from natural systems, instead, a different and more cumbersome approach is

to model each herder as a rigid body subject to virtual attractive and repulsive forces. The idea is that

rigid bodies can repel each other as celestial bodies do, making it possible to translate behaviours

like “obstacle avoidance” or “target chasing” through forces proportional to the relative distance

between the herder and the agent (or object) of interest. Results reported in [53, 84, 107, 109, 129] all

start from this modelling approach, with herders replicating dolphins, sheepdogs or pairs of people

as discussed more in detail in Section 2.3.2.

2.3.1 Path planning and formation control solutions

Path planning solutions were one of the earliest proposed solutions to the herding problem with

multiple herders. Motivated by a desire to better understand and solve the herding problem within

realistic environments, Lien et al. ([67]) adopted a global rule-based roadmap approach, where
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Total number of herder and target agents

NH = 1 , NT > NH [27, 38, 44, 65, 80, 87, 88, 113, 151, 154, 160, 164]
NH > 1 , NT > NH [53, 66, 67, 84, 106, 107, 109, 120, 129]
NH = NT [38, 69, 142]
NH > NT [22, 23, 95, 102, 140, 141, 149, 159]

Task

Containment [53]
Herding [65, 67, 80, 86–88, 113, 146, 151, 154, 160]
Navigation
Encirclement [22, 23, 95, 102, 140, 141, 149, 159]
Pursuit [38, 69, 142]

Behaviour of target agents

Flocking [65, 67, 80, 113, 146, 151, 154, 160]
Velocity alignment [53, 53, 67, 80, 113, 154]
Repulsion from herder [53, 65, 67, 80, 86–88, 113, 146, 151, 154, 160]
Diffusive motion [107, 109]

Herder knowledge of the environment

Global [86–88, 113, 146, 151, 160]
Partial [65, 67, 154]

Modelling techniques

Bio-inspired [113, 151, 154, 160]
Path planning [65–67]
Machine learning [27, 44]
Genetic algorithm [80, 146]
(Optimal/Non-linear) control design [86–88, 120]

Validation

Computational [11, 53, 65, 67, 80, 99, 113, 146, 151, 154]
Experimental [66, 87, 107, 109, 113, 120, 151, 160]
Formal [38, 86–88, 120]

Table 2.3: Taxonomy of literature on the multi-agent herding problem for single and multiple
herders.
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walkable paths are represented as edges of a directed graph [170], to model the trajectories of herder

and target agents in an environment that contains obstacles. The roadmaps associated with the tar-

get agents were coupled through repulsive and attractive forces to the herders and to neighbouring

targets, respectively. For herder agents, instead, the solution entailed three different strategies to

approach the back of the herd, i.e., for them to reach one of the available nodes in the roadmap;

moving (i) towards the first available node, or (ii) towards the first node both available and closest,

or (iii) pairing herders and available nodes by solving a global minimisation problem with respect

to the distance to be travelled by the herders (see Figure 2.2).

Figure 2.2: Herding environment considered by Lien et al. with multiple herders choosing (a) the
first available node in the dynamic roadmap, (b) the first both available and closest and (c) by solving
a global minimisation problem. Image reproduced from [67].

As expected, numerical experiments proved that multiple herders (up to five) were more suc-

cessful than NH = 1 herder in coping with both increasing herd sizes and, of particular importance,

when environmental obstacles are present.

However, when, to test the robustness of the herding system developed, herders were tasked

to herd targets of varying flocking tendency, even the best combination of number of herders and

approaching strategy failed if faced with low flocking targets (similarly to [154]). To overcome such

correlation of herding effectiveness with targets flocking behaviour, in later work, two different ap-

proaches to design dynamic roadmaps were pursued; “human-in-the-loop” design [66] and proba-

bilistic motion planning techniques [162]. In the first case, human actors, equipped with laser point-

ers and a projected image of the environment, were asked to interactively modify the roadmap, gen-

erated by the algorithm, to help herders solve the task. In the second case, roadmaps were designed

by training Rapidly Exploring Random Trees (RRTs) and Expansive-Spaces Trees (ESTs) to achieve a

more extensive exploration of all the possible walkable paths. Numerical experiments showed that

herders following an interactive roadmap [66] performed better when the number of targets ex-

ceeded NT = 20 agents but the more extensive exploration of the environment, achieved through

the probabilistic roadmaps [162], resulted in higher success rates.

The research conducted by Lien et al. proved the effectiveness of adopting path planning tech-

niques to find the most suitable trajectory for the herders. However, the need for a priori knowledge
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of the environment (e.g., to train RRTs and ESTs) and the computational cost of solving online op-

timisation problems opened the path to explore design approaches less constrained from a priori-

knowledge and requiring a smaller computational load.

Recently, Pierson et al. proposed an arc-based formation control strategy for NH herders to sur-

round and drive NT targets towards a desired goal region [120]. Each herder regulates its position to

a desired one (y⋆j (t )) in the arc behind the herd at a distance r from the centre of mass of the herd

xg cm (Figure 2.3) by means of the following non-linear feedback controller,

ẏ j (t ) =−Ky1(y⋆j (t )−y j (t )) (2.6)

with

y⋆j (t ) = xg cm(t )+ r
[
cos(ψ+∆) − sin(ψ+∆)

]T (2.7)

The inter-herders angular distance ∆ and the rotation ψ of the arc behind the herd were regulated

by means of an additional proportional feedback controller.

Figure 2.3: Multi agent herding system studied in [120]. NH = m herder agents are designed to posi-
tion themselves at a distance r behind the flock (identified with s) with an angular displacement ∆.
Image reproduced from [120].

The achievement of the herding task (2.5) was then demonstrated formally, numerically and ex-

perimentally. Indeed, a Lyapunov-based analysis was used to prove that the trajectory of the herders

was able to corral the herd into the containment region (as long as the herd could be assumed to

be all concentrated around their centre of mass). Such assumption clearly translates in considering,

again, only targets that flock. The approach by Pierson et al. was one of the first attempts at adopt-

ing feedback control strategies to the herding problem, and more importantly to formally prove its

convergence. Nevertheless, the behaviour of such NH herders was tested (i) numerically, against

NT < NH targets and (ii) experimentally, against a single target (NT = 1). That is, in the best case

scenarios of herders outnumbering target agents.

Similar feedback control strategies were proposed in [88] to control a single herder tasked to

corral NT > NH targets. The benefits of this approach is that a formal proof of convergence (in both

cases a Lyapunov stability analysis) of the overall system is achievable but strictly depends on the

model of targets dynamics (2.2). Later, in Chapter 3, we will test the herding models proposed by [88,
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120] against targets that wander randomly and compare herding performance with herders driven

by local control rules. Comparison results will further highlight how target modelling is key to the

success of the majority of herding solution, also when success (i.e., satisfaction of (2.5)) is formally

proven.

2.3.2 Bio-inspired models

Inspired by the limited visual field of real sheepdogs and the absence of centralised coordination

among them, Lee and Kim proposed a herding algorithm based entirely on local attraction rules

[84]. Here, NH ≥ 1 herders are required to both corral and contain a group of NT > NH target agents.

Herders and targets are wheeled robots equipped with proximity sensors of limited range, with their

dynamics modelled as the linear combination of potential field-like forces within a sensing area

[125]. Both herders and targets were attracted to neighbouring agents, tended to match the motion

of the agent (herder or target) closest to them, and were repelled away from obstacles. In addition

to this, targets were also subject to a repulsive force away from the herders. Moreover, herders were

subject to a control input force that is a function of both their distance from the position of the

nearest target agent (xt ) and their distance from a desired point (x̃). More formally, the dynamics of

the herders is given by:

ẏ j (t ) = f (t ,x1, . . . ,xNT ,y1, . . . ,yNH )+Ky1
(xt (t )−y j (t ))− (x̃(t )−xt (t ))

∥(xt (t )−y j (t ))− (x̃(t )−xt (t )∥ (2.8)

Depending on heuristics based on the relative distance between each herder and the targets within

its sensing area, x̃(t ) is selected as the position of the centre of the flock (x̃(t ) = xg cm(t )), the position

of the chased target (x̃(t ) = xt (t )) or a fixed position (x̃(t ) = x⋆). Based on the choice of x̃(t ), Lee et al.

defined the task to solve as patrolling, collecting or herding respectively.

Interestingly, the same target agent can be targeted by multiple herders, meaning that the de-

cision making of each herder is independent from that of the others and can overlap, leaving the

cooperation among herders being only a consequence of their modelling tendency to match ve-

locity with the closest neighbouring herder agent. The result is the emergence of an arc formation

among the herders with herders able to corral and herd multiple sub-flocks without any explicit co-

ordination rule – a similar formation instead had to be hard-coded into the algorithm presented in

[67] and was the desired formation control goal of Pierson et al. in [120].

Shepherds and sheepdogs corralling sheep is not the only natural system example of herding. A

similar collective behaviour is observed when dolphins forage. In this case, dolphins (the herders)

move to entrap target agents in a region from which they can not escape. Indeed, taking inspira-

tion from such technique, Haque et al. designed herder agents with some pre-assigned region of

influence [52, 53], assuming that targets’ motion was only influenced by a specific herder if they

happened to be within its region of influence (similar to [151]). When not influenced by a herder,

targets travelled at a constant speed, with a heading direction aligned to that of their neighbouring
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targets. The velocities of the herders were regulated according to the estimated time t⋆ necessary

for the targets to escape the region of influence, arranging themselves in two opposite rows or in a

carousel as in Figure 2.4. For example, when in carousel arrangement (Figure 2.4(b)), the j-th herder

dynamics (2.1) is modelled as a function of (i) the radius of the containment region r⋆, (ii) the de-

sired positionΘ⋆i , j where herder j should be at time t⋆i , j in order to corral target i, and (iii) the heading

θi of target i:

ẏ j (t ) =



2r⋆
Θ⋆i , j −θi

t⋆i , j − t
if Θ⋆−θ > 0

2r⋆
2π+Θ⋆i , j −θi

t⋆i , j − t
otherwise

(2.9)

Note that, when a herder reaches target i , a new to-be-corralled target is selected, ensuring t⋆i , j ̸=
t . The regions of successful containment were defined by optimising herders velocity on targets

escaping time and distance from a possible exit point. That is, for which initial positions of targets

and herders, the latter were able to contain the former.

Innovatively, the desired herding trajectory was not only designed assuming targets would es-

cape from herders, but would do so adopting the most efficient escape strategy. Indeed, to the best

of our knowledge, the work from Haque et al. is still the main research work considering targets able

to perform “smart” manoeuvres against the herders.

Recently, herding tasks have also received growing attention within the cognitive and psycho-

logical sciences [106, 107, 109, 110, 123, 129] with multi-player herding tasks being used as a repre-

sentative task for exploring the behavioural dynamics that underlie complex joint-action and team

perceptual-motor coordination. Most relevant here is the herding task explored in [106, 109, 129], in

which pairs of human players control virtual herder agents or avatars to corral a small herd of virtual

sheep or cattle (targets) into a specified containment area within a large game field. The task can be

played on a large tabletop display screen (as in Figure 2.5(a)) or in an immersive 3D virtual-reality

environment. The human-controlled herder agents essentially act as ‘sheepdogs’, with the target

agents repelled away from the herder agents when the targets come within a certain distance of a

herder. When not influenced by a herder agent, the target agents exhibit Brownian motion, diffusely

wandering around the game field.

To complete the task successfully, human herders learned to adopt two modes of behavioural

coordination. The first, referred to as search-and-recover or S&R behaviour, involves human herders

dynamically dividing the game area (more-or-less) into two regions of responsibility and then cor-

ralling the targets that were approximately furthest from the containment area within their current

“sphere of responsibility”. In other words, during S&R behaviour human herders essentially moved

from “furthest target” to “furthest target within their current region of responsibility”, coordinat-

ing their actions until all the targets were within the containment area. Once all targets were con-

16



2.3. HERDING SOLUTION FOR MULTIPLE HERDERS (NH > 1)

(a) (b)

(c) (d)

Figure 2.4: Multi agent herding system inspired by foraging techniques of dolphins consisting in (a)
forming two opposite rows or (c) creating a carousel around the herd. Panels (b)-(d) are an example
of how simulated herders replicates dolphins herding behaviour. Images reproduced from [53].

tained, some human teams also learned to switch to an oscillatory containment mode of behaviour,

in which the players perform oscillatory movements around the herd, forming a “repulsive wall”

around the herd to keep it contained (see Figure 2.5(b) for a graphical example of these emerging

behaviours).

Of particular significance here, is that research exploring this joint-action task has demonstrated

how the movement dynamics exhibited by human herders can be modelled using a simple, environ-

mentally coupled, non-linear dynamical model of the general form

r j (t ) =−br ṙ j (t )−R(x̃k, j , t ), (2.10)

θ j (t ) =−bθ, j (t )θ̇ j (t )−T (x̃k, j , t )+OR,VP(t )+ (1−ξ j ), (2.11)

Here, the planar movements of the human-controlled herder agents are defined in polar coordi-
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(a) (b)

Figure 2.5: Herding task and experimental set-up (a) used in [106, 109, 129] to model the S&R and
oscillating behaviour (b) observed in human teams.

nates, such that the S&R behaviour is modelled using non-linear mass-spring terms R(x̃k, j , t ) and

T (x̃k, j , t ) that attract (move) the herders radial and angular position y j (t ) = r j e iθ j to the location of

a specified target x̃k, j (t ) = ρ̃k, j e iφ̃k, j (plus a corralling offset or preferred corralling distance). Once

the targets are within the containment region, the non-linear Rayleigh-like and/or Van der Pol-like

oscillator terms OR,VP(t ) in (2.11) and a parametric Hopf-bifurcation [55] process causes the model

to produce oscillatory movements around the targeted herd (see e.g., [108, 109, 117]). Note that the

model (2.10)-(2.11) will be further analysed in Chapter 3 and Appendix A; there, each of the terms

R(x̃k, j , t ), T (x̃k, j , t ), bθ, j (t ) and OR,VP(t ) is individually defined and discussed.

In addition to producing behavioural movements comparable to human-controlled herders, re-

search demonstrated how this dynamical model can also be used to control the behaviour of artifi-

cial herder agents that are not only able to effectively complete the task with human co-actors, but

can also be used to train novice human players to achieve expert task performance at a rate similar

to that observed when novice players are trained by an expert human trainer [109, 129].

2.4 Herding solutions for single herders (NH = 1)

The multi-herder herding task is of particular relevance when designing or modelling agents able

to coordinate in skilful joint task but it is important to report how some of the earliest solutions to

the herding task [65, 151, 160] focused on the problem of a single herder (NH = 1) needing to corral

either a small or larger herd (or flock) of target agents. In this scenario, the main design concern

was the herder’s ability to leverage the targets’ intrinsic characteristics when corralling the herd,

either using attractive-repulsive forces [151, 154, 160] or path-planning techniques [65, 113] (that

were later adopted in the case of multiple herders as discussed in Section 2.3 above), evolutionary
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algorithms [80, 146], or via switching time models [88] that regulated herder engagement with each

targeted agent and guaranteeing the satisfaction of (2.5). Here, we review each approach in turn.

2.4.1 Bio-inspired attraction force models

In one of the first approaches to solve the herding problem, Vaughan et al. aimed in [160] at design-

ing a robot-dog able to interact with target animals that exhibit flocking tendencies by exploiting

targets reaction to external agents. Targets’ reaction to the robot, and their flocking tendency, were

modelled using potential field forces ([125]) as

ẋi =
NT∑

k=1,n ̸=i ,k ̸=i

[(
Kx1

(∥di ,k∥−Rn)2 − Kx2

∥xi∥2

)
d̂i ,k

]
− Kx3

∥di ,w∥2 d̂i ,w − Kx4

∥di , j∥2 d̂i , j (2.12)

where, Kx1,Kx2,Kx3,Kx4 are non-negative gains, Rn > 0 is a repulsion radius to avoid collision with

neighbouring targets and di ,w is the distance between target i and the nearest point on the wall (w)

of the arena in which herder and targets are assumed to move. Note that â denotes the unit vector

of a. Letting xg cm to represent the centre of mass of the flock, the herder dynamics was defined as

ẏ(t ) = f (t ,x1, . . . ,xNT ,y)

=(
Ky1∥xg cm(t )−x⋆∥) d̂ j ,g cm(t )−Ky2d̂ j ,⋆(t ) .

(2.13)

That is, a feedback proportional controller regulated a herder’s position, with control gains (Ky1,Ky2)

modulating how far the herder should be from the flock (d j ,g cm(t ) = y(t )−xg cm(t )) and how close

the latter was kept from the desired herding goal position ( d j ,⋆(t ) = y(t )−x⋆ ).

The algorithm, tested in both simulation and real world experiments, was used to successfully

drive a mobile robot to corral a small flock of geese in a fenced circular arena as can be seen in

Figure 2.6. The robot-herder (which could move faster than the geese) collected information about

Figure 2.6: Experimental set-up considered in [160]. One robotic herder agent is tasked to herd a
flock of geese towards a goal point near the wall of the arena.

the environment through processed video signals. These reference signals were, then, sent to an
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external workstation that computed the robot’s desired trajectory and subsequently re-transmitted

trajectory updates by radio to the herder as illustrated in Figure 2.6. The flock, captured on camera,

was considered as one object of varying shape, with the trajectory of its centre xg cm(t ) fed to the

control algorithm (2.13) to achieve the goal defined in (2.5).

As a first attempt at controlling a multi-agent system by the action of one external agent, Vaughan

et al. highlighted several limitations in their approach that remained to be addressed by future re-

searchers. For instance, the absence of obstacles in the testing arena (later addressed in [65] for a

single herder and in [67, 121] for multiple herders), the reduced size of the to-be-controlled flock

(later addressed by [151]) and the difficulty of solving the task when the goal position was far from

arena’s walls (later addressed in [67, 88]).

Motivated by Vaughan et al.’s work ([160]) with real animals, Strömbon et al. attempted to model

the “driving and collecting” behaviour observed in real sheepdogs [151]. At each time step, the dy-

namics of a sheepdog herder was designed so as to make it move at a constant speed in a straight

line towards a heuristically chosen goal point x̃(t ) in the herding arena. With Ri n defining an in-

fluence radius surrounding the herder and recalling that NT is the total number of target agents,

when all targets were within a distance Ri n N 2/3
T from the herd centre of mass (i.e., targets were

subject to flocking attraction), the herder would move towards x̃(t ) = xg cm(t ) “driving” the herd

towards the goal point. Otherwise the herder would move towards the farthest target from the herd

( x̃(t ) = xk (t ) : | ∥dk,g cm∥ = maxi∥di ,g cm∥, ∀i ), “collecting” all stray targets one at a time. To realisti-

cally replicate a sheepdog careful approach to target herds or flocks, when the distance between the

herder and the targeted point x̃ becomes smaller the herder’s influence radius Ri n is scaled down to

0.3Ri n .

As can be seen from Figure 2.7(a), the resulting model produces a herder that spontaneously

switches from a “side to side” quasi-oscillating motion when collecting targets to straight line tra-

jectories when driving the herd. Note that the quasi-oscillating movements are not directly coded

into the model, but are an emergent property of the multiagent system.

As in Vaughan’s case, targets for the model in [151] were simultaneously attracted towards each

other (i.e., exhibited a flocking tendency) and repulsed directly away from the herder. This collective

target behaviour led the herder to possibly stall in local minima between two or more sub-flocks

during the collecting phase. To avoid such events, if the number of neighbouring target agents to

flock is below a certain threshold, the herder targeted the local centre of mass of each sub-flock

(x̃(t ) = xlcm(t )).

Strömbon et al. analysed the model for different flock sizes and, then, compared it with data

collected in the real world; the recorded actions of a sheepdog and a herd of sheep, with GPS track-

ers mounted on their collars. The comparison of numerical simulations and experimental results

showed that the herding model was able to successfully capture the time spent by the real shep-

herd dogs in the “driving” or “collecting” condition (Figure 2.7(b)) clearly demonstrating how global
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(a) (b)

Figure 2.7: (a) “Side to side” emerging trajectory performed of the herder agent presented in [151]
while herding NT = 100 target agents and (b) comparison time spent “collecting” and ”driving” by
herder model (box plots) and a real sheepdogs (coloured markers) .

emerging behaviour could be replicated using simple rule-based modelling approaches.

It is worth noting that the model presented in [151] has been more recently used in a gamified

version of the herding task for investigating herding strategies of human players [164].

Finally, it is important to appreciate that the above approaches to solving the herding prob-

lem using virtual attraction/repulsion forces assume that herder agents have global knowledge of

the herding environment (and of the agents within). Tsunoda et al. questioned whether this global

knowledge of the environment was necessary given the assumption of target flocking behaviour,

[154]. To test this, an advanced version of (2.13) was implemented in [154], where the herder was

allowed to target the farthest agent from the goal instead of the herd’s centre of mass. Extensive nu-

merical simulations of this updated model, coupled with targets’ behaviour (i.e., flocking, velocity

matching, collision avoidance [30, 125]) allowed the herder to succeed and to outperform both the

original model (2.13) ([160]) and the herding model proposed by Strömbon et al. [151]. Not surpris-

ingly, the updated model was particular effective in conditions where the herder’s visibility is lim-

ited, which often occurs when the targets agents farthest away from the herder are hidden behind

those closest to it (see Figure 2.8).

2.4.2 Path planning solutions

Motivated by a desire to better understand and solve the herding problem within realistic environ-

ments, in [65] Lien et al. adopted a global rule-based roadmap approach – abstract representations

of walkable paths as a directed graph [170] – to model the trajectories of one herder agent and mul-

tiple target agents in an environment that contained obstacles. The roadmaps associated with the
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Figure 2.8: Limited field vision considered by Tsunoda et al. in [154].

target agents were coupled with repulsive and attractive dynamics to the herder and neighbouring

targets, respectively. The nodes of the herders’ roadmap changed accordingly to several considera-

tions associated with the "to-be" travelled path and flock position. When a herder “approached” the

flock, the herder’s path would be planned by making a node appear near the target and disappear

when reached by the herder. Once the flock was approached, the “steering” points were computed

through pattern formation techniques allowing the herder to perform multiple tasks; for example

herding, patrolling or collecting (see Figure 2.2 for a graphical representation of the herding algo-

rithm [65] when extended to multiple herders). The resulting model reportedly enabled the herder

to handle large flocks (i.e., up to NT = 50 target agents) and different types of target agents (e.g.,

exhibiting various flocking tendencies).

Unfortunately, replicating the apparent effectiveness of the model proposed in [65] proved prob-

lematic due to the lack of formal information (i.e., mathematical formulation) of the implemented

algorithms therein. Accordingly, Bennet et al. attempted a reconstruction of Lien’s herder model

with the goal at providing a simulator software package for herding algorithms [11]. The developed

simulator was then used to compare Lien’s ([65]) and Vaughan’s ([160]) herder models with the rule

based model proposed by Miki et al. in [99]. Miki et al. modelling approach was to let herder and

target agents distinguish two layers of concentric interacting zones around themselves; an inner

“handling zone” and a external “watching zone” for the herder, an inner “personal zone” and a ex-

ternal “safety zone” for the targets. Agents reacted according to simple heuristic rules based on the

events in one or in both regions being entered by any other agent. As long as no herder agents enters

the safety zone of a target, this would only flock with neighbouring targets inside its personal zone.

At the same time, a herder would actively herd only targets within their handling zone, and search

for the next target to corral among the agents within its watching zone.

Most recently, Paranjape et al. [113] has adopted a path planning solution to the problem of
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driving an Unmanned Aerial Vehicle (UAV) to divert animals (i.e., birds) from unsafe zones. More

specifically, the task goal (2.5) was for a UAV to drive targets towards a point from where the flock

could safely resume its flight (see Figure 2.9). Targets were modelled through the composition of

Reynolds flocking model [125] and an “evasive response” depending on herder proximity. That is,

each target agent was surrounded by sensing areas of different sizes depending on the type of inter-

action with other agents as illustrated in Figure 2.9(a) (e.g., velocity alignment with flock members,

repulsion from the herder). [113] then designed a boundary control strategy called the “n-waypoint”

herding algorithm (see Figure 2.9(b)), with a herder’s trajectory computed to push targets towards

sub-goals – the waypoints – sampled from a set of permissible positions Xp the herder could occupy

to divert the flock without scattering it. The herder would either choose the fastest path FLY to the

next waypoint xp ∈ Xp or, once reached, maintain the same position and ENGAGE with the flock

for a predefined dwell time τe

ẏ(t ) =
FLY if ∥y(t )−xp (t )∥ ≥ ϵ

ENGAGE otherwise
. (2.14)

Assuming targets as nodes of a communication graph and by ignoring herder-related terms in tar-

gets dynamics, Paranjape et al. exploited local topological considerations to find the set of the per-

missible positions Xp . This involved balancing the need to avoid colliding with other targets and

repulsion from the herder were balanced w.r.t. (i) the time necessary for targets to fly between two

waypoints τ f , (ii) their engagement time with the herder τe , and (iii) goal point distance di ,⋆(t ) =
xi (t )−x⋆.

(a) (b)

Figure 2.9: Multi-agent herding system considered in [113]. Various sensing areas (a) influence tar-
gets motion (b).

Numerical simulations with different flock sizes and aggregation strength validated the pro-

posed herding algorithm. Innovatively, parameters of the flocking model (e.g., flock velocity, influ-

ence radii) and gains of the herding algorithm were estimated on real experiments with two flocks
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of birds and a drone. However, these experiments also confirmed that the success of [113] remains

strictly linked to herder’s ability to avoid flock scattering or sudden diversions in their flight and,

moreover, is dependent on a herder’s ability to identify and exploit flocking behaviour of target

agents.

2.4.3 Non-linear feedback controllers

In Robotics, recent work by Licitra et al. employed a backstepping control strategy for a herder to

chase and corral one target at a time [88]. Herders were driven by the non-linear controller u(t )

designed using the recursive technique based on a Lyapunov function of the from [71, 78];

ẏ(t ) = Ky1de (t )+Ky2x̃i (t )+Ky3∥x̃i (t )−y(t )∥+Ky4∥x̃i (t )∥. (2.15)

The controller minimises the distance de (t ) = y⋆(t )− y(t ) between the desired and actual herder

trajectory, while the the desired trajectory, y⋆(t ) = Ky x̃i (t )+x⋆ minimises the distance between the

targeted agent and the centre of the goal region. The herder switches among different targets at

a regular interval of time, analytically derived to guarantee herding success (i.e., in collecting the

herd within the goal region of interest). This idea was further developed in [86, 87] where other con-

trol strategies and further uncertainties in the herd’s dynamics were investigated. For instance, [87],

proposed an adaptive control strategy, based on integral concurrent learning and varying lower-

bounded switching time, ensured global containment of targets whose unknown interactions with

the herder were later approximated with Artificial Neural Networks (ANNs) [86]. This model was

able to exploit ANNs and dwell time analysis (i.e., the time the herder engage with a target before

switching) to show how it is possible, for a single herder, to herd multiple targets.

Let us emphasise that, differently from previous approaches, such herding solutions do not

strictly depend on aggregation tendency of targets but only assume that (i) targets are repulsed

from the herder when close or (ii) maintain a stationary position otherwise. The feedback control

approach is then used to regulates herder trajectory accordingly to both the desired herding goal

and targets trajectory.

2.4.4 Evolutionary and genetic algorithms approaches

Herders modelled using attraction forces in [151, 160] have also been recently improved using evo-

lutionary computation [80, 146]. In justifying this approach, Lakshika et al. started from the idea

that the two type of agents in the herding problem are semi-competitive [80].The authors argued

that, different from a classical prey-predator scenario [13], for the herding problem the win of one

group of agents does not necessarily implied the loss of the other. Thus, their behaviours could be

“co-evolved” through genetic algorithms. Scope of such co-evolution is to find the best combination

of the set of spatial rule (e.g., distance between a target and a herder) and the temporal rule (e.g., a

triggering event) of herders and targets.

24



2.5. CONTROL SOLUTIONS FOR PURSUIT-EVASION AND ENCIRCLEMENT HERDING TASKS

More specifically, these spatial and temporal rules regulate agents’ velocity and trigger the next

action, respectively. Genetic co-evolution was then leveraged to find the optimal linear combination

of these spatial rules, their corresponding weights and the parameters regulating the temporal rules.

The targets spatial rules were taken from Vaughan’s and Reynolds models [125, 160]. The targets

temporal rule corresponded to the target’s responsiveness to the behaviour of herders and included

the real world assumption that “sometimes sheep stop to eat grass without responding to the dog”

[80]. Herder’s spatial rules were defined by (2.13) from [160], while the herder’s temporal rule took

into account the time interval in which the herder would not actively chase targets.

Intuitively, a herder’s evolutionary objective is to corral and drive a herd to a goal position in the

shortest possible time. However, the herd evolutionary objective function devised by Lakshika et al.,

was instead designed to enhance co-evolution and realistic interactions (e.g., flocking with other

targets, fleeing the herder). Post model evolution, overall model performance was therefore subjec-

tively evaluated by asking human actors to rate the most life-like co-evolved interactions among (i)

the ones proposed by the authors, (ii) a set of ad-hoc designed ones and (iii) a replica of Vaughan’s

original model [160]. The results revealed that the top ranked spatial and temporal rules involved

the use, as objective function for target agents, a combination of their tendency to flock and an en-

hanced desire to escape from the herder if this enters their personal space (i.e., a “flight” zone).

More recently, Singh et al. leveraged similar genetic algorithms on Strömbon’s model [151] to

replace the constant speed of the original model with a variable velocity [146]. In this study, the

herder agent was tasked to achieve the herding goal (2.5) while minimizing its energy consumption

and task-completion time. In comparison to [151], the evolved herder agent achieved higher success

rate; especially for sufficiently smooth variations in herder’s velocity.

2.5 Control solutions for pursuit-evasion and encirclement herding

tasks

As anticipated, another approach is to frame the task as a pursuit-evasion game, as done for ex-

ample by [38, 69, 142]. Here, the case of one target agent (NT = 1) evading one pursuer, the herder

(NH = 1), is solved by computing off-line the optimal solution of a dynamic programming prob-

lem. More specifically, the solution of an algorithm based on Dijkstra’s shortest path was proposed

in [69] to solve the herding problem on a grid while Shedied ([142]) framed the design of herder’s

trajectory on a plane as a constrained optimization problem, particularizing the solution obtained

to the dynamics of non-holonomic vehicles (later considered for multiple herders in [120]). A dy-

namic programming solution was also applied in [38] at the herding scenario in [87], here both the

dynamics of the single herder and the one target were assumed unknown.

A particular set of solutions for multiple herders performing encirclement herding tasks have
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been proposed to distribute herder agents around the herd to be corralled. Attempts at designing

such dynamical encirclement, for aerial robots, included leveraged non linear control techniques

like Lyapunov theory [141] or decentralized model predictive control [95]. A herding strategy based

on elliptical orbits to entrap a target agent whose position is uncertain was proposed by Montijano

et al. ([102]) while both Varava et al. developed a “herding by caging” solution, based on geometric

considerations and motion planning techniques to arrange the herders around the herd [149, 159].

A similar formation was presented in [23], and further developed in [22], to let herders identify clus-

ters of flocking adversarial agents, dynamically encircle and drive them to a safe zone. Recently,

Sebastian et al. developed analytical and numerical control design procedures to compute suitable

herding actions to herd evading agents to a desired position, even when the non-linearities in the

evaders’ dynamics yield to implicit equations [140].

2.6 Summary

In this Chapter, we provided an overview of the existing literature on multi-agent herding systems.

The last two decades have seen researchers from a variety of different fields (e.g., mathematics, engi-

neering, cognitive and computer sciences) employ a variety of different approaches (e.g., attraction

forces, path planning, non-linear control) to design herder agents that are able to successfully in-

fluence the behaviour of groups of target agents (otherwise not directly controllable), with a more

recent, yet growing, emphasis on tasks involving multiple-herders.

To help compare the different herding solutions that have been proposed, we first provided a

general formulation of the problem for NH dynamical herders and NT ≥ NH targets (Section 2.1).

Based on the types of herding tasks (herding behaviours) summarised in Table 2.2, the relevant state

of the art solutions were surveyed for the multiple herders case in (Section 2.3 and the single herder

case in Section 2.4.

As explicitly stated in [53, 67, 154] and implicitly conveyed in [120, 151, 160] ,this overview high-

lighted how the success of most of the proposed solutions depends on the existence of a target

flocking tendency. This is because a low aggregation strength among targets or the complete ab-

sence of flocking behaviour significantly increases the complexity of the herding task; that is, each

target needs to be tracked and collected (more-or-less) independently from the others. Thus, to de-

sign herder agents able to corral non-flocking targets, identifying effective target selection strategies

(i.e., herders decision-making strategies) become an essential part of solving the herding problem.

Additionally, this overview emphasised how, for herds exhibiting flocking behaviour, the most

common decision making strategies, for either single and multiple herders, include either (i) cor-

ralling the herd centre of mass [80, 84, 151, 160], or (ii) chasing the target furthest from the herd

(one target at time) [84, 88, 109, 151, 154], or (iii) for herders to distribute themselves behind the

flock, implementing pattern formation techniques [53, 67, 102, 113, 120, 140, 159]. Taking inspira-

tion from the results in [107, 109], in next Chapter we investigate a range of simple, yet effective,
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2.6. SUMMARY

dynamic herding strategies that are able to corral non-flocking target agents. The dynamic herding

strategies consists of local feedback control laws for NH ≥ 2 herder agents and different dynamic

target selection rules driving how the herders make decisions about what targets to corral next.
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3
LOCAL CONTROL RULES AND DYNAMIC TARGET SELECTION STRATEGIES

I
n this Chapter, we present a simple, yet effective, dynamic herding strategy consisting of lo-

cal feedback control laws for the herder agents and a set of target selection rules that drive

how herders make decentralised decisions on what targets to corral (Sections 3.1-3.3). We nu-

merically analyse how these strategies perform in nominal conditions, and how robust they are

to parameter perturbations, uncertainties and unmodeled disturbances in target agent dynamics

(Section 3.4). We first (i) assess how different choices of the target selection rules affect the over-

all effectiveness of the herding control laws and target selection strategies we propose (Section 3.4.1

and (ii) investigate whether the oscillatory containment behaviour observed in some dyadic human

herding tasks [109] can indeed emerge spontaneously from the local rules adopted to drive herder

agents, rather than having to be explicitly encoded in the dynamics of herders (Section 3.4.3). We

then test how herders adopting our local control laws and target selection strategies perform against

multiple parameter perturbations (Section 3.4.4) and compare the proposed approach to other key

approaches proposed in the literature (Section 3.4.5). Finally, we test the effectiveness of the pro-

posed target selection strategies for solving the herding problem for robotic systems using ROS sim-

ulations and real robots in the Robotarium platform [118, 171] (Section 3.5).

The work in this Chapter, in collaboration with Dr. Davide Fiore (University of Naples Federico

II, Italy), has been published on Autonomous Robots [9].

3.1 The case study herding problem

We start by considering the case of a small group of herders chasing a much larger group of tar-

get agents whose dynamics, as often happens with natural agents such as fish, birds or bacteria, is

stochastic and reflects random Brownian motion. However, contrary to what is usually done in the
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rest of the literature [23, 52, 65, 84, 120], we do not consider the presence of any flocking behaviour

between target agents, making the problem more complicated to solve as each target needs to be

tracked and corralled independently from the others. A herder’s action is based on global knowledge

of the environment, including the positions of all other herder and target agents. Note that, with re-

spect to other solutions in the literature [22, 65, 120, 149] (surveyed in Chapter 2), our approach will

not involve the use of ad-hoc formation control strategies to force the herders to surround the herd,

but rather enforces cooperation between herders by dynamically dividing the plane among them by

means of simple yet effective (decision-making) rules that can be easily implemented in real robots.

We consider the problem of controlling NH ≥ 2 herder agents required to corral a group of NT >
NH target agents in the plane (R2) towards a goal region and then contain them within that goal

region. Using polar coordinates, we denote (r j , θ j ) and (ρi , φi ) as the polar position of the j -th

herder and i -th target agent, respectively, as shown in Figure 3.1. The position of the i -th agent

when it is targeted by the j -th herder will be denoted as x̃i , j or in polar coordinates as (ρ̃i , j , φ̃i , j ).

Finally, the goal region is a circular containment region G , of radius r⋆ centred at x⋆. Without loss of

generality, we set x⋆ to be the origin of R2.

Assuming the herders have their own trivial dynamics (2.1) in the plane, we reformulate the

herding problem as the design of the control action u governing the dynamics of the herders given

by

m ÿ j = u(t ,x1, . . . ,xNT ,y1, . . . ,yNH ), (3.1)

where m denotes the mass of the herders assumed to be unitary, so that the herders can influence

the dynamics of the target agents (whose dynamics will be specified in the next Section) and guar-

antee that

∥xi (t )−x⋆∥ ≤ r⋆, ∀i ,∀t ≥ tg, (3.2)

where ∥·∥ denotes the Euclidean norm; that is, all target agents are contained, after some finite gath-

ering time tg, in the desired region G . A herding trial is said to be successful in the time interval [0,T ]

if condition (3.2) holds for some tg ∈ [0,T ]. Note also, that herder and target agents can move freely

in R2, and that an annular safety region B of width ∆r⋆ is assumed to surround the goal region G ,

that the herders maintain between themselves and the goal region where all targets are contained

within G .

3.2 Target dynamics

Consistent with [107, 109], we consider the most general scenario of target agents being indepen-

dent particles moving randomly in the plane. Consequently, targets kinematic model (i.e., first order

Ordinary Differential Equations – ODEs) is sufficient to fully describe their motion through the en-

vironment, and derive possible herding solutions [84, 88, 120, 148, 151, 160]. Such herding solution,

on the contrary, will be chosen in the next Section as second order ODEs to achieve a deeper and

more precise control on herder agents movements in the environment.
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Figure 3.1: Illustration of the spatial arrangement of the herding problem investigated in the current
Chapter. The herder agent y j (yellow square), with polar coordinates (r j , θ j ), must corral the target
agent xi (green ball), with polar coordinates (ρi , φi ), into the containment region G (solid red circle)
of centre x⋆ and radius r⋆. The buffer region B , of width ∆r⋆, is depicted as a dashed red circle. See
main text for more details.

In particular, we assume that, when interacting with the herders, target agents are repelled from

them and move away in the opposite direction, while in the absence of any external interaction,

they randomly diffuse in the plane. Specifically, we assume target agents (2.2) move according to

the following stochastic dynamics

dxi (t ) = Vr,i (t )d t +αbdWi (t ), (3.3)

where Vr,i describes the repulsion exerted by all the herders on the i -th target agent, Wi = [Wi ,1 ,

Wi ,2]⊤ is a 2-dimensional standard Wiener process and αb > 0 is a constant. We suppose the dis-

tance travelled by the target agents depends on how close the herder agents are and model this

effect by considering a potential field centred on the j -th herder given by vi , j = 1/(∥xi −y j∥), exert-

ing on the target agents an action proportional to its gradient [120, 125]. Specifically, the dynamics

of the i -th target agent is influenced by all the herders through the reaction term

Vr,i (t ) =αr

NH∑
j=1

∂vi , j

∂xi
=−αr

NH∑
j=1

xi (t )−y j (t )

∥xi (t )−y j (t )∥3 , (3.4)

where αr > 0 is a constant. Uncertainties on the repulsive reaction term (3.4) can be seen as being

captured by the additional stochastic term in (3.3). Note that the velocity of all target agents is com-

pletely determined by (3.3)-(3.4) and we do not assume any upper bound on its maximum value.
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3.3 Herder dynamics and control rules

Our solution to the herding problem consists of (i) a local control law to drive the motion of the

herder towards a selected target and then push that target inside the goal region, and (ii) a target

selection strategy that determines which target a herder decides to corral. When the herd is all cor-

ralled, the herders switch back to an idling condition by keeping themselves within the safety region

surrounding the goal region.

3.3.1 Local control strategy

For the sake of comparison with the polar coordinate strategy presented in [107, 109], we employed

a similar control law. This control law does not result in shortest possible path solutions for herders,

but rather ensures circumnavigation of the goal region and the avoidance of target agents already

contained within the containment regions (i.e., thereby ensuring the herders do not pass through

the containment region and adversely scatter the contained targets). Specifically, the control input

of each j -th herder (3.1) is defined as u j = ur, j r̂ j +uθ, j θ̂ j , where θ̂ j = r̂⊥
j are unit vectors and r̂ j =

[cosθ j , sinθ j ]⊤, and

ur, j (t ) =−br ṙ j (t )−R(x̃i , j , t ), (3.5)

uθ, j (t ) =−bθθ̇ j (t )−T (x̃i , j , t ). (3.6)

Here the constants br , bθ > 0, and the feedback terms R(x̃i , j , t ) and T (x̃i , j , t ) are elastic forces that

drive the herder towards target i and then push target i towards the containment region G . These

forces are defined as

R(x̃i , j , t ) = ϵr

[
r j (t )−ξ j (t ) (ρ̃i , j (t )+∆r⋆)− (1−ξ j (t )) (r⋆+∆r⋆)

]
, (3.7)

T (x̃i , j , t ) = ϵθ
[
θ j (t )−ξ j (t )φ̃i , j (t )− (1−ξ j (t ))ψ(t )

]
. (3.8)

with ϵr , ϵθ > 0, and where ξ j regulates the switching policy between collecting and idling behaviours.

That is, ξ j = 1, if ρ̃i , j ≥ r⋆, and ξ j = 0, if ρ̃i , j < r⋆, so that the herder is attracted to the position of the

i -th target x̃i , j (plus the radial offset∆r⋆) when the current target is outside the containment region

(ξ j = 1) or close to the boundary of the buffer region at the idling position (r⋆+∆r⋆,ψ), in polar

coordinates, (ξ j = 0) otherwise . The value of the idling angle ψ depends on the specific choice of

the target selection strategy employed, which are discussed next. As for the target agents, we do not

assume any upper bound on the maximum velocity of the herders.

It is important to note that the control laws (3.5)-(3.6) are much simpler than those presented by

[107] as they do not contain any higher order nonlinear terms nor parameter adaptation rules aimed

at capturing differences in the behavioural intentions of human actors performing the dyadic herd-

ing game investigated by [107] (see [107] for further details). In Appendix A, we detailed our sim-

plification of the original model proposed in [107] and expanded in [109], to identify the essential
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characteristics required for artificial agents to achieve successful performance, while also allow-

ing for the spontaneous emergence of the different behavioural modes observed in human players

(i.e., oscillatory vs. non-oscillatory behaviour). More specifically, using numerical simulations we

demonstrate how both non-oscillatory and oscillatory human herding behaviours can emerge from

simpler bottom-up dynamical rules (i.e., (3.5)-(3.6)); see also Section 3.4.3).

3.3.2 Target selection strategies

In the case of a single herder corralling multiple agents, the most common strategy in the litera-

ture is for the herder to select the target that is either the farthest target agent from the goal region

([84, 88, 109, 151, 154]), or the centre of mass of the herd [80, 84, 151, 160]. When two or more herders

are involved, the problem is usually solved using a formation control approach, letting the herders

surround the herd and then drive them towards the goal region [53, 67, 102, 113, 120, 140, 159].

Rather than using formation control techniques or solving off-line or on-line optimisation problems

as in dynamic target assignment problems (e.g., [18]), here we present a set of simple, yet effective,

target selection strategies that exploit the spatial distribution of the herders. That is, the potential

solutions investigated here allow herders to cooperatively select targets without requiring any com-

putationally expensive optimisation problem to be solved on- or off-line.

More specifically, we investigated four different herding strategies, which are graphically illus-

trated in Figure 3.2 for NH = 3 herders and can be defined as follows.

(a) Global search (b) Static partitioning (c) Leader-follower (d) Peer-to-peer

Figure 3.2: Graphical representation of the target selection strategies. Herders are depicted as yellow
squares, target agents as green balls. The colours in which the game field is divided correspond to
regions assigned to different herders. Herder y j is currently chasing target agent x̃i , j , while target
agent xi is not chased by any herder.

Global search strategy (no partitioning) Each herder selects the farthest target agent from the

containment region which is not currently targeted by any other herder (Figure 3.2(a)). Note that

this is the simplest possible strategy and is employed here for the sake of comparison only and was

not implemented in real robot experiments detailed in Section 3.5.2.
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Static arena partitioning At the beginning of the trial the herding plane is partitioned in NH cir-

cular sectors of width equal to 2π/NH rad centred at x⋆. Each herder is then assigned one sector to

patrol and selects the target agent within their sector that is farthest from G (Figure 3.2(b)). Note

that this is the same herding strategy used in [107] for NH = 2 herders.

Dynamic leader-follower (LF) target selection strategy At the beginning of the trial, herders are

labelled from 1 to NH in anticlockwise order starting from a randomly selected herder which is

assigned the leader role. The plane is then partitioned dynamically into different regions as follows.

The leader starts by selecting the farthest target agent from G whose angular position φ̃i ,1 is such

that

φ̃i ,1 ∈
(
θ1 − 1

2

2π

NH
, θ1 + 1

2

2π

NH

]
,

where θ1 is the angular position of the leader at time t . Then, all the other follower herders ( j =
2, . . . , NH ), in ascending order, select their targets as the agent farthest from G such that

φ̃i , j ∈
(
θ1 − 1

2

2π

NH
+ζ j ,θ1 + 1

2

2π

NH
+ζ j

]
,

with ζ j = 2π( j −1)/NH . As the leader chases the selected target and moves in the plane, the partition

described above changes dynamically so that a different circular sector with constant angular width

2π/NH rad is assigned to each follower at any time instant. In Figure 3.2(c) the case is depicted for

NH = 3 in which the sector
(
θ1 − π

3 ,θ1 + π
3

]
is assigned to the leader herder while the rest of the plane

is assigned equally to the other two herders.

Dynamic peer-to-peer (P2P) target selection strategy At the beginning of the trial herders are

labelled from 1 to NH as in the previous strategy. Denoting as ζ+j the angular difference between

the positions of herder j and herder ( j +1)mod NH at time t , and as ζ−j that between herder j and

herder ( j +NH −1)mod NH at time t , then herder j selects the farthest target agent from G whose

angular position is such that

φ̃i , j ∈
(
θ j −

ζ−j
2

, θ j +
ζ+j
2

]
.

Unlike the previous case, now the width of the circular sector assigned to each herder is also dynam-

ically changing as it depends on the relative angular positions of the herders in the plane.

The idling angle ψ in (3.8) is set equal to the angular position φ̃i , j of the last contained target

for the global search strategy, otherwise it is set equal to the angular position corresponding to the

half of the angular sector assigned at each time to the herder. The idling angle ψ represents a “rest”

angular position for herders, as such, its choice is motivated by the design goal of reducing unnec-

essary herder motion when all target agents are gathered in the containment region (i.e., when (3.2)

is satisfied).

A crucial difference between the different herding strategies presented above is the nature (lo-

cal vs global) and amount of information that a herder’s selection decision in based on. Specifically,
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when the global search strategy is used, every herder needs to know the position xi of every target

agent in the plane, not currently targeted by other herders (e.g., sharing a common sensing infras-

tructure scanning the whole herding space for targets to be corralled). However, in the case of the

static arena partitioning, a herder only needs to know its assigned (constant) circular sector and

with the position xi of the sub-set of targets within that sector.

For the dynamic target selection strategies, even less information is generally required. Indeed,

in the dynamic leader-follower strategy the herders, knowing NH , can either self-select the sector

assigned to themselves (if they act as leader) or self-determine their respective sector by knowing

the position of the leader y1 (e.g., each herder is equipped with proximity sensors to detect targets in

their sector; the leader herder has to communicate with each follower herder, while the latter only

need to communicate with the leader). Similarly in the dynamic peer-to-peer strategy herders can

self-select their sectors by using the angles ζ+j and ζ−j (e.g., a communication protocols is needed

only between each herders and its two closest neighbours).

Note that in the event of perfect radial alignment of the herder and its target, the herder might

push the target away, rather than towards the goal region. Although this condition is very unlikely to

persist due to the random motion of the passive agents, this problem can be avoided by extending

the herder dynamics in (3.1) by a circumnavigation force u⊥
j (t ). This force is orthogonal to the vector

∆xi j = xi − y j , and its amplitude depends on the angle χi j between ∆xi j and y j , such that it is

maximum when the two vectors are parallel (χi j = 0) and zero when they are anti-parallel (χi j =π).

Specifically, it is defined as:

u⊥
j (t ) = Ū · v(t ) ·cos2

(χi j

2

) ∆x⊥i j

∥∆xi j∥
, (3.9)

where Ū > 0 is the maximum amplitude, and v ∈ {−1,1}, whose value depends on which halves of

the assigned sector the herder is currently in thereby guaranteeing that the target agent is always

pushed toward the interior of the sector.

3.4 Numerical validation

The herding performance of the proposed control strategies was first evaluated through a set of

numerical experiments aimed at (i) assessing their effectiveness in achieving the herding goal; (ii)

comparing the use of different target selection strategies; (iii) studying the robustness of each strat-

egy to parameter variations. The implementation and validation of the strategies in a more realistic

robotic environment is reported in the next Section where ROS simulations are included.

3.4.1 Performance metrics

We defined the following metrics (see Appendix B.1 for the formal definitions) to evaluate herding

performance. Specifically, we computed the (i) gathering time tg (ii) the average length dg of the

path travelled by the herders until all targets are contained, (iii) the average total length dtot of the
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path travelled by herders during a herding trial, (iv) the mean distance DT between the herd’s centre

of mass and the centre of the containment region, and (v) the herd agents’ spread S%.

Note that lower values of tg correspond to better herding performance; herders taking a shorter

time to gather all the target agents in the goal region. Also, lower values of DT and S% correspond

to a tighter containment of the target agents in the goal region, while lower values of dg and dtot

correspond to more efficient herd gathering and containment, respectively.

3.4.2 Performance analysis

We carried out 50 numerical trials with NT = 7 target agents and either NH = 2 or NH = 3 herders,

starting from random initial conditions. All trials were found to be successful, that is, condition (3.2)

was satisfied. (A description of the simulation setup and the simulation parameters employed are

reported in Appendix B.2.)

Global Static LF P2P

NH = 2

tg [a.u.] 8.5 ± 1.5 15.2 ± 9.6 15.3 ± 9.2 13.3 ± 6.2
dg [a.u.] 139 ± 34 102 ± 42 92 ± 49 143 ± 53
dtot [a.u.] 841 ± 27 493 ± 51 423 ± 29 418 ± 56
DT [a.u.] 1.3 ± 0.1 1.4 ± 0.6 1.5 ± 0.6 1.3 ± 0.5
S% [%] 0.1 ± 0.05 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1

NH = 3

tg [a.u.] 5.8 ± 0.9 11.2 ± 7.9 11.2 ± 8.7 8.3 ± 5.6
dg [a.u.] 88 ± 21 107 ± 98 84 ± 74 58 ± 43
dtot [a.u.] 1242 ± 26 757 ± 67 885 ± 56 950 ± 79
DT [a.u.] 0.6 ± 0.1 0.9 ± 0.5 0.8 ± 0.3 0.7 ± 0.1
S% [%] 0.1 ± 0.03 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.3

Table 3.1: Average performance and standard deviation over 50 successful trials of different herding
strategies for NT = 7 target agents.

The results of our numerical investigation are reported in Table 3.1. Kruskal-Wallis Test [79] were

conducted to examine the differences between the different target selection strategies. As expected,

when herders search globally for agents to corral, their average total path, dtot, is significantly larger

than when dynamic target selection strategies are used (χ2 = 142.5, p < 0.001), indicting that this

strategy was the least efficient (in addition to requiring complete information about the agents).

With regard to the aggregation of the herd, as measured by DT and S%, for NH = 2 all of the other

(non-global) strategies investigated produced comparable results in terms of both mean and stan-

dard deviation, with the exception of S% for the peer-to-peer strategy (χ2 = 12, p < 0.003). However,

the two dynamic strategies exhibited better gathering performance (tg and dg) than the static arena
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partitioning strategy and when, NH = 3, the peer-to-peer strategies achieving significantly lower tg

(χ2 = 13, p < 0.01) and dg (χ2 = 20, p < 0.0001).

In summary, the results of the numerical simulations revealed that a higher level of coopera-

tion between herders and a more efficient coverage of the plane, as in the dynamic target selection

strategies, yielded overall better herding performance. The implication investigated in Section 3.5.1

and 3.5.2, is that these strategies might also be more effective for robots applications given that such

systems are bound to move at limited speed.

3.4.3 Emerging complex behaviours

Recall that the herding task explored here has been inspired by the one recently employed to explore

and model the coordination dynamics that emerges between pairs of human herders [106, 109, 129],

as discussed in Chapter 2. To complete the task successfully, human herders learned to adopt two

modes of behavioural coordination. The first, known as search-and-recovery or S&R behaviour, in-

volving human herders corralling the targets that were approximately farthest from the contain-

ment area one at a time. Once all targets were contained, some human teams also learned to switch

to an oscillatory containment mode of behaviour (COC), in which the players perform semi-circular

movements around the herd.

In Appendix A we analysed how, starting from bottom-up designed herder models, it was pos-

sible to observe the emergence of oscillating herding behaviours from herders that simply divide

the game field in two fixed halves (what we called the static arena partitioning strategy). When we

tested herding scenarios in which herders adopted the dynamic selection strategies presented in

Section 3.3, oscillatory motion of the herders emerged spontaneously without the need of including

extra nonlinear terms in the model as done in [109] in all scenarios (see Figure 3.3 for an example of

spectral classification). Specifically, we found oscillatory motion to emerge in all the trials when the

global or peer-to-peer strategies were adopted with both herders moving around the containment

region as also observed when pairs of humans were asked to herd agents in the virtual reality setting

[109]. The static and leader-follower strategies were also found to give rise to oscillatory motion of

the herders in a fraction of the trials with only one of the two herders oscillating (a type of behaviour

we classify as non-cooperative).

3.4.4 Robustness analysis

Next, we analysed the robustness of the proposed herding strategies to variations in herd size and

the magnitude of the repulsive reaction to the herders exhibited by the target agents (Figure 3.4).

Specifically, we varied NT between 3 and 60 and the repulsion parameter αr in (3.4) between 0.05

and 2.5, while keeping NH = 2; we found that all strategies succeed in herding up to 60 agents across

a large region of parameter values (see the blue areas in Figure 3.4()). As expected, the global strategy,

where herders patrol the entire plane, was again found to be the least efficient in terms of total
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Figure 3.3: Comparison of power spectra exhibited by NH = 2 herders adopting different target se-
lection strategies in a successful trial when corralling NT = 7 target agents. Peak values of power
spectrum are used to classify the behaviour in search and recovery (SR) or coupled oscillatory con-
tainment (COC) (see Appendix B.1 for their definition). Herders not dividing (solid line), statically
dividing (dotted line) and cooperatively dividing (dash-dotted line) the game field have a peak fre-
quency on the right side of the threshold ωc = 0.5Hz and their coupled behaviours are classified
as COC. On the other hand, herders adopting the Leader-follower strategy (dashed line) have peak
frequencies on both sides as the leader herder mostly engage in a non-oscillatory behaviour and the
follower herder in a oscillatory one.
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(a) Gathering time tg. Lower values correspond to faster herding.

(b) Total distance travelled dtot. Lower values correspond to more efficient herding.

Figure 3.4: Robustness analysis of the proposed herding strategies for two herders (NH = 2) to vari-
ation of herd size NT and repulsive reaction coefficient αr . NT was varied between 3 and 60 agents,
with increments equal to 3, while αr between 0.05 and 2.5, with increments equal to 0.05. For each
pair (NT , αr ) the corresponding metric was averaged over 15 simulation trials starting with random
initial positions. The coloured plots were obtained by interpolation of the computed values.
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distance travelled by the herders (Figure 3.4(a)), with the dynamic peer-to-peer strategy offering the

best compromise in containment performance (Figure 3.4()) and efficiency (Figure 3.4(a)).

To further validate these findings we carried out 50 simulation trials for the herding scenario in

which NH = 3 herders are required to herd NT = 60 target agents. In this more challenging scenario

not all the trials were completed successfully, due to at least one target agent escaping the contain-

ment region. Thus, we averaged the resulting performance over the successful trials only (Table 3.2).

Herders adopting the global and peer-to-peer strategies successfully herded all agents in over 50%

of the trials. The global search strategy also resulted lower average gathering time (tg = 12.96) and

lower herd spread (S% = 0.48). However, the path travelled to achieve the goal (dtot) was significantly

larger compared to the local (static and dynamic) selection strategies (χ2 = 54, p < 0.0001).

Global Static LF P2P

Successful trials 49 11 7 26
tg [a.u.] 12.9 ± 1.8 18.2 ± 4.2 16.1 ± 5.1 15.9 ± 6.6
dg [a.u.] 211 ± 23 191 ± 43 138 ± 31 148 ± 66
dtot [a.u.] 1226 ± 25 708 ± 28 742 ± 74 734 ± 97
DT [a.u.] 6.5 ± 0.7 10.8 ± 4.1 8.2 ± 3.3 8.9 ± 6.8
S% [%] 0.5 ± 0.05 0.9 ± 1.5 3.4 ± 5.8 1.1 ± 1.7

Table 3.2: Average performance over successful trials of different herding strategies for NT = 60 tar-
get agents and NH = 3 herders.

3.4.5 Comparison with other approaches

We compared our proposed herding strategy with two other solutions presented in the literature, by

considering as a benchmark scenario the case of NH = 3 herders chasing NT = 7 targets.

The herder model (2.15) presented in [88] was adapted to this scenario, while the model (2.6)

proposed in [120] was applied as is. Specifically, the model in [88] was originally designed to drive

a single herder to corral multiple targets by switching between targets according to a dwell-time

condition (i.e., at fixed time intervals the herder agent switch between target to corral). To apply this

model to our benchmark scenario, we assume that each of the herders corrals only one target at a

time without coordinating with the other herders.

In all simulations the dynamics of the targets was set as in (3.3). Note that in [88] target dynamics

are assumed to be deterministic but uncertain, while in [120] targets have noisy dynamics but ex-

hibit an aggregating behaviour, or flocking, that is not considered here. Performance averaged over

25 trials is shown in Table 3.3, with both dynamic selection strategies (LF and P2P) proposed here

out performing the strategies proposed in [88, 120]. The relative poorer performance of these strate-

gies when compared to the strategies proposed here can be explained by noticing that the model in

[88] lacks coordination among multiple herders, while in the control solution in [120] heavily re-

lies on flocking among target agents which is not required in our case of interest. Furthermore, the
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chosen models were designed under the assumption of deterministic ([88, 120]) and flocking ([120]

targets. As a consequence, both models’ poor performance is affected by the stochastic, rather than

deterministic, scattering dynamics of the target agents considered here, further confirming the ef-

fectiveness of our approach when deployed in this type of scenario.

Model [88] Model [120] LF P2P

tg [a.u.] 100 ± 0 100 ± 0 11.8 ± 9 8.6 ± 6.3
dg [a.u.] 297 ± 90 7.9 ±0.6 85.4 ± 67 61 ± 55
dtot [a.u.] 297 ± 90 7.9 ±0.6 889 ± 52.6 942 ± 74
DT [a.u.] 3 ± 1.4 8 ± 6 0.8 ± 0.3 0.7 ± 0.1
S% [%] 3.7 ± 1.1 35.7 ± 6.1 1.7 ± 0.5 0.2 ± 0.3

Table 3.3: Average performance over 25 trials of NH = 3 herders driven by herding models available
in literature tasked to corral NT = 7 target agents.

3.5 Experimental (robotic) validation

The numerical validation, presented in Section 3.4, proved the efficacy of our strategies under the

ideal assumption of unbounded herding environment, unbounded agents velocities and unbounded

communication possibilities among herders. In real world applications, from one perspective, tar-

get motion can be mostly unknown (e.g., in case of biological systems) or designed to be faster

and/or smarter than herders (e.g., in case of artificial systems). From another perspective, artifi-

cial herder’s design needs to address physical constraints like hardware limitations (e.g., upper-

bounded velocities and accelerations), or not ideal herding conditions (e.g., uneven planar environ-

ment slowing their down, impossibility to preserve enough energy to complete the task, faulty com-

munication among herders). To validate the strategies proposed in more realistic robotic settings,

we complemented the numerical simulation presented in Section 3.4 with simulations in ROS1 and

experiments on real robots conducted via the Robotarium platform [118, 171]. In the ROS simula-

tions, we addressed the possibility of success of our strategies, and their underlying communication

protocols, in a realistic robotic environment. Then, the Robotarium experiments allowed us to test

if the constrained environment and the bounded robot dynamics affected herding task completion.

3.5.1 ROS simulations

ROS2 is an advanced software framework for robot software development that provides tools to sup-

port the user during all development cycles, from low-level control and communication to deploy-

1Code available at https://github.com/diBernardoGroup/HerdingProblem
2https://www.ros.org
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ment on real robotic systems. We used the Gazebo software package3 to test the proposed control

architecture on accurate 3D models of commercial robots to simulate their dynamics and physical

interaction with the virtual environment.

We considered a scenario where NT = 3 target agents needed to be herded by NH = 2 robotic

herders. All agents were chosen to be implemented as Pioneer 3-DX4, a commercially available two-

wheel, two-motor differential drive robot whose detailed model is available in Gazebo (Figure 3.5).

The desired trajectories for the robots are generated by using equations (3.3) and (3.5)-(3.6) for the

(a) Robot agent (b) Simulated environment

Figure 3.5: Overview of Gazebo-ROS application, with 3D model of the Pioneer 3-DX robot (a) and
a landscape view of the simulated environment (b).

target and herder robots, respectively, which were used as reference signals for the on-board inner

control loop to generate the required tangential and angular velocities (see Appendix B.3 for further

details).

Examples of ROS simulations are reported in Figure 3.6, with all of the target selection strategies

tested (static arena partitioning, leader-follower, peer-to-peer) resulting in successful robot herding

performance. Figure 3.6 also shows that the angular position of the herders remained within the

bounds defining the sector of the plane assigned to them for patrolling. The only exception can be

seen from an inspection of Figure 3.6(d) illustrating the leader-follower strategy. Here, the follower

herder temporarily exceeded the bounds when the lead herder changed its angular position while

corralling its target. This is essentially due to the subordinate role of the follower herder with respect

to the leader.

3.5.2 Robotarium experiments

Robotarium is a remotely accessible swarm robotics research platform equipped with GRITSBot

robots which allows rapid deployment and testing of custom control algorithms [119, 171]. To com-

ply with the limited space of the arena (3.2m × 2m) and safety protocols to avoid collisions be-

tween robots (robots’ diameter is 11cm) implemented in the platform, we considered a scenario

3http://wiki.ros.org/gazebo_ros_pkgs
4Pioneer 3 - Operations Manual, available at https://www.inf.ufrgs.br/~prestes/Courses/Robotics/

manual_pioneer.pdf (2020/08/11)
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: ROS simulations. Top panels show the trajectories of target agents (green lines) and
herders (grey lines) adopting (a) static arena partitioning, (b) leader-follower and (c) peer-to-peer
herding strategies simulated in the Gazebo environment. The containment region G is depicted as a
red circle. Black square marks denote the initial and the final (solid coloured) position of the herders.
Green circle marks show the initial and the final (solid coloured) position of the target agents. Bot-
tom panels show that all herders are able to collect the herd in less than 500s by following the an-
gular bounds (red lines) prescribed by the (d) static arena partitioning, (e) leader-follower and (f)
peer-to-peer herding strategies.

with NT = 4 target robots and NH = 2 herder robots; a herding scenario that was also considered in

[8, 129] to study and model the selection strategies adopted by pairs of human-driven herder agents.

Herder parameters were selected as described in Appendix B.2, while the coefficient of diffusion

and repulsion in the dynamics of passive agents (3.3) were scaled to (αb ,αr ) = (0.001,0.4) to comply

with the physical constraints on the hardware of the GRITBots; having a max tangential speed of

20cm/s and a max rotational speed of about 3.6rad/s.

The results of the experimental test5 are reported in Figure 3.7. Both dynamic strategies were

found to be effective in containing the target robots with a gathering time tg less than 70s, and with

the peer-to-peer strategy guaranteeing slightly faster convergence (Figure 3.7(b)) compared to the

leader-follower strategy (Figure 3.7(a)) over all the 5 trials performed.

5Movies of two illustrative trials are available at https://github.com/diBernardoGroup/HerdingProblem
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Note that the proposed dynamic control strategies were also found to have good performance

when implemented in real robots with constraints imposed on their maximum velocities, assumed

unbounded during the design phase described in Section 3.3.

3.6 Summary

In this Chapter we investigated a simple control strategy for solving non-flocking herding problems

where the number of target agents is greater than the number of herder agents. Our approach was

based on the combination of a set of (i) local dynamical rules driving the herders movements to the

position of selected targets and (ii) a target selection strategy that involved partitioning the game

area (plane) among the herders, with a herder selecting a target to corral in the sector assigned

to them either statically or dynamically (Section 3.3). More specifically, we proposed two dynamic

target selection strategies (leader-follower and peer-to-peer) and compared these two strategies

against two benchmark and previously used target selection strategies, namely global selection and

static game area partitioning. Recall, that for the leader-follower strategy the herding space was par-

titioned dynamically between the different herders depending on the position of the “lead” herder.

For the peer-to-peer strategy, the herding space was dynamically split into equally sized partitions

as a function of each herder’s local position. For the static partitioning strategy, the game plane

was divided at the beginning of a herding trial and remained fixed (static) over time. For the global

strategy, there was no area partitioning, with herders simply targeting the herder furthest from the

containment region not currently being herded by another herder. Our numerical results show the

effectiveness of the control strategy (movement control laws plus target selection strategy) and the

ability of the simple control process proposed to cope with an increasing number of target agents

and variations of the repulsive force they feel when the herders approach them (Section 3.4). In-

terestingly, our numerical evidence also suggests that the oscillatory motions of herders observed

in experiments with human players [109] may emerge from the local rules of interaction between

herders and target agents and do not need to be explicitly encoded in the mathematical model de-

scribing their dynamics. Finally, we tested our control strategy via simulations in ROS and experi-

ments on real robots, showing that the purposed local control law and the various dynamic target

selection strategies are effective (and viable) in real robotic scenarios (Section 3.5). To the best of

our knowledge, our approach is the only one available in the literature to drive multiple herders to

collect and contain a group of multiple agents that do not possess a tendency to flock and whose

dynamics is stochastic.

In what follows, we will investigate whether it is possible to model the target selection strategies

adopted by humans (i.e., distributed human decision making) in joint and team multi-agent tasks

(Chapters 4 and 6, respectively) and then employ these “human” target selection models to control

AA herders.
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(a)

(b) (c)

Figure 3.7: Robotarium experiments. (a) Overview of the Robotarium arena, with GRITSBot robots
for a herding scenario with NH = 2 herder robots (circled in black and blue) and NT = 4 target robots
(circled in green), and the evolution in time of the distance of the farthest passive robot from the
containment region G when the (b) leader-follower and the (c) peer-to-peer strategies are employed
for each trial. The mobile GRITBots representing passive agents were initialised with random initial
position chosen as xi (0) = 2r⋆eiφi (0), with φi (0) drawn with uniform distribution in the interval
(−π,π]. The radius r⋆ of the containment region has been chosen equal to 0.3m (i.e., equal to a
third of the length of the arena).
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HUMAN-INSPIRED STRATEGIES TO SOLVE COMPLEX JOINT TASKS

I
n this Chapter, we used Supervised Machine Learning (Section 4.1) to build a (function approx-

imation) model of how human players, with different expertise levels, select targets to corral

during a simulated multi-agent herding task. More specifically, based on the assumptions that

(i) the target selection strategies of human herders were reflected in the herders’ observed actions

and (ii) that human herders use dynamical information on the state of targets and other herder

agents (e.g., positions, velocities) around them to make target selection decisions, we trained an

LSTM-layered artificial neural networks to predict these action decisions using short sequences of

the herding system’s state preceding the observed target selection (Section 4.2). Here, we first de-

tail how the resultant LSTMN N models could accurately predict the target selection behaviours of

expert and novice herders (Section 4.3). We then demonstrate the utility of the proposed modelling

approach for creating artificial herder agents (AA-herders) capable of ‘human-like’ decision making

behaviour by employing the LSTMN N models of novice and expert strategies to control the target

selection decisions of the AA-herders (Section 4.4-4.5). Finally, the performance of the AA-herders

employing human-inspired target selection strategies was compared to that of herders who selected

targets via heuristic target selection strategies and dynamic selection strategies presented in Chap-

ter 3.3 (Section 4.6).

Part of the work in this Chapter has been presented at the 6th Conference on Analysis and Con-

trol of Chaotic System (CHAOS 2021) [8]. Additionally, with results in Chapter 5, it has been prepared

for publication.
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4.1 Overview of supervised machine learning and artificial neural

networks

The development and application of Machine Learning (ML) has rapidly increased over the last

decade. For example, ML applications are integral to all modern forms of image and speech recog-

nition [5, 37, 57, 145] financial modelling [89], and online product, movie and social interest rec-

ommendations [16, 115, 155]. In fact, today, ML is employed in everything from scientific analysis

[50, 77], to disease diagnosis, recover and therapy planning [12, 143], to employee identification and

selection [1, 46], to credit risk assessment [6, 175], to the control of autonomous cars and robotic

systems[33, 114, 156].

In many of these contexts, ML models are trained via Supervised Machine Learning (SML),

which is a subcategory of machine learning, whereby computational models or algorithms learn

to correctly classify input data, or predict future outcomes states from input data, by leveraging

coded, real-word training samples [47, 82]. Training samples include representative task data (e.g.,

images, sounds, motion data, GPS coordinates, stock prices) that have been labelled with the correct

data class or outcome state. These training samples are then used to build an approximate model

(function or policy) of how the input data (e.g., the pixels from an image) maps to the correct output

label (e.g., cat or dog) [20, 56]. Following training, the efficacy of the resultant model is tested against

data not supplied during training, with effective models able to generalise the learned input-output

mappings and, ultimately, correctly classify or predict unlabelled data.

4.1.1 Artificial neural and Long Short-Term Memory networks

SML models can be realised in numerous ways. For instance, using decision trees [124, 132], random

forests models [17], support vector machines [29, 31] and, of particular importance here, Artificial

Neural Networks (ANNs).

In general, ANNs are a composition of elementary units, nodes, that are grouped in intercon-

nected layers, where the connections between nodes can have different weights. A typical ANN in-

cludes an input and an output layer, with 1 or more “hidden layers” in between (i.e., deeper ANNs

have more hidden layers). Training an ANN to model input-output mappings via SML requires find-

ing the combination of connection weights that maps input data to the correct output class (label)

or state prediction. This is achieved by iteratively evaluating the error between the correct and pre-

dicted output of the ANN and adjusting the network weights between nodes and layers in order

to minimise this error. The error is measured via a loss function, which typically involves calcu-

lating the mean squared error or the negative average of the log of the probabilities between the

predicted and the correct output states. Network weights are adjusted via a process known as back-

propagation, which over training iterations adjusts network weights until the loss function is min-

imised (i.e., converges/descends to a minimal value; refer to [10] for further details on ANNs).

There are various types of ANNs. For instance, a fully-connected ANN is an ANN where all of the
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nodes on one layer are connected to all of the nodes on the subsequent layer. Of relevance in this

and following Chapters, is an ANN known as Long Short-Term Memory network (hereafter referred

to as LSTMN N ). An LSTMN N is a form of recurrent neural network that in addition to feed-forward

connections among node layers also includes feedback connections. The significance of these feed-

back connections is that they allow the ANN to process and retain information about sequences

of consecutive inputs [60, 61]. Accordingly, LSTMN N s are commonly used in time-series prediction

tasks [3, 21, 45, 111, 167], where the processing and retention of both past and present input states

are required to correctly predict future states. LSTMN N s are applicable here, as human decision

making during skilful action is based on the assessment of dynamical (time varying) task informa-

tion [7, 176] and, thus, the prediction of future state decisions requires processing sequences of task

relevant state input data.

4.2 Human target selection decisions

Effective behavioural coordination is essential to the performance of many everyday social or multi-

agent tasks. As discussed in previous Chapters, the multi-agent herding scenario offers a paradig-

matic example of a complex multi-agent coordination task [109, 110], in which one or more “herder”

agents are required to coordinate their actions to corral a second group of “target” agents into a de-

sired containment area.

As detailed in Chapter 2, different approaches have been proposed to design the control policies

of herders [67, 87, 113, 120, 151, 160] with coordination both explicitly embedded in the herder

dynamics [67, 84, 120] and implicitly conveyed in how each herder selects which target to corral at

each time step. Indeed, key to the success of any herding model is the target selection strategy that

regulates which target a herder is attracted towards and corrals at any given time ([9], Chapter 3).

Despite the central role that such action decisions play in the success of herding, the target selection

rules that have been employed when modelling human performance or developing artificial herders

are typically derived and implemented heuristically [67, 84, 151] under the general assumption that

target agents tend to aggregate together. Indeed, almost no empirical research has been directed to

determining the validity of these heuristic selection strategies, nor what specific task information

(e.g., relative location or velocity of targets, relative position of co-herds) herders use to make target

selection decisions.

In human-machine interaction, where the complex multi-agent system is composed of both

human and artificial actors, understanding how humans select their targets is also important for

developing artificial agents capable of successful and robust human interaction [32, 64]. Indeed,

like human-human interaction, effective human-machine interaction rests on the ability of artificial

agents (AAs) to not only predict the future actions or action decisions of human actors [19, 43, 122],

but, in many instances, also enact human-understandable patterns of reciprocal behavioural ac-

tion [15, 19, 62, 81, 109, 166]. Moreover, AI-driven agents shaped on successful human behaviour
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are also able to better train human actors for future human-human task performance [129]. One

way of developing artificial agent herders capable of robust human-AA interaction is to couple hu-

man inspired local control laws (3.5)-(3.6) with human inspired target selection strategies. Our aim

here was to investigate this by first modelling the target selection decisions of human herders who

completed a tabletop version of the multi-agent herding task as illustrated in Figure 4.1 and then

implement and test these models of AA herders.

(a) (b)

Figure 4.1: The herding task and experimental setup (a); and a screenshot of the playback applica-
tion developed in Unity3D (b).

Successful novice and expert human performance data from the joint-action herding experi-

ments conducted by [129] was employed to model the target selection strategies of human herders.

For this version of the herding task, novice-novice and expert-expert human herders were required

to corral and contain target agents randomly disperse around a game field into a predefined con-

tainment area. Specifically, the herding task (game), developed with Unity-3D game engine (Unity

Technologies LTD, CA), required pairs (NH = 2) of human participants (players) to control virtual

herding agents to corral and contain NT = 4 randomly moving target agents within a designated

containment area positioned at the centre of a game field. The task was performed on large 70"

touch screen monitors (see Figure 4.1()), with the human participants using touch pens to control

the location of motion of the herder agents. The targets’ movement dynamics were defined by Brow-

nian motion when not being influenced by a herder agent, and when influenced by a herder agent

moving in a direction away from the herder agent (similar to (3.3) detailed in Chapter 3). During

task performance, the position and velocity of all herders and targets agents (as well as other gen-

eral game states) was recorded at 50 Hz1. Full details of the experimental set-up and data collection

process can be found in [129], where the authors also developed “human-like” artificial agent train-

ers using the dynamical herding model and heuristic target selection strategy proposed in [107, 109]

and detailed in Chapter 3 Section 3.3 and Appendix A.

1Data available at github.com/FabLtt/ExplainedDecisions.
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Given that there were 4 targets and that players could also choose to corral no-target, predicting

the target selection decisions of novice and expert human herders corresponded to a multi-label

(i.e., 5 label) prediction problem with the output prediction class ID = 0 corresponding to no target

and ID = 1, 2, 3, or 4 corresponding to the four targets, respectively.

4.3 Predicting human target selection decisions

To exploit the time-varying nature of our data, we built an Artificial Neural Network (ANN) by alter-

nating Long-Short Term Memory (LSTM) and Dropout layers [60, 61]. We used Bayesian Optimisa-

tion to tune the learning rate of the Adam optimiser and the hyperparameters of the ANN. To avoid

over-fitting, we stopped the training phase when the Logarithmic loss on the validation set stopped

improving. Appendix B.5 has additional details on the learning algorithm.

To train an LSTMN N using SML, we extracted successful state time-series data from novice-

novice and expert-expert human pairs who completed the tabletop herding task detailed above.

State data was extracted from the time of task onset to when the herders had corralled all the four

target agents inside the containment area for the first time. We disregarded herder behaviour during

the remaining of the trials as we were only interested in trying to predict target selection decisions

prior the onset of the oscillatory containment behaviour the human herders often exhibit once tar-

gets are contained within the containment area. This is because human players treat the target herd

as a single entity for the latter mode of behavioural containment, with individual target selection

decisions no longer occurring [106, 109, 129].

Novice data was extracted from 40 successful trials performed by 10 different novice pairs (4

successful trials from each pair). Note that a human herder was considered to be a “novice” if they

were unfamiliar with the herding task prior to the data collection session. Novices repeated the task

until they had completed the 4 successful trials included in the novice data-set, with an average of

8 unsuccessful trials per pair.

Expert data was extracted from 48 successful trials performed by 3 pairs of human players with

extensive experience (≫10 hours and ≫100 successful trials) performing the simulated multi-agent

herding task (i.e., several authors from [129]).

At each time step the target a herder was corralling was classified manually by a paid research

assistant (naive to the studies purpose) via an interactive data playback Unity3D2 application that

played back the original recorded data-set (see Figure 4.1(a)). Data playback speed could be de-

creased to 1/8 speed, as well as stepped frame by frame, with each target visually labelled with a

fixed number (1 to 4) allowing the research assistant to more easily detect the currently corralled

target in case of uncertainty (e.g., a herder being close to two targets at the same time). Additionally,

the resulting classification was compared with the results of an automatic coding software. The soft-

ware leveraged the experimenter’s knowledge of target agents’ kinematics; in fact, each target was

2https://unity.com/, version 2018LTS
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designed to move at constant speed in a random direction if not corralled, and to increase its ve-

locity if targeted by a herder. The comparison showed that the naive researcher’s and the automatic

codes matched at 81.5% but the naive researcher was considered to be more in tune with human

decision-making processes. As a result of such manual classification, the target agent a given hu-

man herder was corralling was labelled with an integer number ĩ ∈ [0, N̂T +1], with ĩ = 0 meaning

“no target agent corralled” and ĩ ̸= 0 being the class ID of the target agent being corralled.

From the resulting labelled time-series data, training samples of expert and novice herders were

constructed of length ti to t f , where t f − ti = Tseq (corresponding to 25 time steps or 0.5 seconds of

system evolution), with 48 input features; i.e., the relative distances between herders and between

the herders and each of the 4 targets, each herders’ and targets’ distance from the centre of the con-

tainment area, and the velocities and accelerations of each herder and target. See Appendix B.4 for

more details on the feature extraction process and LSTMN N training data3.

4.3.1 Prediction analysis

Separate LSTMN N were then trained4 to predict the next target ID (output label) a novice or an

expert herder would corral at t f +τhor given a feature input sequence Tseq , with a prediction horizon

τhor = 1 time step, which corresponded to predicting the target the herder would corral at the next

time-step (equivalent to 20 ms in the future).

The confusion matrices of each LSTMN N tested on a test set of data samples (i.e., samples not

employed during training) are reported in Figure 4.2. Each label represents the ID of the target agent

the herder would corral at t f +τhor , with True/Predicted label ̸= 0 for targets 1 to 4 and True/Predicted

label = 0 when no target agent would be corralled (note that the terms ‘predicted label’ and ‘predic-

tion output’ will be employed interchangeably). Importantly, the values on the diagonal indicate

that each target ID could be correctly predicted between 93% to 99% of the time. Indeed, indepen-

dent from player expertise, each LSTMN N predicted which target a herder would corral with an

average accuracy above 95% (see Table 4.1 for more prediction metrics averaged over multiple test

sets and defined in Appendix B.6).

Accuracy Precision Recall F1 score

Novice 97.90 97.75 97.72 97.73
Expert 98.10 95.89 95.89 95.92

Table 4.1: Average performance [%] of the multi-label predictor trained on sequences of length
Tseq = 0.5 s on a test set of Ntest = 2000 samples.

3The processed datasets are made available in the public repository https://osf.io/wgk8e/
4Code and trained ANNs available at github.com/FabLtt/ExplainedDecisions.
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(a) Expert (b) Novice

Figure 4.2: Confusion matrices of the multi-label predictor trained on time-series of length Tseq =
0.5 s and tested on Ntest = 2000 samples for expert (a) and novice (b) data. ID = 0 correspond to “no
target”, with ID = 1, 2, 3 and 4 corresponding to the actual targets. Values on the diagonal indicates
the portion of samples for each prediction output correctly predicted.

4.4 Employing human-inspired strategies for artificial herders

To demonstrate the utility of the proposed modelling approach for creating AAs capable of of human-

like target selection decisions, we used the novice and expert LSTM models to control the behaviour

of AA-herders. As in Chapter 3, we considered the problem of NH (artificial) herder agents tasked to

corral NT autonomous target agents. Each AA herder targeted one agent at a time, with the target

agent to be corralled determined by either the novice or the expert LSTMN N models. That is, the

LSTMN N models were employed as human-inspired target selection decision strategies for the ar-

tificial herders (AA-herders) completing the same tabletop version of the herding task (Figure 4.1).

In what follows, we will refer to the LSTMN N models trained on novice and expert pairs as novice-

inspired and expert-inspired selection strategies, respectively.

The NT target agents were modelled as stochastic autonomous agents (3.3) subject to a repulsive

force away from the herders (3.4); the movements of the AA-herders were controlled by the dynam-

ical model, (3.5)-(3.6), that has been previously demonstrated to capture the movement dynamics

of human herders, as detailed in Chapter 3.

For each artificial herder, the LSTMN N models received real-time Nsv state features sequences

for the current AA-herder, other AA-herders, and the subset of N̂T = 4 stochastic agents closest to

the current herder. At the beginning of a trial AA-herders were labelled from 1 to NH in anticlockwise

order starting from a randomly selected herder. The LSTMN N models outputted the ID of the targets

(ID = 1 to 4) or no-target (ID = 0), among the N̂T ≤ NT selected, to be targeted by the AA-herder. If the

selection strategy output was “no target” (ID = 0), then the herder would move towards and corral
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the target, among the N̂T selected, farthest from itself.

4.5 Numerical validation

To test the generalizability of the human-inspired target selection models (and modelling approach

detailed here), we considered NH = 2 and NH = 3 artificial herders that were required to corral

NT = 4 and NT = 7 target agents and performed 50 trials with different initial conditions for each

combination of LSTMN N policy (novice-inspired, expert-inspired), AA-herder number (NH = 2 and

NH = 3) and number of targets (NT = 4 and NT = 7). Note that AA-herders in the same herding

pair or triad were driven by the same target selection policy (i.e., there were no mixed novice-expert

herder groups). All AA-herders started from a distance of 6r⋆ from the centre of the goal region, with

a relative angular displacement of (2π)/NH . Target agents initial positions were selected randomly

in a circular sector around the goal region with mean radius of 3r⋆. Appendix B.2 has more details

on the numerical integration5 and simulation parameters.

To evaluate the performance of novice- and expert-inspired AA-herders, we employed simi-

lar measures to those previously employed to evaluate novice- and expert-human herding perfor-

mance [109, 129] and AA-herding performance ([9], Appendix B.1). More specifically, we measured

the mean distance travelled by the herders dg, the spread rate of the herd Sg ,% and the containment

rate Ig ,% during the gathering time tg, the time from the beginning of a herding trial to the first time

instant at which the targets in the herd were all contained. Note that after tg, all herders were able

to maintain the herd (on average) inside the goal region until the end of the trial.

As can be seen from an inspection of Table 4.2, both the novice- and expert-inspired AA-herders

were able to successfully herd the target agents, irrespective of the number of targets and the num-

ber of AA-herders. Interestingly, the overall performance of the novice- and expert-inspired AA-

herders was relatively similar with regards to each of the performance measures assessed, with sig-

nificant differences only observed for containment rate, Ig ,%, (Kruskal Wallis test [79]; χ2 = 9.45,

p < 0.003) when NH = 3 and NT = 7 and the distance travelled by the AA-herders, dg (χ2 = 5.56,

p < 0.02) when NH = 2 and NT = 7, with expert-inspired AA-agents exhibiting slightly faster target

containment rates, while travelling over more ground, respectively, compared to novices.

Recall, that the novice-human data employed to train the novice-inspired model was extracted

from successful herding trials. Thus, while the novice human herders were not ‘experts’, they had

reached a level of behavioural performance consequent with “successful herding”. Indeed, the dif-

ference in the actual performance of the expert and novice human herders was also rather mini-

mal as can be observed in Table 4.3. Hence, finding little difference in the performance outcome

measures of the novice-inspired and expert-inspired herders was partially expected. However, an

additional robustness analysis6 in which the herding performance of novice- and expert-inspired

herders were tested on herd-size NT from 6 to 66 targets revealed that the expert-inspired herders

5Code available at github.com/FabLtt/DeepHerding
6Code available at github.com/FabLtt/DeepHerding

54

https://github.com/FabLtt/DeepHerding
https://github.com/FabLtt/DeepHerding


4.6. COMPARISON AMONG TARGET SELECTION STRATEGIES

NT = 4 NT = 7
Novice-insp Expert-insp Novice-insp Expert-insp

NH = 2

tg [a.u.] 13.72 ± 4.4 13.06 ± 4.03 18.42 ± 4 18.50 ± 3.2
dg [a.u.] 151.05 ± 64.1 143.95 ± 60.7 197.70 ± 51.1 216.10 ± 50.5
Dg [a.u.] 2.2 ± 1.5 2.45 ± 1.66 2.8 ± 1.6 3.35 ± 2.12
Sg ,% [%] 1.32 ± 0.6 1.33 ± 0.6 2.39 ± 0.5 2.34 ± 0.6
Ig ,% [%] 22.81 ± 8.8 21.06 ± 6.6 22.35 ± 9.2 21.18 ± 6.6

NH = 3

tg [a.u.] 10.17 ± 2.7 10.31 ± 3.3 14.86 ± 6.3 13.37 ± 2.7
dg [a.u.] 114.81 ± 36.2 124.00 ± 47.6 166.44 ± 65.4 164.53 ± 37.8
Dg [a.u.] 2.12 ± 1.45 2.46 ± 1.45 3.1 ± 1.6 3.23 ± 2.15
Sg ,% [%] 1.156 ± 0.5 1.16 ± 0.5 2.27 ± 0.5 2.36 ± 0.4
Ig ,% [%] 25 ± 8.2 24.63 ± 7.8 25.98 ± 9.2 20.89 ± 4.9

Table 4.2: Average performance over 50 trials of different human-inspired target selection strategies
for NT = 4 and NT = 7 target agents during gathering time tg.

did, in general, preform better than novice-inspired herders for herd-sizes >15 targets in terms of

gathering time tg (blue area in Figure 4.3(a)) and containment rate Itot,% (red area in Figure 4.3(b))

Novice pairs Expert pairs

tg [a.u.] 26.35 ± 8.67 10.65 ± 3.43
dg [a.u.] 7.19 ± 4.08 4.6 ± 1.6
Dg [a.u.] 0.99 ± 0.2 0.35 ± 0.22
Sg ,% [%] 3.61 ± 1.99 2.7 ± 1.48
Ig ,% [%] 18.25 ± 7.18 16.81 ± 6.76

Table 4.3: Average performance over successful trials of novice and expert pairs of actor playing
the herding game with NT = 4 passive agents during gathering time tg. According to Kruskal Wallis
statistical test, significant difference between Novice and Expert pairs is only observed for gathering
time tg (χ2 = 24.67, p < 0.0001), distance travelled during gathering phase dg (χ2 = 5.76, p < 0.02)
and herd distance from the containment region during gathering phase Dg (χ2 = 24.33, p < 0.0001)
with pairs of experts exhibiting faster target gathering time compared to novices.

4.6 Comparison among target selection strategies

We compared the human-inspired selection strategies against the target selection strategies investi-

gated in Chapter 3 (i.e., the global, static, leader-follower, peer-to-peer) in the benchmark scenario

of NH = 3 herders and NT = 7 target agents (see Table 3.3. Recall that the global search strategy and

the static arena partitioning are the two rule based strategies that have typically been employed in
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(a) Gathering time tg. Lower values correspond to faster herding.

(b) Total containment rate Itot,%. Higher values correspond to more efficient herding.

Figure 4.3: Robustness analysis of the proposed herding strategies for two herders (NH = 2) to vari-
ation of herd size NT and repulsive reaction coefficient αr in (3.4). NT was varied between 6 and 66
agents, with increments equal to 3, while αr between 0.05 and 2.5, with increments equal to 0.05.
For each pair (NT ,αr ) the corresponding metric was averaged over 10 simulation trials starting with
random initial positions. The coloured plots were obtained by interpolation of the computed values.

the herding literature [67, 107, 151]. In these approaches, either herders distributed among them-

selves the NH agents farthest from the centre of the goal region (global search strategy) or they evenly

and statically split the space in NH static sectors and each selected the farthest agent in its own sec-

tor (static arena partitioning). The other two strategies were the novel strategies proposed in Chap-

ter 3. For the leader-follower strategy the herding space was partitioned dynamically between the

different herders depending on the position of the “lead” herder. For the peer-to-peer strategy, the

herding space was dynamical split into equally sized partitions as a function of each herder’s local

position.

From Table 4.4, the simulation results revealed that AA-herders could successfully achieve the

task (3.2) within the first 20% of a trial, independent of the target selection strategy employed.

Consistent with the results reported in Chapter 3.4, Table 4.4 the global target selection strategy
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outperformed the other strategies. However, it is important to appreciate that the global target

selection strategy is computationally heavy, as it depends on full knowledge of the environment

and accurate estimates of agents distance from the goal. This is in contrast to the significantly

lower computational cost of the human inspired strategies developed here and the other three

strategies investigated in Chapter 3, which only rely on partial or local information. Note also that

although AA herders enacting the static strategy exhibited significantly higher containment rates

(Ig ,% = 34.4±16.6) compared to the other strategies, this was achieved at the cost of a significantly

higher gathering time (tg = 32.02±25.8) and greater distance travelled (dg = 216±189).

While the global and static strategies provided effective benchmarks for assessing the overall

performance of the human inspired strategies, of more interest was the comparison of the human

inspired models to the two dynamic strategies investigated in Chapter 3 (i.e, leader-follower and

peer-to-peer), which we assumed were more “human like” than the global and static strategies[129].

Consistent with the latter assumption, AAs controlled via the human-inspired and dynamic selec-

tion strategies exhibited similar levels of task performance, with the exception that AAs dynamically

dividing the game space as peer-to-peer which took significantly longer than the human-inspired

(and the leader-follower) strategies to corral the targets (tg, χ2 ≈ 8, p < 0.02), but also travelling

significantly shorter distances (dg, χ2 ≈ 28.7, p < 0.0001) compared to the human-inspired (and the

leader-follower) strategies. This is not to say, however, the human inspired strategies were more sim-

ilar to the leader-follower strategy, as the human inspired strategies did exhibit (on average) much

faster gathering times, tg , than the leader-follower strategy.

Global Static LF P2P Novice-insp Expert-insp

tg [a.u.] 10.5 ± 1.2 32.02 ± 25.8 31.3 ± 18.1 17.2 ± 8.3 14.86 ± 6.3 13.37 ± 2.7
dg [a.u.] 102 ± 21 216 ± 189 169 ± 91 101 ± 44 166.44 ± 65.4 164.53 ± 37.8
Dg [a.u.] 2.5 ± 1.7 3.3 ± 1.6 3.4 ± 1.8 2.5 ± 1.6 3.1 ± 1.6 3.23 ± 2.15
Sg ,% [%] 2.6 ± 0.6 2.2 ± 0.5 3.1 ± 1.2 2.8 ± 0.9 2.27 ± 0.5 2.36 ± 0.4
Ig ,% [%] 11.12 ± 3.2 34.4 ± 16.6 27.6 ± 12.6 20.5 ± 6 25.98 ± 9.2 20.89 ± 4.9

Table 4.4: Average performance over 50 trials of benchmarking (Global, Static), dynamical (LF, P2P)
and human inspired (Novice-, Expert-insp) target selection strategies for NH = 3 and NT = 7 target
agents during gathering time tg (see Appendix B.1 for the formal definitions).

4.7 Summary

In this Chapter we demonstrated how short state information (feature) sequences (i.e., 500 ms of

herding system evolution) could be used to train LSTMN N models to accurately predict (above

95% on average) the target selection decisions of human actors, independently of expertise level

(Section 4.2-4.3). Additionally, we provided evidence that the resultant LSTMN N models of human

target selection decisions could be employed to control the decision dynamics of AAs. We demon-
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strated this for both the expert and novice models (Section 4.4) and, moreover, demonstrated how

the models could be used to control the decision making behaviour of AAs within multi-agent task

contexts not included in the training data (Section 4.5). The generalised herding contexts included

both increases in the number of herding agents and the number of targets to be corralled, as well

as across a wide range of target repulsion magnitudes (see Figure 4.3). In particular, the numeri-

cal experiments reported here highlighted that herders adopting human-inspired strategies can be

successful (i) with or without herd flocking behaviour and (ii) do not need global knowledge of the

environment, nor knowledge of the exact herd size (i.e., have low computational cost).

Similar results, both in terms of prediction and herding performance, were also observed for

LSTMN N trained to predict the target selection decisions much further in the future (i.e., longer pre-

diction horizon). The results for the short prediction horizon models were presented here, while the

results for the long prediction horizon models (i.e., 0.5, 1 and 2 seconds in the future) are reported

in Appendix C.3.

Finally, it is important to appreciate that the dynamic target selection strategies presented in

Chapter 3 and employed for comparison purposes here reflect white-box policies that exploit global

information to dynamically partition the searching space. In contrast, the the human-inspired strate-

gies models developed and investigated here correspond to black-box policies (i.e., the mapping to

between input and output states is unknown). Thus, while the result suggest that the human in-

spired target selection models were more similar to the two dynamical targets selection strategies

investigated in Chapter 3 (i.e, leader-follower and peer-to-peer), it is very difficult to draw any defini-

tive conclusions about this potential relationship, without understanding the information (features)

the human herders employed to make their target selection decisions. Accordingly, to better un-

derstand the decision making behaviour of human herders, in the next Chapter we employed ex-

plainable AI (Artificial Intelligence) tools to identify the state information that underlies the target

selection decisions of human herders, including what differentiates expert from non-expert perfor-

mance.
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UNDERSTANDING HUMAN DECISION IN FAST PACED JOINT TASK

C
hapter 4 provided evidence that it is possible to train artificial neural networks (LSTMN N s)

to model the target selection decisions of human herders completing the tabletop, multi-

agent herding task developed by [106, 129]. Recall that this task was chosen because it (i)

provided a paradigmatic example of a multi-agent task where skilful action or expertise is required

for task success and (ii) rests on the ability of herders to rapidly and continuously coordinate their

target selection decisions throughout task performance.

In this Chapter, we first detail how the target selection decisions of human herders can be pre-

dicted at timescales, or prediction horizons, that extend beyond the timescale at which target sec-

tion actions are enacted (Section 5.1). That is, we demonstrate how LSTMN N can be trained to pre-

dict the target selection decisions of human herders well before those target selection actions are

enacted. Following a more advanced analysis of the LSTMN N models trained on novice and expert

data (Section 5.3), we then demonstrate how explainable AI tools can be employed to identify differ-

ences in the decision-making processes of expert and novice herders. More specifically, we demon-

strate how the LSTMN N models that were able to accurately predict the target selection decisions of

expert or novice herders differently weighted task information (feature inputs) (Section 5.4).

The work in this Chapter, with results in Chapter 4, has been prepared for publication.

5.1 Predicting fast paced distributed human decision

As noted in the previous Chapter, a timely and important challenge – given the increasing potential

for interactive robotic and artificial intelligence (AI) technologies to significantly enhance and ex-

pand individual, and team, performance capabilities – is modelling the decision making processes

of human actors for the design of interactive artificial agents (AAs). While effective prediction is of-
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ten of primary concern in the development of such models [76, 131], understanding what differen-

tiates human performance, including what state information human actors employ when making

action decisions is equally important [28, 63, 100, 133]. Here, we investigated whether we could

leverage recent advances in explainable AI methods to understand the decision-making activity

of expert and non-expert (novice) human actors performing the fast-paced, tabletop, multi-agent

herding task [9, 107].

In Chapter 4, the target selection decision of novice and expert pairs of human herders were

modelled using Supervised Machine Learning (SML) and LSTMN N . Given a brief sequence of sys-

tem evolution (Tseq = 500 ms), the resulting models could effectively predict the ID (1 to 4, or 0 for

no target) of the target the herder would corral 20 ms in the future. Here, we model the same target

selection predictions, but this time for sequence lengths of Tseq = 1 s and with respect to two dif-

ferent prediction horizons: a shorter (immediate) prediction horizon, τhor = 1, which corresponded

to predicting the target the herder would corral 40 ms in the future; and a much longer (delayed)

prediction horizon of τhor = 16, which corresponded to predicting the target the herder would cor-

ral 640 ms in the future. As in the previous Chapter, data of novice and expert herders completing

the herding task presented in [129] was employed for model training with pairs of human herders

sharing the same level of expertise. More specifically, we (i) extracted Tseq -long time series of rel-

evant state variable (i.e., input features), (ii) chose the corresponding output label (i.e., ID of the

agent targeted) τhor time steps later and (iii) trained an LSTM-layered ANN for each combination

of expertise and τhor as described in Chapter 4 and Appendices B.4-B.61.

5.1.1 Immediate and delayed decision

Choosing Tseq = 1 s, the shorter prediction horizon of τhor = 1 (or 40 ms in the future), essentially

reflected decisions already made and/or currently being enacted by a human herder. In contrast,

the longer prediction horizon of τhor = 16 (or 640 ms in the future), involved predicting the target

selection decision of a human herder well before the decision was enacted and/or a player’s be-

havioural intention was typically observable. This was validated by calculating the average time it

took a human herder to move from one target to the next when switching targets. The latter was de-

termined by calculating the human herders inter-target switching time. These inter-target switching

movement times were calculated as the time from when a human herder moved outside the region

of repulsive influence of the current target being corralled and entered the region of repulsive in-

fluence of the next target to be corralled, with an average inter-target movement time of 556 ms

for novice herders and 470 ms for expert herders (see Figure 5.1 for the distributions of inter-target

movement times). Note we also investigated τhor = 8 and 32, see Appendix C.2.

1Code and trained ANNs available at github.com/FabLtt/ExplainedDecisions
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5.1. PREDICTING FAST PACED DISTRIBUTED HUMAN DECISION

Figure 5.1: Distribution of inter-target movement times [ms] of expert (blue) and novice (orange)
herders. The average inter-target movement time was 556 ms (65% of the total inter-target move-
ment times < 600 ms) for novices and 470 ms (72.5% of the total inter-target movement times< 600
ms) for experts.

5.1.2 Prediction analysis

Prediction performance reported in Table 5.1, and defined in Appendix B.6, reveals how SML trained

LSTMN N models could predict which target a herder would corral at an average accuracy exceed-

ing 95%, independent of prediction horizon and level of expertise (see Figure 5.2 for the confusion

matrices of each LSTMN N when tested on a benchmark set of data samples). Supplementary results

for τhor = 8 and 32 are also reported Appendix C.2.

Accuracy Precision Recall F1 score

Shorter timescale (40 ms)

Novice 96.7 ± 0.4 96.6 ± 0.4 96.5 ± 0.4 96.6 ± 0.4
Expert 96.8 ± 0.2 93.7 ± 0.7 92.4 ± 0.7 93.1 ± 0.6

Longer timescale (640 ms)

Novice 96.2 ± 0.5 96.2 ± 0.6 96.1 ± 0.6 96.1 ± 0.6
Expert 95.6 ± 0.3 90.7 ± 0.6 89.4 ± 0.9 90 ± 0.7

Table 5.1: Average performance [%] of the multi-label predictor trained on time-series of length
Tseq = 1 s and tested on 10 sets of Ntest = 2000 samples.
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Figure 5.2: Confusion matrices of the multi-label predictor trained on time-series of length Tseq = 1
s and tested on Ntest = 2000 samples for different combination of expertise (columns) and prediction
horizon (rows).

5.2 Sample type prediction analysis

Recall that the data samples used to make a target selection prediction are vector time-series of the

herding system’s state evolution for t ∈ [ti , t f ], where t f − ti = Tseq , and the prediction outputs are

chosen as the ID of the target that will be corralled at t f +τhor with τhor ̸= 0. Accordingly, it is impor-

tant to appreciate that there are two sub-categories of sample type (see Figure 5.3). First, in the time

interval Tseq , a human herder could either continuously corral the same target agent or transition

between different targets. Here we classified these two types of Tseq samples as non-transitioning

and transitioning behavioural sequences, respectively. The second subcategory of sample, corre-

sponded to whether a herder switched targets between t f and t f +Thor . That is, at Thor , a herder could

be corralling the same target that was being corralled at the end of Tseq or switch to a different target,

with these two possibilities classified as non-switching and switching behaviour, respectively.

Interestingly, the majority of samples, at τhor = 1, in the expert and novice data-set corresponded

to “non-transitioning and non-switching” behaviour (79.28% and 63.87%, respectively). The impli-

cation is that experts transitioned between targets less often than novices and were more persistent
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(a) (b)

(c) (d)

Figure 5.3: Examples of samples in different categories: (a) “non transitioning and non switching”
sample, (b) “transitioning and switching” sample, (c) “non transitioning and switching” sample and
(d) “transitioning and non switching” sample.

Non transitioning Transitioning Mixed

Non switching Switching Non switching Switching

Accuracy % samples Accuracy % samples Accuracy % samples Accuracy % samples Accuracy % samples

Shorter timescale (40 ms)

Novice 97.92% 63.87% 63.18% 2.41% 97.56% 33.14% 69.25% 0.58% 96.75% 100%
Expert 98.86% 79.28% 55% 1.16% 92.16% 18.88% 57.34% 0.68% 96.82% 100%

Longer timescale (640 ms)

Novice 97.35% 48.61% 92.48% 17.69% 97.69% 26.59% 92.22% 7.12% 96.21% 100%
Expert 98.86% 72.67% 71.45% 7.63% 89.14% 12.62% 74.24% 7.08% 93.48% 100%

Table 5.2: Average performance [%] of the multi-label predictor, per type of samples, trained on
time-series of length Tseq = 1 s and tested on multiple sets of Ntest = 2000 samples each.

in corralling a given target (or no target) compared to novices. Conversely, novice herders switched

between targets more frequently and corralled targets for shorter periods of time compared to ex-

perts.

Given the latter finding, it was important to determine whether the difference in the amount of

one type of sample versus other type of samples in the expert and novice data sets skewed model

accuracy. To test this, the LSTMN N models predicting expert and novice target selection decisions

at τhor = 1 and 16 were tested against novel test sets composed of either (i) mixed samples, (ii) only

“transitioning” samples, (iii) only “non-transitioning”, (iv) only “ transitioning and switching” sam-

ples, and (v) only “non transitioning and switching” samples. Further results for different values

of input sequence length Tseq , prediction horizon τhor and type of samples are reported in Ap-

pendix D.1.

Results, reported in Table 5.2, demonstrated that model accuracy was dependent on sample

type. Specifically, the novice and expert LSTMN N ’s models exhibited high accuracy (between 89%

and 99%) for “non-switching” samples for both prediction horizons and for transitioning and non-

transitioning data sequences. However, the accuracy for “switching” samples was significantly lower,

particularly for expert models (between 55% and 75%) and when τhor = 1 (between 55% and 70%).
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Non transitioning Transitioning Mixed

Non switching Switching Non switching Switching

Accuracy % samples Accuracy % samples Accuracy % samples Accuracy % samples Accuracy % samples

Longer timescale (640 ms)

Novice 95.75% 25% 93.25% 25% 96.23% 25% 95.32% 25% 97.42% 100%
Expert 95.45% 25% 94.38% 25% 97.71% 25% 94.69% 25% 94.72% 100%

Table 5.3: Average performance [%] of the multi-label predictor, per balanced type of samples,
trained on time-series of length Tseq = 1 s and tested on Ntest = 2000 samples.

The reason for this reduction in performance was due to a lack of “switching” samples within

the training data. For the shorter prediction horizon τhor = 1, “switching” samples represented less

than 2% of samples. As can be discerned from an inspection of Table 5.2, this resulted in an accuracy

of only 63% to 70% for switching samples for the τhor = 1 models. This was not an issue when mod-

elling the target selection decisions of novices at τhor = 16, as the number of switch samples was

above 12%. However, for experts, the number of switch samples was less than 8% when τhor = 16

and, thus, model accuracy was also much lower, only between 70% and 75% for switching samples.

Due to the significant difference between the type of samples in novice and, especially, expert

datasets, we trained LSTMN N models for τhor = 16 with samples evenly representing each type. As

observed in Table 5.3, models trained on an even distribution of behaviours more robustly predict

transitioning and switching behaviour, with an average accuracy above 94% for all sample types.

Importantly, this indicates that when τhor >> 0 and there are enough target switching events within

the training data, LSTMN N models can be trained to effectively predict when a human herder will

remain herding the same target and switch to a new target.

5.3 Cross expertise prediction analysis

The latter results, (Table 5.3) provided clear evidence that the LSTMN N models could accurately

predict what target agents expert and novice herders would choose to corral at both short and long

prediction horizons. Nevertheless, the difference in the distribution of samples between experts and

novices suggested that the specific target selection decisions made by the human herders were de-

pendent on the level of experience. This potential dependence was tested by comparing the perfor-

mance of the expert trained LSTMN N models attempting to predict novice target selection decisions

and vice versa.

As expected, when an LSTMN N trained on one expertise (i.e., a novice trained LSTMN N ) was

used to predict test samples extracted from the opposite expertise (i.e., expert data-set), perfor-

mance decreased significantly, with the model prediction operating at near chance levels (see Fig-

ure 5.4). More specifically, for the shorter prediction horizon, the LSTMN N models trained on expert

pairs predicted novice samples with an average accuracy of only 59.6%. Similarly, the model trained

on novice pairs only predicted expert samples with an average accuracy of 61.5%. Performance was
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even worse for the longer prediction horizon, with average accuracy dropping to 45.18% and 51.58%,

for expert-to-novice and novice-to-expert predictions, respectively.

Figure 5.4: Average accuracy [%] values of the multi-label predictor trained on time-series of length
Tseq = 1 s and tested on 10 test sets of Ntest = 2000 samples for different combination of exper-
tise between the Train and Test data sets. ∗∗ indicates a significant paired samples t-test difference
of p < 0.01. Note there were no significant differences between the accuracy of novice and expert
models for both prediction horizon’s when tested on the same expertise level (i.e., novice-novice
and expert-expert (all p > 0.1).

5.4 Understanding differences in human target selection decisions

The significant difference in the performance of LSTMN N models trained and tested on the same

level of expertise (Table 5.1) compared to different levels of expertise (Figure 5.4) indicated that the

novice and expert LSTMN N models weighted input state variables differently when making target

selection predictions. The related implication is that novice and expert herders employed state in-

formation differently when making target selection decisions. Hence, we explored whether these

differences could be determined by employing explainable AI techniques to identifying how the

LSTMN N models weighted state input features.

5.4.1 Overview of explainable AI techniques and SHapley Additive exPlanation

As anticipated in Chapter 4, artificial neural networks (ANNs) have underpined many of the ad-

vances in machine learning and artificial intelligence (AI) in recent years [6, 37, 57, 155]. Despite the

practical utility and effectiveness of ANNs, the large number of connection weights within ANNs,

particularly Deep-ANNs, makes it difficult to directly access and understand how information, as

input, propagates though an ANN to provide a given output. For this reason, ANNs are often re-
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ferred to as “black-box” models. However, a desire to better understand and interpret the validity

and reliability of ANNs and other black-box models, as well as the growing demand for more trans-

parent, ethical and trustworthy AI and AA systems [163], has resulted in a renewed interest in the

application and development of explainable AI techniques [93, 101, 112, 116, 147].

In short, explainable AI techniques make the internal processes of a black-box model under-

standable to human investigators by deriving linear explanation functions of the effects that input

features have on the output states. Popular methods include LIME [126], DeepLIFT [144], and, more

recently, SHapley Additive exPlanation (SHAP) [91, 92], which we employed here.

With respect to the analysis of the input-output mappings of an ANN, the SHAP algorithm pairs

each input feature with a SHAP value. The higher the SHAP value, the greater the influence of the

feature on the output. Importantly, SHAP values are locally accurate. Thus, to derive a measure of

global feature importance one can average the importance of a feature over the test set used to

assess generalised model accuracy. The result is an average SHAP value for a given input to output

mapping, with this value indicting the overall significance of a given input feature for a given output

prediction.

In what follows we demonstrate how SHAP can be employed to identify the task information un-

derling the target selection decisions of human herders, including what differentiates expert from

non-expert decision making performance. That is, we employed SHAP to identify what input infor-

mation (features) provided to an LSTMN N , that could effectively predict expert and novice target

selection decisions, most influenced the ANNs prediction output (i.e. the decision made).

5.4.2 Feature rankings association analysis

We computed SHAP values2 for each sample in the test set (predicted with the accuracy scores re-

ported in Table 5.1) and then rank-ordered each input feature in terms of its importance in making

target selection predictions as captured by its average SHAP value (see Appendix B.7 for more details

on the SHAP algorithm being employed).

Before assessing what (if any) specific input features were weighted differently, we first com-

puted the ordinal association of SHAP value rankings between the different LSTMN N models using

the Kendall’s τ rank correlation coefficient [98]. Kendall’s τ is a non-parametric statistical test of

rank order association, with τ = 0 corresponding to the absence of an association3, τ = 1 corre-

sponding to perfect association (matched rankings), and τ=−1 corresponding to opposite ranking

orders (negative association). We computed Kendall’s τ between the SHAP rankings of the full input

feature set and the top 10, 5 and 3 features, ranked by SHAP, for (i) the novice and expert LSTMN N

models for each prediction horizon, and (ii) the long and short prediction horizons for expert and

novice LSTMN N models.

2Computed SHAP values are made available in the public repository https://osf.io/wgk8e/. These can be analysed
with the code available at github.com/FabLtt/ExplainedDecisions

3Although τ = 0 is the null-hypothesis (and one cannot draw conclusions from non-significant results), it does pro-
vide a robust and intuitive assessment of rank order independence
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5.4. UNDERSTANDING DIFFERENCES IN HUMAN TARGET SELECTION DECISIONS

As can be seen from Figure 5.5, the Kendall’s τ analysis revealed that there was very little asso-

ciation between the novice and expert SHAP rankings for both short and long prediction horizons,

with average τ< 0.4, (p > 0.26) for all feature sets, further suggesting that novice and expert herders

employed different state information when making targets selection decisions. With regard to the

association between the short and long prediction horizons for novice and expert models, there was

also very little association between SHAP rankings for the full, top 10 and top 5 ranked feature sets

for each level of expertise (average τ < 0.4, p > 0.3). It is important to note that there was slightly

greater association (yet still not significant) between the top 3 ranked features set (average τ < 0.5,

p > 0.3) for each level of expertise. As detailed below, this was due to the relative herder-to-target

distance features often ranked within the top 3 features across target ID, implying that this infor-

mation played a key role in target selection decisions irrespective of the prediction horizon (see Ap-

pendix D.2 for a detailed summary of Kendall’s τ values for each target prediction class and model

comparison).

Figure 5.5: Kendall’s tau values for subgroups of top ranked input features averaged over labels. The
top panel shows the Kendall’s τ comparison between novice and expert SHAP rankings for short (top
left) and long (top right) prediction horizon. The bottom panel shows the Kendall’s τ comparison
between the short and long prediction horizons for expert (bottom left) and expert (bottom right)
models.

5.4.3 SHAP analysis

To highlight what specific input features played a major role in the target selection predictions for

novice and expert herders, Figure 5.6(a) illustrates the top ten most prevalent features for non-zero

prediction outputs (i.e., ID = 1 to 4), with the different input features (e.g., distance from goal, ve-
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locity, etc.) defined with regard to the current herder in question (“1st-herder”), the partner herder

(“2nd-herder”), the “will-be-corralled target” at τhor (i.e., correct prediction output) and the “other”

targets that were not predicted to be corralled at τhor .

Consistently with the Kendall’s τ analysis for the top 3 feature sets, the relative distance between

herders and targets played a key role in the target selection predictions; these input features nearly

always had the highest SHAP values for each target ID, largely independent from expertise and pre-

diction horizon (filled circle marks in Figure 5.6(a)).

Interestingly, the relative distance between the two herders was only ranked within the top 10

features for expert target selection predictions (empty diamond marks in Figure 5.6(a)). This im-

plies that expert herders were more attuned to their co-herders location within the herding envi-

ronment than novice herders and modulated their target selection decisions accordingly. However,

both novice and expert pairs were attuned to the partner herder’s distance from the targets , suggest-

ing that novices were, at least, aware of partner’s whereabouts – either to seek partnership and work-

load sharing, or to not be hindered. Expert target selection predictions were also influenced by the

herder’s current distance from the containment area, whereas novice target selection predictions

were not (square marks in Figure 5.6(a)). Expert predictions at both short and long time horizons

were also more reliant on target direction of motion information compared to novice predictions,

whereas novices target selection predictions were more reliant on target and herder acceleration

compared to experts, suggesting a deeper focus on their own actions than partner’s.

Finally, similar SHAP results were observed with regard to no-target (ID = 0) predictions (Fig-

ure 5.6(b)), with novice target selection predictions more reliant on acceleration (and velocity) in-

formation compared to expert predictions. Refer Appendix D.3 for a detailed summary of SHAP

feature values for each model, prediction horizon and target ID.

5.5 Summary

Results in this Chapter revealed that independently of expertise level, both immediate and delayed

target selection decision of human herders performing a fast paced joint task could be accurately

modelled by training LSTM-layered ANNs (Section 5.1).

A key finding was that the trained LSTMN N models were expertise specific, in that, when the

expertise level of the training and test data mismatched, prediction performance dropped to near

chance level (Section 5.3). Consistent with action decisions during skilful action being a function of

an actor’s level of situational awareness [24, 96] and trained attunement to the information that best

specifies what action possibilities will ensure task completion [68, 158, 176], this was a result of the

expert and novice LSTMN N models weighting input features differently.

The differences between expert and novice pairs of herder was further explored using the ex-

plainable AI technique SHAP, with the average SHAP feature rankings revealing that although ex-

pert and novice pairs both employed similar relative target distance information, expert decisions
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5.5. SUMMARY

(a)

(b)

Figure 5.6: SHAP results for target prediction (a) ID = 1 to 4 and (b) ID = 0 (no target), as a function of
prediction horizon and expertise. Features type is listed on the x-axis. In (a) the y-axis represents the
proportion of targets NT = 4 a state variable was found on average to be ranked within the top-ten
features, such that “100%” represents a feature that was a top-ten feature with respect to all targets.
In (b) only features ranked with an average ranking in the top-ten features ID = 0 are displayed.
Filled marks indicate state variables ranked on average in the top five features (i.e., from 1st to 5th
place) while empty marks indicate state variables ranked on average between 6th to 10th place.
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were more influenced by direction of motion information compared to novices. In contrast, novice

decisions were more influence by target velocity and accelerations rather than by partner’s actions.

This is consistent with players being novices not only to the herding task itself but to the partner

player (i.e., to the partner’s level of expertise or decision making process). Together with finding

that experts transitioned between targets less often than novices (see Section 5.1), this suggests that

experts were more attuned to information that better specified the prospective state of the herd-

ing system, including what targets afforded corralling by their co-herder, and only switched targets

when such target transitions were critical to future task realisation. This possibility is, of course,

consistent with expertise being commensurate with knowing how to perform tasks more efficiently

and prospectively compared to pairs of novices [40, 104, 157, 176]

In the next Chapter we will explore the degree to which the current SML modelling and ex-

plainable AI approach can be adapted to herding tasks that involve teams of herders (i.e, 3 human

herders) and much slower decision timescales (e.g., actions decisions taken over tens of seconds). Of

particular interest will be whether the proposed approach could be be employed to predict and un-

derstand human decision-making events across a variable prediction horizon (i.e., non-fixed time

scale predictions).
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6
MODELLING FUTURE ACTION DECISIONS AT VARIABLE PREDICTION

HORIZONS

C
hapters 4-5 demonstrated how contemporary SML and explainable AI methods can be em-

ployed to both model and understand the decision making behaviour of human actors within

a multi-agent task setting. In this Chapter, we apply the same modelling approach to cap-

ture the decision-making behaviour of human actors playing a 3-player online herding game called

“Desert Herding” (Section 6.1). Of particular interest, was whether the modelling approach could

be employed to predict and understand the target selection strategies of human herders at both

fixed (Section 6.2) and variable (Section 6.3) prediction horizons. As in Chapter 5, we then leveraged

SHAP to identify the key informational variables (features) underlying the players’ target selection

decisions (Section 6.5).

6.1 Multi-player desert herding game

As noted previously in this Thesis, the action decisions made by human actors during multi-agent

behaviours are typically highly tuned, context specific, responses to the unfolding dynamics of a

task [24, 68, 157] and for fast-paced perceptual-motor tasks, like the tabletop herding task investi-

gated in Chapters 4-5, often occur <500 ms prior to action onset [169]. Thus, the results reported in

Chapter 5 not only demonstrate how the modelling approach employed here can effectively predict

and understand human decision making during multi-agent behaviour, but can potentially do so

at timescales well in advance of a human actor’s conscious (or unconscious) intent. To explore this

possibility further we examined whether we could predict the target selection decisions of human

herders that had completed the multiplayer online herding game called “Desert Herding” within the

study first presented by Prants et al. in [123].
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For this herding game three human herders (players) were required to work together to corral

herds of targets randomly distributed around a larger 500 m x 500 m desert landscape into a con-

tainment area positioned at the centre of the desert game area. Players downloaded the multiplayer

“Desert Herding” game, developed with Unity-3D game engine (Unity Technologies LST, CA), on

their home computer and completed the task remotely. The game server, run on an EC2 instance of

Amazon Web Services, recorded all game state data at 90-Hz.

As illustrated in Figure 6.1, each player had access to a first-person perspective of the game

field and an Heads-Up Display (HUD) located at the top-right corner of their screen. Each player

controlled a humanoid avatar using standard keyboard and mouse PC/MAC game controls (i.e., the

“W-A-S-D” keys to control forward, left, backward, right directions respectively, and the mouse for

rotation). The avatar for each player was a different colour (i.e, red, blue, white) so that players could

identify each other. The targets were small autonomous robots that were repelled away from player

avatars if the player avatars got within a 10 m radius of the robot target. When repelled away from a

player avatar, an autonomous robot target would enter a “running” mode and move in the opposite

direction of the player’s approach vector. When not being corralled (chased) by a player avatar, the

robot targets exhibited a small degree of Brownian motion around their current resting position.

Target status was visible to players via a visual light positioned around the centre of a target’s chassis.

Targets emitted an orange light when at rest, a red light when being corralled (repelled), and a blue

light when successfully corralled into the containment area. As in the tabletop herding task, the

targets were not programmed to flock together; see [123] for more details on the “Desert Herding”

and the data collection process.

(a) (b)

Figure 6.1: Examples of the multiplayer desert herding environment, first introduced in [123], under
full (a) and partial (b) visibility conditions. The HUD display is shown on the top-right corner of the
participant display.

The number of targets (herd size) could range from 1 to 100 targets, however, here we consider
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data from teams required to corral 9 targets. In addition to herd size, player visibility could be ma-

nipulated via the inclusion of environmental fog. Here we model the target selection decisions of

players completing the task under either low visibility conditions (i.e., a 15 m visibility horizon; see

Figure 6.1(b)) or full (high) visibility conditions (i.e., >150m visibility horizon). As noted above and

illustrated in Figure 6.1, players also had access to a HUD positioned at the top-right corner of their

screen. For the data being modelled here, the HUD displayed the real time position of all three play-

ers and all target agents, overlaid on a game space map. The location of the containment area (blue

coloured circle in Figure 6.1) was also displayed on the HUD and, for the game data modelled here,

was always fixed at the centre of the herding space. Finally, players could verbally communicate

with each other; see [123] for a complete description of the task and possible task manipulations.

6.1.1 Experimental data

We extracted and modelled the target selection decisions of players who participated in the “Desert

Herding” study conducted by Prants et al. [123]. For this study, ten three-person teams completed

four separate 1-hour game sessions. Each session included 16 trails, in which herder size (9 vs 18

targets), visibility (low visibility [fog] vs high visibility [no-fog]) and the presence (or not) of the HUD

was manipulated. Here we chose to model the target selection decisions for both the high and low

visibility conditions, when the number of targets, NT = 9 (initial modelling revealed similar results

for trials containing NT = 18 targets) and when the HUD was present. Note that for the data explored

here, the HUD would always show the position of all NH = 3 herder and NT = 9 target agents w.r.t.

cardinal points as in Figure 6.1.

A trial was considered successful if all NT = 9 targets were corralled and remained in the contain-

ment region for 5 consecutive seconds. Otherwise, the trial would terminate if participants spent

longer than 5 minutes performing the task. We chose to focus on Session 4, as by this final session

all teams had reached a high level of performance and were able to succeed on nearly all trials. A

total of 20 successful trials were obtained resulting in a 20 trial x 3 player data set.

To employ the supervised machine learning (SML) algorithm presented in Chapters 4-5, we first

needed to label each player’s times series data with the ID of the target (or no target) corralled at

each time step (i.e, the correct prediction output). Differently from the coding method employed in

Chapter 4, where the ground truth about the ID of the agent targeted at each time step was manually

classified by a paid research assistant, here the ID of the target that a player was currently corralling

was automatically determined from the recorded data. At each time step, the target a player was

corralling was identified as the target agent (already numbered 1 to 9 in the data recordings) which

(i) had a distance from the herder smaller than 10 m in game space, (ii) was in “running” mode and

(iii) was the closest to the player. Using this automatic method, the prediction output was set to ID

= 0 if a player was not currently engaged with (corralling) a target or ID = 1,2, . . . , NT = 9, otherwise.
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6.2 Predicting decision making at fixed prediction horizons

To investigate the decision making processes of team members applying the same fixed timescale

(prediction horizon) approach presented in Chapters 4-5 to the newly acquired experimental data,

we again selected as input to a Long-Short-Term-Memory neural network (LSTMN N ), Ntr ai n time

series of Nsv state variables as described in Appendix B.4, of length t f − ti = Tseq , with the output

label corresponding to the ID of the target agent being corralled at t f +τhor , with constant τhor > 0.

Further details on the learning algorithm are discussed in Appendix B.5.

Because the herding environment considered here is much larger and more varied (e.g., pres-

ence of rises and troughs) than the tabletop herding environment explored in Chapters 4-5, the time

interval between player target selection decisions was much larger. Here we chose a sampling time

d t = 0.2 s, a sequence length Tseq = 5 s and prediction horizons of τhor = 25 or 65 steps, which cor-

responded to making target selecting predictions at 5 s and 13 s, respectively. The choice of Tseq = 5

s was motivated by computing the players inter-target movement times (i.e, target switching time),

as introduced in Chapter 5.1.1. Again, these were computed as the time it took a player to move

outside the repulsive radius of a target and into the repulsive radius of the following one. As can be

seen from an inspection of Figure 6.2, the average inter-target movement time was typically greater

than 5 s. Note that we also validated the modelling approach for Tseq = 2 s of system evolution (see

Appendix E) with results comparable to the Tseq = 5 s case discussed in this Chapter.

We trained separate LSTMN N models for each combination of timescale and visibility condi-

tion (i.e., 4 models in total) from Ntr ai n = 10000 training samples, with the model accuracy tested

against 100 sets of Ntest = 2000 test samples each. As reported in Table 6.1, each LSTMN N could suc-

cessfully predict which target would be corralling at τhor with an average accuracy exceeding 97%

for all conditions and prediction horizons (τhor ). The F1 score and model precision and recall were

also above 97% for both visibility conditions and prediction horizons. Kruskal-Wallis tests revealed

that the performance of longer (13 s) prediction horizon and Partial visibility models were signifi-

cantly between than the shorter and full visibility models, respectively (average χ2 = 9.3, p < 0.04).

However, the magnitude of the differences was rather trivial (< 0.15% on average).

6.3 Predicting decision making at variable prediction horizons

Figure 6.2 shows that the decision-making timescales were distributed between 0.07 s and 11 s; this

suggested that it was not enough to be able to just predict “which target would be corralled at a

particular time in the future”, but that in order to fully understand the decision making behaviour of

players we also needed to model targeting switching events; that is, the variable timescale decision

events that corresponded to when participants decide to change the target agent they engaged; i.e.,

what we will refer to as target switching decisions.

Recall from the analysis reported in Chapter 5, that for a fixed τhor in the future, a herder could

either keep corralling the same target in the sequence preceding the decision or it could switch to
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Accuracy Precision Recall F1 score

Shorter timescale

Full visibility 97.76 ± 0.27 97.71 ± 0.29 97.89 ± 0.27 97.78 ± 0.28
Partial visibility 97.9 ± 0.31 97.92 ± 0.31 97.89 ± 0.3 97.9 ± 0.31

Longer timescale

Full visibility 97.9 ± 0.31 97.94 ± 0.31 97.98 ± 0.31 97.95 ± 0.31
Partial visibility 98.01 ± 0.32 98.02 ± 0.33 98.01 ± 0.32 98.01 ± 0.32

Table 6.1: Average performance [%] of the multi-label predictor trained on time-series of length
Tseq = 5 s and tested on 100 sets of Ntest = 2000 samples for shorter (Thor = 5 s) and longer (Thor =
13 s) prediction horizons. Although comparable, prediction performance was statistically different
across visibility and timescale (Kruskal-Wallis test, average χ2 = 9.3, p < 0.04)

Figure 6.2: Distribution of inter-target movement times [s] averaged across player for the full (blue)
and low (orange) visibility conditions (i.e, no-fog vs. fog) for the 20 successful trials employed for
model training and testing, with an average inter-target movement time of 8.12 s (74.4% of the total
inter-target movement times > 7 s) for full visibility trials and 6.57 s (62.6% of the total inter-target
movement times > 7 s) for low visibility trials.
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a different one. Furthermore, that the latter behaviour was observed more often for novice herders,

suggesting that expert herders enacted a more decisive decision process than novices, switching

less often (see Section 5.3). Assuming the players were sufficiently “expert” by Session 4 and that

switching events were of more importance for understanding the target selection decisions of play-

ers in the desert herding game, we trained LSTMN N s to predict the ID of the next engaged target,

independently from how far in the future this target switching event was observed.

More specifically, for each sequence of t f −ti = 25 time steps of the system evolution, the output

label was the ID of the next target corralled that was different from the current target engaged with

at t f , with one limiting restriction, τhor,max , which was the maximum step in the future explored.

Thus, if in τhor,max consecutive time steps in the future a player engaged with the same target, then

the ID label was selected as that same ID (i.e, the ID of the target agent engaged at t f +τhor,max ).

For Tseq = 5 s, we considered a minimum and maximum prediction horizon tτhor,mi n = d t and

tτhor,max = 20 s (or 100 times steps in the future), resulting in 97.4% switching samples for the full-

visibility condition and 97.3% for the partial visibility condition. Note that switching samples repre-

sent the cases that either a participant started engaging a target (ID = 0 to ID ̸= 0 ), or a participant

stopped engaging a target (ID ̸= 0 to ID = 0) or that it switched between engaged targets.

Prediction performance, averaged over 100 sets of Ntest = 2000 samples and reported in Ta-

ble 6.2, confirmed that both the partial and full visibility LSTMN N s models were able to predict the

next corralled target with an accuracy above 91%. Although small, a Kruskal Wallis statistical test [79]

on data reported in Table 6.2 indicated that the difference in the accuracy of the full and partially vis-

ibility models was statistically significant (χ2 = 80.75, p < 0.0001), with the full visibility model slight

outperforming the partial visibility model. Although small, the performance difference between the

full and partial visibility models further highlight the importance of understanding how input fea-

tures (i.e., state variables) are weighted by each model. For example, this difference could reflect

the difference in information available to players between the two conditions, with fog introducing

an environmental perturbation and, consequently, uncertainty in target switching decision. Before

leveraging the explainable AI tool SHAP to gain insights on how input information was weighted by

the LSTMN N s models, in the next Section we first explored whether the variable prediction horizon

models (i.e., the models predicting target switching decisions) could also accurately predict target

selection decision at fixed prediction horizons (and vise versa).

Accuracy Precision Recall F1 score

Full visibility 92.15 ± 0.54 92.39 ± 0.54 93.45 ± 0.51 92.87 ± 0.51
Partial visibility 91.25 ± 0.61 91.35 ± 0.63 92.14 ± 0.59 91.66 ± 0.6

Table 6.2: Average performance [%] of the multi-label predictor trained on time-series of length
Tseq = 5 s, and variable prediction horizon, when tested on 100 sets of Ntest = 2000 samples.
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6.4 Robustness of using variable prediction horizons

In addition to testing the overall accuracy of the variable prediction horizon models, it was also im-

portant to investigate if there was a functional relationship between prediction horizon length and

accuracy. To investigate this we examined if the fixed prediction horizon models reported in Sec-

tion 6.2 (i.e., models where τhor = 25 or 65 steps) and the variable prediction horizon models in the

previous Section 6.3 could accurately predict the IDs of the to-be-corralled targets across a range

of different fixed prediction horizons τhor in the future. That is, we aggregated all test samples by

prediction horizon and tested the different fixed and variable prediction horizon LSTMN N s models

on these “aggregated” test sets. As can be seen from an inspection of Figure 6.3, the models trained

to predict the decision at the fixed prediction horizons of τhor = 25 or 65 steps (dotted and dashed

lines) only retained peak performance when tested on samples selected at the same timescale (pre-

diction horizon) of the trained model. In contrast, the models trained to predict the next corralled

target, at a variable prediction horizon, were able to correctly predict with an accuracy above 90%

the target that would be targeted next, independently from the timescale and experimental con-

dition (solid lines) when t f +τhor > 2 s. That is, the accuracy of the variable prediction models was

invariant over the timescale tτhor,mi n = d t and tτhor,max = 20 s.

Figure 6.3: Prediction accuracy of ANNs modelling team members decision making during last ses-
sion of experiments by [123] when faced with full and partial visibility, tested on samples aggregated
by prediction horizon τhor .
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6.5 Explanation of target switching decisions

As in Chapter 5, we employed SHapley Additive exPlanation (SHAP,[92]) to better understand how

the different input features to the variable prediction horizon LSTMN N models influenced the pre-

diction outputs. Recall that given a trained “black-box” model, the SHAP algorithm pairs each input

feature with a SHAP value representing the weight that a feature has on the model output; the higher

the SHAP value, the greater the influence that feature has on the model output. Global feature im-

portance can therefore be assessed by calculating the averaged SHAP value for a given feature over

the test set.

Here, for each LSTMN N trained to predict target switching decisions at a variable prediction

horizon (Table 6.2), we computed1 the SHAP values for Ntest = 6000 samples and rank-ordered each

feature in terms of its average importance (i.e., average SHAP value). Given these SHAP rankings,

we first employed Kendall’s τ rank order test [98] to examine whether there were differences in the

features rankings for the partial and full visibility conditions. Recall that τ = 1(−1) corresponds to

perfect (negative) association and τ= 0, the null-hypothesis, corresponds to the absence of associ-

ation.

As illustrated in Figure 6.4, the Kendall’s τ analysis revealed that the rankings of the entire input

feature set and the top 75, 50 and 20 features presented little association between the input-out

mappings for the partial and full visibility models (average τ ≤ 0.04, p ≤ 0.61). There was slightly

greater association between the top 10, 5 and 3 feature sets, however, these associations were also

not significant (average τ ≥ 0.12, p ≥ 0.46). Interestingly, the closest similarity observed between

the top 3 features (average τ= 0.4) was due to the relative herder-to-target distance features always

ranked as top features across target ID. This is consistent with the results reported in Section 5.4.2,

Chapter 5, in which these same features played a primary role in the target selections decisions of

expert and novice herders completing the tabletop herding task.

Figure 6.5 provides visual illustrations of feature importance for the partial and full visibility

models, with the top twenty most prevalent features for non-zero prediction outputs (i.e., ID = 1

to 9). The importance of relative herder-to-target distance can also be easily discerned from an in-

spection of this Figure, with how far (or close) players were from target agents always within the

top twenty most important features for both the partial and full visibility models. That is, players

tending to select targets that were closer to themselves than to other players. Interestingly, indepen-

dent of visibility condition, a player’s own velocity and target acceleration were also key to target

predictions. More specifically, a player/herder’s (filled blue square mark) velocity was key to target

selection decisions for 100% of all target ID predictions, with the to-be-corralled targets accelera-

tion (filled orange circle marks) important for over 90% of prediction outcomes. The importance of

these features was likely due to (i) players selecting new targets just after they had corralled a target

into the containment area, with the to-be-corralled target typically stationary (i.e., had zero or close

1More details on the SHAP algorithm being employed can be found in Appendix B.7
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Figure 6.4: Kendall’s tau values for subgroups of top ranked input features, averaged over labels. A
summary of Kendall’s τ values for each target prediction class is reported in Appendix E.

to zero velocity) and (ii) players choosing targets that were not increasing or decrease speed, as the

later only occurred if a target was already been corralled by another player.

Another interesting finding that can be discerned from an inspection of Figure 6.5, was that the

relative distance between players (i.e., co-herders) had little impact on target switching decisions.

In fact, inter-herder distance almost never appeared in top twenty features. This may have been due

to the large game area and that players could freely move anywhere in the game area (in contrast,

for example, to the tabletop herding task, where players were restricted to one side of the table). In

other words, how close or far a player was from another player was of little importance. This is in

contrast to the significant importance of the relative distances between herders and targets, again,

indicating that how close a target was to a player (or other players) was key, not the relative distance

between players/herders.

With regard to what differentiated the target prediction of the partial and full visibility models,

the distance of the targets from the containment goal area was weighted as more important (on

average) for partial visibility model predictions compared to the full visibility model predictions.

One possible reason why goal distance information was weighted as more important for the low

visibility model, was that in the presence of environmental impairment caused by the fog, players

could often not see any target within their first person field of view and, hence, would have relied

more heavily on the HUD to select targets, naturally choosing targets that were furthest from the

containment area. In contrast, players in the full visibility condition may simply have chosen targets

that were in their current (first person) field of view and, thus, may not have always selected the

target furthest from the containment area (just the target furthest from their current location in
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their current field of view).

Figure 6.5: Explanation of the Multi-label predictor of “agent to be targeted” prediction outputs, for
full and partial visibility conditions. Feature type is listed on the x-axis, with the y-axis representing
the portion of NT = 9 targets for which a state variable was found on average to be a top twenty
global feature, such that “100%” represents a feature that was a top-twenty feature with respect to
all targets. Filled marks indicate state variables used to predict a portion of targets equal or above
50% while empty marks indicate state variables used to predict smaller portions.
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6.6 Summary

In this Chapter, we extended our SML and explainable AI pipeline to model and understand the

target selection decisions of human actors playing a multiplayer (3-person) online Desert Herd-

ing game. Due to the large game area of the Desert Herding game, we first extended the modelling

approach reported in Chapters 4-5 by demonstrating how SML-trained LSTMN N models could suc-

cessfully predict the target selection decisions of human players (herders) at longer fixed prediction

horizons of 5 and 13 seconds (Section 6.2). Motivated by an analysis of inter-target switching move-

ment times, which revealed how the interval between a player’s target switch decisions ranged from

0.07 to 11 seconds, we then demonstrated how the same modelled approach could also be extended

to predict target switching decisions at variable prediction horizons. That is, LSTMN N models could

be trained to predict the next target a player would corral independent of how far in the future this

target switching decision occurred (Section 6.3). Moreover, LSTMN N models trained to predict tar-

get switching decisions at a variable prediction horizon were also found to produce more accurate

test predictions at fixed prediction horizons compared to fixed interval prediction models, even

when tested on the prediction horizons aggregated by a characteristic fixed timescale (Section 6.4).

Finally, we employed SHAP to explore what task information players might have employed when

making their target selection decisions. This analysis revealed that the relative distance between

targets and herders, and target and herder motion played a key role in players’ target selection de-

cisions independent of visibility, but that players in the partial-visibility condition may have more

heavily relied on the containment region distance information contained within the HUD com-

pared to when completing the task in the full visibility condition (Section 6.5).

It is worth noting that, with regards to the experiments employed in this Chapter, Prants et al.

not only explored team behaviour when access to task-relevant information varied (e.g., in presence

or absence of a HUD), but allowed team members to communicate via the use of a teleconferencing

system (Zoom; San Jose, California) [123]. This was not the case in the experiments conducted by

Rigoli et al. [129] employed in Chapter 4-5. As a consequence, the SHAP results discussed in this

Chapter rest on the assumption that explicit information on agents position (either herder or tar-

gets) or players’ intention could have been verbally shared. Nevertheless, we here considered only

task relevant state variables as a, preliminary, inspection of experiments’ audio recordings high-

lighted that (i) the majority of communication did not consist of words in the traditional sense (e.g.,

grunts, nods, agreement sounds) and that (ii) their meaning could not be trivially fed to ANN. In the

next Chapter, we will discuss the importance of expanding the proposed modelling and explainable

AI approach with non-trivial information (e.g., verbal, haptic, visual information) along with possi-

ble applications and open paths.

81





C
H

A
P

T
E

R

7
CONCLUSIONS

I
n this Thesis, the emergence of coordinated behaviour during skilful multi-agent activity was

studied using a combination of mathematical, supervised machine learning (SML) and ex-

plainable AI tools. More specifically, the work presented here addressed the following research

questions.

(i) Can local control rules and dynamic decision strategies replicate the global coordinated be-

haviour observed in humans?

(ii) Can effective human decision making in complex multi-agent tasks be modelled using SML

and Long-Short-Term-Memory Artificial Neural Networks?

(iii) Can artificial agents equipped with human-like decision-making processes complete multi-

agent tasks effectively?

(iv) Can the explainable AI technique SHAP be employed to uncover the task-specific information

that underlies effective human decision making during multi-agent activity?

7.1 Summary of the main results

After introducing the Thesis motivation and open research questions in Chapter 1, a detailed lit-

erature review of the model solutions for the multi-agent herding task was given in Chapter 2. We

adopted the herding problem as a representative case of multi-agent activity as it is defined by the

interaction of two sets of autonomous agents; herders and targets. The first (herders) directly con-

trollable and the second (targets) indirectly influenced by the first. Popular state of the art solutions

for the design of artificial herder agents (AA herders) were discussed, with an emphasis on the fact
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that little attempt has previously been made to design AA herders able to corral non-flocking tar-

gets. Moreover, that the majority of the previously proposed solutions adopt simple heuristic rules

when distributing the herding workload (i.e, target selection decisions) among multiple herders.

The most general scenario of a small set of AA herders faced with a larger set of non-flocking

targets was tackled in Chapter 3. More specifically, we investigated herding strategies composed of

local control rules, regulating herder agents attraction to a point behind each targeted agent, and

different target selection strategies (i.e., different herder decision-making policies). Numerical Mat-

lab experiments showed that the proposed control law, as well as the various target selection polices,

could not only complete a general herding task successfully, but were (i) not dependent on target

flocking behaviour and (ii) robust to variations in herd size and the magnitude of repulsive action

exerted by herders on targets. These findings were also validated in ROS simulations and using real

robots, further demonstrating how the proposed control law and dynamic selection strategies could

be adopted in real-world robotic applications with low computational requirements.

Human decision making during fast-paced joint-action behaviour was modelled in Chapter 4.

Here, we demonstrated how Long-Short-Term-Memory artificial neural networks (LSTM-ANNs)

could be trained using SML to accurately predict the target selection decisions of human actors

playing a two-person tabletop herding game. To validate whether these models could be used to

control the decision behaviour of artificial agents (AA), we embedded these models into the control

architecture of AA herders and tested their efficacy. As expected, numerical simulations revealed

that the AA herders, driven by local control rules and human-inspired decision making LSTM mod-

els, could successfully complete complex multi-agent herding tasks, even when faced with operat-

ing conditions not considered during the training phase.

Motivated by the high prediction accuracy of the LSTM models of human decision making in

Chapter 4, in Chapter 5 we demonstrated how the proposed SML modelling approach could be used

to predict human decision making behaviour before an human actor’s behavioural intent. More

specifically, we demonstrated how SML-trained LSTM models could predict the target selection de-

cisions of human actors preforming a 2-person herding task at both short (immediate) and long

(future) prediction horizons. The results, reported in Chapter 5, also demonstrated how the pro-

posed modelling approach could effectively differentiate expert from non-expert (novice) decision

making performance; that is, that the developed LSTM models of human target selection decisions

were expertise specific. Given the latter result, we then exploited the explainable AI tool SHAP [92]

to uncover what state information novice and expert human actors employed when making target

selection decisions. The results revealed key differences in the task information employed by ex-

perts and novice human herders, providing initial evidence that explainable-AI techniques can be

employed to better identify and understand the information that supports human decision making.

In Chapter 6, we further validated the proposed SML and explainable AI approach by modelling

and explicating the target switching decisions of human actors playing a 3-person online herding

game. Of particular importance, we demonstrated how LSTM models could be trained to predict the
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decision making behaviour of human actors at variable timescales and that such models could more

accurately predict decision events at fixed time-scales than models trained at specific timescales.

In summary, the findings presented in this Thesis highlight the utility of dynamical and SML

methods for modelling the coordinated action and decision making behaviour of humans and AA

completing multi-agent tasks. In the next Section, we discuss possible applications and future re-

search paths with regard to modelling of human-behaviour, including how the results observed for

the multi-agent herding problem could be expanded to more realistic scenarios. We then discuss

the potential importance of explainable AI tools for understanding human decision making.

7.2 Possible applications and future work

The ability of AAs to reciprocally respond to and predict human behaviour is key to effective human-

machine interaction [19, 43, 122]. This is true whether the interactions are pre-orchestrated, such

as in factory assembly lines, or during tasks that involve dynamic improvisation, as in team sports

[59, 103]. Here we demonstrated how this can potentially be achieved using simply human inspired

control laws and SML trained ANN decision making models. Of course, future research is required

to further validate this possibility.

One possible avenue of the future research would be to investigate whether similar control laws

and decision models could be employed to develop AAs and robots capable of performing social

tasks that entail more explicit coordination or competition, such as when rescuing and evacuating

a group of individuals from dangers, or during mob containment or crowd control events [94, 105,

153]. Although we demonstrated that our local control laws and selection strategies were robust to

large variations in operating conditions (Chapters 3-4), future research should also explore if the

human-inspired models are equally robust when interacting with other human co-actors and not

simply other artificial agents. In other words, more directly determine the robustness of the AAs

techniques detailed here during real-time human-machine interaction. Human-AA studies could

also explore whether the human-decision making models developed here could be employed for

the predictive or anticipatory correction of human action decisions during task training and real-

time engagement [129]. Furthermore, as in [81, 109], Turing Test methodologies could be employed

to examine whether the proposed models and modelling approach results in AA behaviours that are

indistinguishable from real human behaviour.

With regard to the SML-ANN decision making models explored here, future research could also

validate if the generalised robustness of human-inspired SML trained decision making models is

a reflection of the generalised flexibility of human decision making and perceptual-motor perfor-

mance [54, 152, 168]. Previous research has demonstrated how human herders can easily adapt to

the addition of new targets [106, 129] and herding environments. Therefore, it seems safe to assume

that human herders would have also adapted to the addition of a new, third herder (as explored

in Chapters 3 and 4), with this latent flexibility being transferred to, and entailed within, resultant
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ANN models. Thus, the present results not only highlight how employing human-inspired decision-

making models to control the decision dynamics of AAs has the potential to create more ‘human-

like’ AAs, but that employing such models could also result in artificial and robotic agents that are

capable of the similar levels of task generalisation and flexibility.

Although effective human-machine interaction depends on machines (either virtual avatars or

physical robots) being able to predict human responses or action decisions, the production of re-

ciprocal actions and movements is also crucial. That is, the ability to perform human-like joint- or

multi-agent action is not only dependent on replicating how human actors decide where and when

move (i.e., human decision policies) but, also, on how human actors actually move (i.e., the dynam-

ics of human motion). In Chapter 3 and Appendix A, we proposed a local dynamical control law,

simplified from [107, 109], that was able to capture the coordinated motion that human herders

produce during the table top herding task. Interestingly, we discovered that although not explicitly

defined in the model, the same oscillatory containment behaviour observed in human pairs still

emerged, suggesting that while the more complicated model in [109] may have better captured the

intentional dynamics of human actors (i.e., the intentional engagement in coupled oscillatory con-

tainment; see [117]), the simplified version explored here is sufficient to replicate the patterns of

behavioural movement human herders exhibit during the tabletop herding task.

Perhaps more importantly, however, we also demonstrated how the control strategy investigated

and employed here could solve the herding problem without assuming that (i) targets flock and (ii)

herders have global knowledge of the state of the herding system. Indeed, to the best of our knowl-

edge, our approach is the only one available in the literature that is able to drive multiple herders to

collect and contain a herd of non-flocking target agents (whose intrinsic dynamics are stochastic)

using only partial or local state information. One implication is that our approach could be gener-

alised from the design of herder robots or AAs required to corral targets whose dynamics are known

[53, 151, 160], to the design of herder robots and AAs that could successfully corral targets with un-

known or not fully modelled dynamics (e.g., crowds to be evacuated or oil spills to be cleaned).

We acknowledge that although some of the target selection strategies investigated in the current

Thesis did not always rely on global knowledge of the herding systems, the inputs to the SML-ANN

decision models did (by-and-large) entail full state information. Accordingly, another interesting av-

enue of future research is to explore whether the SML-ANN approach proposed here can also model

human decision making when full access to the state of the behavioural or task system is inaccessi-

ble. This could be addressed, for example, by attempting to model the target selection decisions of

human players in the desert herding game (Chapter 6), but only using the local state input informa-

tion provided in the first-person field of view; i.e. in the experimental condition of team members

not equipped with Heads-Up Displays.

Finally, to our knowledge, no previous research has employed an explainable AI technique to try

to understand and explain the decision making behaviour of human actors during skilful action, let

alone identify the differences between expert and novice actors (Chapter 5) or experimental con-
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ditions (Chapter 6) within the context of coordinated joint-action. To date, research on explainable

AI has predominately focused on the ability of such techniques to make AI models more under-

standable to human users [48, 165] and to argument or enhance the decision making capabilities

of human users [4]. And, while these work have often drawn connection to cognitive and psycholo-

gies models and theories of human decision making, the utility of explainable AI for specifically

understanding the how, why and when of human decision making has been of little interest (for an

exception, see [100]).

It is important to appreciate that we openly acknowledge that employing explainable AI and

ANN models to understand human decision making assumes (i) that the input features employed

for model training contains the informational variables employed by human actors and (ii) that

there is a relationship between the dynamics of network weights on input features and the actual

dynamical information employed by human actors when making those task decisions. Although

this Thesis provide initial support for the possibility that explainable AI techniques can provide a

powerful tool for explaining the decision making process of human actors, including what infor-

mation best supports optimal or near optimal task performance, these assumptions need to be

further validated in future work. Furthermore, while we focused on informational variables rele-

vant to a visual-motor coordination task in this Thesis, the modelling and explainable-AI approach

proposed here could be employed across a wide array of other task and informational settings (i.e.,

visual, auditory, haptic, linguistic, etc). Indeed, the implications for both basic scientific research

and the applied development of training and decision making assessment tools seems unbounded,

and, thus, the validity of employing explainable AI methods to identify and explain the structural or-

ganisation and context sensitivity of human behaviour and decision-making should become a focal

area of future research.
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EMERGENCE OF OSCILLATORY MOTIONS IN HERDING MODELS

I
n this appendix, we will first detail the human-inspired model proposed by Nalepka et al. in

[107, 109], with a particular focus on how the model components influence the effectiveness

and patterning of behavioural dynamics that emerge (Section A.1). We then derive a simpler

herding model (Section A.2) by removing the terms that explicitly model the oscillatory behaviour

observed in human behaviour. The comparison of the original model and the simplified version

(Section A.3) motivates the choice of the latter to be the local control rules presented in Chapter 3,

and later adopted in Chapter 4 to test human-inspired target selection strategies.

A.1 Human-inspired herders

As reported in Chapter 2, the herding problem has been adopted as paradigmatic example to study

the emergence of coordinated behaviours in human joint tasks [106, 109, 129]. This research on

dyadic human herding has observed that successful pairs of players discovered two herding strate-

gies: search and recovery (S&R) and coupled oscillatory containment (COC). Initially all human

pairs adopt an S&R strategy, with players appearing to corral the farthest target agent from the

containment region within a dynamic region of responsibility. A smaller subset of successful pairs

also discover an oscillatory mode of target containment (termed coupled oscillatory containment

or COC) where both players create a oscillatory “wall” around the herd (refer to Figure 3.1 for an

illustration of the spatial arrangement of herders and target agents).

The movement dynamics exhibited by human herders was modelled using environmental cou-

pled task dynamic model [134, 135]. In short, using a polar coordinate system centred at the middle

of the containment area (x⋆(t )), the movement dynamics of a human herder j was captured by

modelling changes in the herder’s radial r j (t ) and angular θ j (t ) distance via the dynamical equa-
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tions

r j (t ) =−br ṙ j (t )−R(x̃i , j , t ), (A.1)

θ j (t ) =−bθ, j (t )θ̇ j (t )−T (x̃i , j , t )+OR,VP(t )+ (1−ξ j )OHKB(t ), (A.2)

Here the time-varying terms R(t ) and T (t ) are nonlinear mass-spring equations that attract the

herders radial position y j (t ) = r j e iθ j to the location of the target to be corralled x̃i , j (t ) = ρ̃i , j e iφ̃i , j

and defined as

R(x̃i , j , t ) = ϵr

[
r j −ξ j (ρ̃i , j +∆r⋆)− (1−ξ j ) (r⋆+∆r⋆)

]
, (A.3)

T (x̃i , j , t ) = ϵθ
[
θ j −ξ j φ̃i , j

]
. (A.4)

Here ξ j is defined as

ξ j (t ) =
1, ρ̃i , j (t ) ≥ r⋆

0, ρ̃i , j (t ) < r⋆
(A.5)

so that the herder dynamics is attracted to the position of the i -th chased target (plus a radial bias

∆r⋆) when the current target is outside the containment region (ξ j = 1) or to the boundary of the

buffer region otherwise (ξ j = 0).

The intrinsic oscillatory dynamics observed in each human herder was captured by the non-

linear term [70], composed by Rayleigh-like and Van der Pol-like oscillators

OR,VP(t ) =β θ̇3
j +γ θ2

j θ̇ j , (A.6)

with β> 0 and γ> 0.

Once the target agents are within the containment region, the parametric Hopf-bifurcation [55]

process bθ, j

ḃθ, j +δ
[
bθ, j −η

(
ρ̃i , j − (r⋆+∆r⋆)

)]= 0, (A.7)

where δ and η are positive constants, causes the model to produce oscillatory movements around

the gathered herd. More precisely, the value of bθ, j (t ) governs the switch between S&R and COC

strategies in the herder dynamics. If the radial distance ρ̃i , j of the targeted agent is greater than (r⋆+
∆r⋆) (that is, it is outside the buffer region), then bθ, j (t ) will quickly settle to a positive value to which

it corresponds a damped dynamics of θ j . On the other hand, if the target is inside the buffer region,

then bθ, j (t ) becomes negative and so the dynamics of θ j will be oscillatory (see [106, 109, 117] for

more details).

Inspired by the work of Haken-Kelso-Bunz (HKB) [49], the function HKB(t ) is employed to cap-

ture the coupled (in-phase and anti-phase) nature of the oscillatory containment behaviour that

emerges between human herders. This function takes the form

OHKB(t ) = (θ̇ j − θ̇ j ′) · (A−B(θ j −θ j ′)
2), (A.8)

where θ̇ j ′ and θ j ′ denote the angular velocity and position of the partner herder.
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It is worth noting that simulated herders driven by (A.1)-(A.2) presented in the original research

papers [106, 109] were assigned a specific portion of the herding plane to be responsible for dur-

ing game play and only monitored and corralled targets within this region of interest. This division

strategy was defined as static arena partitioning in Section 3.3, where we also presented other pos-

sible dynamic division strategies of the herding environment.

The model described by (A.1)-(A.2), and first proposed by Nalepka et al., was well motivated by

previous research on the dynamic of human behaviour but adopted a theoretically driven, top-down

approach to qualitatively model the experimental observations in [106, 107, 109]. In particular, the

model effectively replicates the coupled oscillatory behaviours exhibited by human players by ex-

plicitly modelled non-linear oscillatory behaviour into the herder’s time-varying parameter bθ, j and

the switch between S&R and COC behaviour via the switching term ξ j .

A crucial open question was to understand whether the emergence of oscillatory behaviour

could stem from simpler local rules of motion and interaction, and could therefore be captured

by employing a more bottom-up modelling approach.

A.2 A simplified herder model

To identify the essential ingredients in the herder model required to replicate observed emerging be-

haviours, we gradually simplified the human-inspired model (A.1)-(A.2) and compared the emerg-

ing dynamics of these models (note that we used the same “static arena partitioning” strategy, pre-

sented in Section 3.3, in all simulations). More specifically, we compared the emerging properties

and performance of four different dynamical models;

1. the qualitative human-inspired top-down model (A.1)-(A.2),

2. the non-cooperative herder model, defined as

r j (t ) =−br ṙ j −R(t ) (A.9)

θ j (t ) =−bθ θ̇ j −T (t )−OR/VP(t ) (A.10)

obtained by removing the coupling term (A.8) to investigate if direct coordination among

herders influences herding abilities,

3. the non-oscillatory herder model, defined as

r j (t ) =−br ṙ j −R(t ) (A.11)

θ j (t ) =−bθθ̇ j −T (t )+ (1−ξ j )OHKB(t ) (A.12)

obtained by removing the nonlinear oscillatory terms (A.6) to investigate how intrinsic oscil-

lating properties affect herding performances,
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Figure A.1: Hierarchical scheme of the herder models in Section A.2. The arrows represent the logical
relations between the models. Specifically, solid arrows stand for the removal of the coupling term
OHKB while dashed arrows stand for the removal of Rayleigh-like and Van der Pol-like non-linear
terms OR/VP.

4. the simplified model, discussed in Chapter 3 and defined by (3.5)-(3.6), obtained by removing

the coupling and oscillatory terms to measure herding performance when herders can only

chase and corral targets.

The last three models will be also referred to as bottom-up designed models. A hierarchical scheme

of the herders models above is reported in Figure A.1.

A.3 Numerical validation and comparison

The herding performance of the above models have been compared through the evaluation of the

following performance metrics; the gathering time tg, the average length dg of the path travelled

by the herders until all targets are contained, the average total length dtot of the path travelled by

herders during all the herding trial, the mean distance DT between the herd’s centre of mass and the

centre of the containment region, and the herd agents’ spread S%. Additionally, as done in [106], the

onset of COC was identified by analysing the power spectra of the herders’ motion. See Appendix B.1

for their definitions and further details.

For each model we carried out 50 numerical simulations for NH = 2 artificial herders and NT = 7

target agents. See Appendix B.2 for further details on parameters and simulation methods. In Ta-

bles A.1, the performance metrics for the four herder models are reported as a function of whether

the angular damping parameter bθ varied according to (A.7) or was kept constant to a positive value.
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It clearly appears that all models presented better herd aggregation index values (i.e., in terms of DT

and S%) in the second case with constant damping bθ.

From Table A.1, when bθ, j > 0, we can observe that (i) bottom-up designed models (i.e., models

3 and 4) outperform the complete model in fully successful trials, (ii) models 3 and 4 have overall

better scores than the more complex models 1 and 2, that embed the non-linear terms OR/VP, and

(iii) the coupling term OHKB in (A.8) between herders has not any significant effect on the herding

performance of the simplified models 3 and 4 that differ only by this term. Moreover, from Table A.1

Human-insp. Non-coop. Non-Oscil. Simpl.

bθ, j (t ) (A.7)

Successful trials 42 38 49 49
tg [a.u.] 15.2 ± 5.2 18 ± 11.3 10.5 ± 1.3 13.1 ± 11.1
dg [a.u.] 111.4 ± 48 143 ± 125 673 ± 112 2454 ± 2511
dtot [a.u.] 949 ± 19 1023 ± 23 6942 ± 59 3933 ± 2253
DT [a.u.] 2.8 ± 0.4 2.7 ± 0.3 3.2 ± 0.4 1 ± 0.3
S% [%] 0.9 ± 0.3 0.9 ± 0.4 0.8 ± 0.3 0.7 ± 0.2
COC pairs 41 37 49 49
S&R pairs 0 1 0 0

bθ, j > 0

Successful trials 5 17 50 50
tg [a.u.] 32 ± 7.6 31 ± 16.5 9.3 ± 2 9.3 ± 1.9
dg [a.u.] 159 ± 19 147 ± 87 61 ± 38 61 ± 18
dtot [a.u.] 484 ± 42 482 ± 32 569 ± 21 624 ± 22
DT [a.u.] 1 ± 0.3 1 ± 0.2 0.6 ± 0.1 0.7 ± 0.2
S% [%] 0.2 ± 0.08 0.2 ± 0.09 0.3 ± 0.04 0.2 ± 0.03
COC pairs 0 0 50 50
S&R pairs 5 16 0 0

Table A.1: Average performance and standard deviation over successful trials of different herder
models for NT = 7 target agents and NH = 2 herders.

it appears that the two simplified models also showed a more consistent emergence of the oscilla-

tory behaviour with respect to the other two ( see Figure A.2 for a more detailed example of spectral

classification). At the same time, it is necessary to stress that, although the human-inspired model

(A.1)-(A.2) and model 2 explicitly embed oscillatory terms, this property not necessarily translated

in the emergence of COC pairs as in the original work from Nalepka et al. [106, 109]. This could be

due to the differences in the numerical integration of the models and future experiments could in-

vestigate to what degree such models are influenced by integration methods and targets’ dynamics.
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Figure A.2: Comparison of power spectra exhibited by NH = 2 artificial herders in a successful trial
with positive constant angular damping when corralling NT = 7 target agents. Peak values of power
spectrum are used to classify the coupled behaviour in S&R and COC (see Appendix B.1). Herders
driven by the qualitative human-inspired model (A.1)-(A.2) (solid line) have a peak frequency on the
left side of the threshold ωc = 0.5Hz while herders driven by the simplified model (3.5)-(3.6) (dash-
dotted line) have a peak frequency on the right side.

A.4 Summary

In this Section, we have pointed out the three main components of the qualitative human-inspired

model presented in [107, 109]; a mass-spring-damper core, a pair of nonlinear oscillatory terms

(A.6), and a coupling term (A.8). From a control theory perspective, only the core component is

essential, as it is enough to describe the motion of a body (the herder) moving from one point in

the plane to another in the process of chasing and steering a target towards the containment region.

Therefore, in view of the above considerations, among those presented here, the simplified model

(3.5)-(3.6), composed of local control rules, is the most appropriate choice since it guarantees good

herding performance with the simplest possible dynamics. Furthermore, these control rules also

adequately replicate the emerging behaviours observed in experiments and suggests that the source
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of these behaviours could potentially be a function of the target selection strategy employed rather

than due to intrinsic oscillatory dynamics being entailed within the herder model. That is, in other

words, these behaviours could emerge from the mutual collaboration and division of labour (i.e,.

coordinated target selection).
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MATERIALS AND METHODS

I
n this Appendix we detail the methods employed to implement and study the results presented

in this thesis. Sections B.1-B.3 describe performance measures and numerical integration pro-

cess employed to validated and analyse the dynamic target selection strategies investigated

in Chapter 3. Sections B.4-B.6, we detailed how relevant system variables were extracted from the

experimental data, the learning algorithm employed in Chapters 4-6, and define prediction perfor-

mance measures employed. Finally, the SHAP algorithm implemented in Chapters 5-6 is described

in Section B.7.

B.1 Herding performance measures

Let X (t ) := {
i : ∥xi (t )−x⋆∥ ≤ r⋆

}
denote the set of target agents which are contained within the goal

region G at time t (the spatial arrangement of the herding problem is illustrated in Figure 3.1), and

[0,T ] denote the time interval over which the performance metrics are evaluated.

The gathering time is defined as the time instant tg ∈ [0, T ] that condition (3.2) holds. That is, all

the target agents are in the containment region for all t ≥ tg.

Distance travelled by the herders measures the mean distance travelled by the herders during the

time interval [0, t ]. It is defined as

d(t ) := 1

NH

NH∑
j=1

1

t

(∫ t

0

∥∥ẏ j (τ)
∥∥dτ

)
. (B.1)

Therefore, dg := d(tg), and dtot := d(T ).

Herd distance from containment region measures the herders ability to keep the herd close to

the containment region, with centre x⋆. It is defined as the mean in time of the Euclidean distance
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between the centre of mass of the herd and the centre of the containment region, that is

DT := 1

T

∫ T

0

∥∥∥∥∥
(

1

NT

NT∑
i=1

xi (τ)

)
−x⋆(τ)

∥∥∥∥∥dτ. (B.2)

Herd spread measures how much scattered the herd is in the game field. Denote as Pol(t ) the

convex polygon defined by the convex hull of the points xi at time t , that is,

Pol(t ) := Conv({xi (t ), i = 1, . . . , NT }) .

Then, the herd spread S is defined as the mean in time of the area of this polygon, that is

S := 1

T

∫ T

0

(∫
Pol(τ)

dx
)

dτ. (B.3)

The herd spread can also be evaluated with respect to the area of the containment region, Acr =
π(r⋆)2, as S% = S/Acr ·100.

Note that lower values of tg correspond to better herding performance; herders taking a shorter

time to gather all the target agents in the goal region. Also, lower values of DT and S% correspond to

a tighter containment of the target agents in the goal region while lower values of dg and dtot corre-

spond to a more efficient herding capability of the herders during the gathering and containment of

the herd.

Containment rate measures the herders’ ability to relocate one or more targets inside the desired

region. It is defined as the mean in time of the percentage of target agents in the containment region,

that is

I% := 1

∆T

∫ t f

ti

|X (τ)|
NT

dτ ·100. (B.4)

The emerging behaviour of a herder can be evaluated through its power spectra [106, 109]. The

behavioural-classification index of the j -th herder is defined as

ϕ( j ) =
ω

( j )
freq −ωc

|ω( j )
freq −ωc |

ω
( j )
power (B.5)

with ω
( j )
freq being the dominant frequency component, ω( j )

power the corresponding power, and ωc the

frequency threshold empirically determined at 0.5Hz, as in [106, 109]. A pair of herders is consid-

ered to adopt a search and recovery (SR) behaviour if the behavioural-classification index for both

herders ϕ( j ) < 0, or to adopt a coupled oscillatory containment (COC) behaviour if for both herders

ϕ( j ) > 0.

B.2 Numerical integration

In all numerical simulations reported in Section 3.4 we considered the case of NH = 2 or NH = 3

artificial herders and NT = 7 target agents. Moreover, we considered a circular containment region
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G with radius r⋆ = 1, centred in x⋆ = 0, and a buffer region of width ∆r⋆ = 1. The numerical inte-

gration1of the differential equations describing the dynamics of target agents and herders was im-

plemented using Euler-Maruyama method [58] in the time interval [0,T ] = [0,100] s with step size

d t = 0.006s. With regard to target selection, herder agents computed their next target-to-be-chased

each tdwell = 50d t s Note that numerical trials in Chapter 4 have been simulated with a step size of

d t = 0.02s to match the sampling time used to collect experimental data [129].

The values of all parameters used in the simulations are reported in Table B.1 and were chosen

as in [107].

[0,T ] Time interval [0,100 s]
d t Step size 0.006 s
NH Number of herders {2, 3}
NT Number of targets {4, 7, 60}
x⋆ Centre of containment region 0
r⋆ Radius of containment region 1
∆r⋆ Width of buffer region 1.0005

rc Collision detection radius 0.0001
αb Diffusive motion coefficient 0.05
αr Repulsive reaction coefficient 20αb

br Radial damping coefficient 10.998
ϵr Radial stiffness coefficient 98.706
bθ Angular damping coefficient 10.998
ϵθ Angular stiffness coefficient 61.62

δ Angular damping dynamics parameter 23.089
η Angular damping dynamics parameter 80.592
β Rayleigh-like term coefficient 0.161
γ Van der Pol-like term coefficient 7.2282
A HKB term parameter -0.2
B HKB term parameter 0.2

Table B.1: Parameters’ values for numerical simulation of herding agents.

The initial positions of the target agents were set outside the containment region as xi (0) =
2r⋆eiφi (0), ∀i = 1, . . . , NT , with φi (0) drawn with uniform distribution in the interval (−π,π], while

the initial positions of herders was defined on a circle with radius 4r⋆ and with angular displace-

ment (2π)/NH , to exclude from the simulations the rearrangement of the herders otherwise occur-

ring at the beginning of each trial. Furthermore, collision avoidance forces between target agents

was also considered in the numerical simulations. Specifically, the model (3.3) is extended by adding

the term Vc,i (t )d t , with

Vc,i (t ) = ∑
i ′∈Xc,i (t )

xi ′(t )−xi (t )

∥xi ′(t )−xi (t )∥3 , (B.6)

1Matlab code available at https://github.com/diBernardoGroup/HerdingProblem
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where Xc,i := {i ′ : ∥xi ′ −xi∥ ≤ rc } is the set of all target agents at time t inside the closed ball centred

in xi with radius rc .

B.3 ROS simulations

The mobile robots used for both target and herder agents were designed as Pioneer 3-DX2 robots

driven by the differential drive controller provided in the set of ROS packages (gazebo-ros- pkgs3)

that allows the integration of Gazebo and ROS4 .

The environment and the robots share information through an exchange of messages that oc-

curs via publishing and subscribing to one or more of the available topics. A ROS node is attached

to each herder and target robots. It subscribes to the /odom topic; implements the agent’s dynamics;

and publishes a personalised /cmd_vel topic. The target agents collect odometric information from

all the herders in the environment. The herder agents subscribe to the ID of the target agent to-be-

chased and collect its position. The published message is a velocity control input w.r.t. the robot’s

reference system to the differential drive of the robot: a translation v along x-axis and a rotation ω

around z-axis of the robot. The reference trajectory y⋆(t ) = [r⋆ cosθ⋆,r⋆ sinθ⋆]⊤, generated as in

Sections 3.2-3.3, is followed by each robot by means of the Cartesian regulator

v =−kv (y−y⋆) [cosΦ, sinΦ] (B.7)

ω=kω(θ⋆−Φ+π) (B.8)

where Φ(t ) denotes the robot orientation w.r.t. the global reference system. The gains kv = 0.125

and kω = 0.25 have been tuned by trial-and-error to achieve smooth robot movements. The initial

position of the agents have been set as in Appendix B.2.

The target selection strategies (Section 3.3.2) are processed in an ad hoc ROS node. It subscribes

to the odometry topic, computes the user-chosen strategy (i.e. global, static arena partitioning,

leader-follower or peer-to-peer), and publishes a custom message with the ID of the targets to-be-

chased on the /herder/chased_target topic. The custom message is an array of integer numbers,

its j -th element corresponds to the target agent chased by the j -th herder robot (Figure B.1).

The Gazebo-ROS simulations were run on Ubuntu 18.0404 LTS hosted on a Virtual Machine with

a 10GB RAM with ROS Melodic distribution and Gazebo 9.13.0.

B.4 Features extraction and processed dataset

In Chapter 4, from position and velocity data5 recorded in the original novice and expert data-sets

[129] we extracted and derived the following Nsv = 48 state variables:

2Pioneer 3 - Operations Manual, available at https://www.inf.ufrgs.br/~prestes/Courses/Robotics/
manual_pioneer.pdf (2020/08/11)

3http://wiki.ros.org/gazebo_ros_pkgs
4https://www.ros.org
5Raw data for Chapters 4-5 available at https://github.com/FabLtt/ExplainedDecisions
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B.4. FEATURES EXTRACTION AND PROCESSED DATASET

Figure B.1: Overview of the control architecture of the designed Gazebo-ROS application. The robots
exchange information on the communication graph through the messages published on the avail-
able topics.

- the radial and angular distance (∆, Ψ) between herders,

- the radial and angular distance (∆i , j ,Ψi , j ) of target i from herder j ,

- the radial and angular distance (δ⋆i | j ,ψ⋆i | j ) of herder j or target i from the centre of the con-

tainment region.

- the radial velocity and acceleration of herders (ṙ (t ) r̈ (t )) and targets (ρ̇(t ) ρ̈(t )),

- the direction of motion of herders and targets

Note that we tested different combinations of state variables as input features for model training

(i.e., smaller and larger input feature sets). As detailed in Appendix C.1, regardless the input feature

set employed for model training, we observed similar prediction performance as reported in Ta-

ble 4.1 . The above feature set was employed as it represented a comprehensive description of the

relative state of the herding task for a given herder.

All successful trial set data, per level of expertise, was stacked in a common feature processed

novice or expert data-set6 along with the corresponding target codes (ID 0 to 4). From the resultant

feature processed novice and expert data-set we randomly extracted Ntr ai n = 21000 training sam-

ples and Ntest = 2000 test samples. Here, samples refer to pairs of state feature sequences and target

label codes. Sequences were composed by Nseq = 25 consecutive instances of the above listed Nsv

6The processed datasets discussed in Chapters 4-5 are made available in the public repository https://osf.io/wgk8e/
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state variables, sampled at d t = 0.04, covering Tseq = 1 second system evolution, and labels are the

ID of the agent being targeted, selected at Thor = d t seconds from the corresponding sequence for

the shorter prediction horizon, and at Thor = 16 d t for the longer prediction horizon.

In Appendix C.2 we also consider values of Tseq = 0.5s and Tseq = 2 s varying the sampling

time to d t = 0.02 and d t = 0.08 respectively. As in the default case presented in the Chapters 4-5

the novice and expert models trained with these different Tseq lengths also obtain accuracy values

greater than 95% when tested on data from the same expertise level (e.g., expert-expert) and closer

to 50% when tested on data from the different level of expertise (e.g., novice-expert).

B.5 Learning algorithm

For each combination of expertise or experimental condition, and prediction horizon, we trained7

a Long-Short Term Memory (LSTM) artificial neural network with Dropout layers as presented in

Figure B.2 [60, 61], using Adam optimization. We used Bayesian Optimization to tune the learning

rate (α= 0.0018) of the Adam optimizer and the hyperparameters of the LSTMN N (i.e., the number

of LSTM hidden layers, number of neurons in each layer, and dropout rates). The InputLayer and

the output Dense layer of the optimized LSTMN N had dimensionality (Tseq , Nsv ) and (Tseq , NT +1),

respectively, where Nsv is the total number of input features and NT the number of targets ID to

be predicted. In the centre, 3 hidden LSTM layers of 253, 25 and 8 neurons were alternated with

Dropout layers of equal dimensionality. The dropout rate of each LSTM layers of the novice and ex-

pert models in Chapter 4-5 was 0.1145 and 0.1438, respectively. For the dropout layers between each

LSTM layer, the dropout rates were 0.0145 and 0.0438 for the novice and expert models, respectively.

In Chapter 6, Bayesian Optimisation indicated that the best fit for predictions at fixed horizons

was the LSTMN N structure used for expert models. To predict at variable prediction horizon, in-

stead, 3 hidden LSTM layers of 252, 45 and 8 neurons were alternated with Dropout layers of equal

dimensionality; dropout rates of LSTM and Dropout layers being 0.1292 and 0.0292, respectively.

To avoid over-fitting, training was stopped when the logarithmic loss – that penalise false pre-

dictions – on the validation set stopped improving; the validation set being a randomly extracted

10% of the training set. The LSTMN N has been built and trained using Python 3.7.1 and Tensorflow8

library.

B.6 Prediction performance measures

Performance of the LSTMN N s were validated using the following measures: Accuracy – the fraction

of correct predictions outputs among the samples tested; Precision – how valid the prediction was,

that is the portion of relevant outputs among the predicted ones; Recall – how complete the pre-

diction was, that is the portion of relevant outputs that were predicted. Note that when Precision

7Code and trained ANNs for results in Chapter 4-5 available at github.com/FabLtt/ExplainedDecisions
8https://www.tensorflow.org/ , version 1.15
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Figure B.2: Model of the Artificial Neural Network built to map the state variables extracted from
experiments to the ID of the next target corralled by the current herder player in Chapter 4-5. The
InputLayer and the output Dense layer have dimensionality (Tseq , Nsv ) and (Tseq , NT +1), respec-
tively. In the centre, 3 LSTM layers of 253, 25 and 8 neurons are alternated with Dropout layers of
equal dimensionality.

and Recall reach 100%, false positive outputs and false negative outputs are absent, respectively.

Additionally, we also report the F1 score for model prediction’s, with higher values of F1 score, the

harmonic mean of Precision and Recall, expressing how the model prediction is both precise and

robust. Training and performance evaluation were implemented using Scikit-learn9 Python library.

B.7 SHapley Additive exPlanation

Given a sample, the SHAP10 algorithm assigns to each input feature an importance value. This is an

estimate of the contribution of each feature to the difference between the actual prediction output

and the mean prediction output. We randomly selected N S
tr ai n = 200 samples from the training

set as a prior distribution of the input space. We applied SHAP DeepExplainer on Ntest = 6000

samples used to evaluate performance [92] and obtained the corresponding SHAP values11 for each

state variable. To derive the corresponding approximate global feature importance measure (shown

in Figure 5.6) we averaged over the test set, for each class of prediction output (i.e., target ID), the

SHAP values associated to each input feature (state variable).

9https://scikit-learn.org/stable/index.html, version 0.23.1
10https://github.com/slundberg/shap, version 0.31
11Computed SHAP values discussed in Chapter 5 are made available in the public repository https://osf.io/wgk8e/.

These can be analysed with the code available at github.com/FabLtt/ExplainedDecisions
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SUPPLEMENTARY INFORMATION TO HUMAN-INSPIRED STRATEGIES

I
n this appendix we provide further details on inputs sets used to train the human-inspired

target selection strategies discussed in Chapters 4-5, as well as the performance of the models

implemented as simulated herders.

C.1 Performance of prediction models with different input feature sets

Table C.1 lists the different input feature sets used to evaluate the ability of a Long Short-Term Mem-

ory artificial neural network (LSTMN N ) to model and predict human target selection decisions us-

ing Supervised Machine Learning (SML). Results presented in Chapter 4 were for the Default input

feature set. The accuracy results for the other input feature sets are shown in Figure C.1.

C.2 Performance of prediction models with different prediction

windows and horizons

The SML algorithm presented in Chapter 4 can be customised to forecast the ID of the agent targeted

that will be corralled by a human herder for different lengths of input state sequences Tseq and pre-

diction horizons τhor . The algorithm’s inputs correspond to time-series of relevant state variables,

Tseq , fixed to Nseq = 25, such that Tseq is scaled by tuning the sampling time d t . The algorithm

output prediction is the ID of the next target to be corralled by the herder at τhor in the future. Ac-

curacy values for multiple combinations of prediction window Tseq and horizon τhor are reported

in Figure C.2.

105



APPENDIX C. SUPPLEMENTARY INFORMATION TO HUMAN-INSPIRED STRATEGIES

C.3 Performance of human-inspired selection strategies

The time evolution of the average distance from the centre of the goal region over 50 trials are re-

ported in Figures C.3-C.6 for different combinations of NH = 2, 3 artificial herders and N T = 4, 7

targets. The herding performance of human-inspired strategies trained using the longer prediction

horizon are reported in Table C.2.

Input features Default Cartesian Relative Extended Distance

Cartesian position of target X
Cartesian position of 1st herder X
Cartesian position of the centre of the goal X
Radial distance of target i from 1st herder X X X X X
Radial distance of target i from 2nd herder X
Angular distance of target i from 1st herder X X X X X
Angular distance of target i from 2nd herder X
Radial distance of target i from goal X X X X X
Radial distance of 1st herder from goal X X X X X
Radial distance of 2nd herder from goal X X
Angular distance of target i from goal X
Angular distance of 1st herder from goal X
Angular distance of 2nd herder from goal X
Radial distance between herders X X
Angular distance between herders X X
Direction of motion of target agents X
Direction of motion 1st herder X
Direction of motion 2nd herder X
Radial velocity of target agents X X X X
Radial velocity 1st herder X X X X
Radial velocity 2nd herder X X
Angular velocity of target agents X
Angular velocity 1st herder X
Angular velocity 2nd herder X
Radial acceleration of target agents X X
Radial acceleration 1st herder X
Radial acceleration 2nd herder X

Table C.1: List of features in each input feature set.
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(a)

(b)

(c)

Figure C.1: Accuracy values of the multi-label predictor on Ntest = 2000 samples for different com-
bination of training and test pairs for τhor = d t and (a) Tseq = 0.5 s, (b) Tseq = 1 s and (c) Tseq = 2 s.
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Figure C.2: Accuracy values of the multi-label predictor on Ntest = 2000 samples for different com-
bination of training and test pairs for (a) τhor = d t , (b) τhor = 8d t , (c) τhor = 16d t , (d) τhor = 32d t .
∗ indicates the accuracy values for the nominal case Tseq = 1 s reported in Chapter 5.

NT = 4 NT = 7
NoviceLong-insp ExpertLong-insp NoviceLong-insp ExpertLong-insp

NH = 2

tg [a.u.] 13.55 ± 4.39 13.69 ± 3.79 18.55 ± 3.16 18.72 ± 4
dg [a.u.] 130.18 ± 66.26 136.95 ± 63.05 189.55 ± 45.63 195.22 ± 54.63
Dg [a.u.] 2.33 ± 1.5 2.23 ± 1.41 0.99 ± 1.48 1.17 ± 2.07
Sg ,% [%] 1.15 ± 0.49 1.12 ± 0.51 2.39 ± 0.48 2.28 ± 0.55
Ig ,% [%] 23.34 ± 8.41 24.82 ± 7.78 20.5 ± 6.57 20.7 ± 7.31

NH = 3

tg [a.u.] 9.91 ± 3.23 10.57 ± 3.16 12.77 ± 2.72 13.21 ± 2.78
dg [a.u.] 90.07 ± 43.15 106.2 ± 43 122.46 ± 33.42 137.07 ± 37.2
Dg [a.u.] 2.05 ± 1.12 1.85 ± 1.3 2.2 ± 1.47 3.86 ± 2.23
Sg ,% [%] 1.07 ± 0.51 1.14 ± 0.46 2.1 ± 0.44 2.07 ± 0.41
Ig ,% [%] 26.48 ± 8.83 26.79 ± 8.88 21.88 ± 7.88 21.1 ± 6.92

Table C.2: Average performance over 50 trials of different herding strategies trained on the long pre-
diction horizon for NT = 4 and NT = 7 passive agents during gathering time tg. According to Kruskal
Wallis test, significant difference between novice- and expert- inspired AA-herders is observed only
in distance travelled during gathering phase dg for NH = 2 and NT = 7 (χ2 = 5.99, p < 0.02), for
NH = 3 and NT = 4 (χ2 = 3.83, p = 0.05), for NH = 3 and NT = (χ2 = 4.33, p < 0.04).
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Figure C.3: Time evolution of the average distance from the centre of the containment region over
50 trials for (left column) expert-inspired and (right column) novice-inspired selection strategies
for NH = 2 herders and NT = 4 passive agents using LSTMN N trained on short and long prediction
horizons. Solid lines are the mean values over agents and trials; the lighter coloured areas span the
maximum and lower standard deviations from the mean reached over trials.
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Figure C.4: Time evolution of the average distance from the centre of the containment region over
50 trials for (left column) expert-inspired and (right column) novice-inspired selection strategies
for NH = 2 herders and NT = 7 passive agents using LSTMN N trained on short and long prediction
horizons. Solid lines are the mean values over agents and trials; the lighter coloured areas span the
maximum and lower standard deviations from the mean reached over trials.
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Figure C.5: Time evolution of the average distance from the centre of the containment region over
50 trials for (left column) expert-inspired and (right column) novice-inspired selection strategies
for NH = 3 herders and NT = 4 passive agents using LSTMN N trained on short and long prediction
horizons. Solid lines are the mean values over agents and trials; the lighter coloured areas span the
maximum and lower standard deviations from the mean reached over trials.
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Figure C.6: Time evolution of the average distance from the centre of the containment region over
50 trials for (left column) expert-inspired and (right column) novice-inspired selection strategies
for NH = 3 herders and NT = 7 passive agents using LSTMN N trained on short and long prediction
horizons. Solid lines are the mean values over agents and trials; the lighter coloured areas span the
maximum and lower standard deviations from the mean reached over trials.
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SUPPLEMENTARY INFORMATION TO UNDERSTANDING JOINT HUMAN

DECISION

I
n this appendix we provide further details on the prediction performance and explanation of

the human target selection policies discussed in Chapter 5.

D.1 Performance of prediction models with different type of samples

In the time interval Tseq , a human herder could either continuously corral the same target agent

or transition between different targets. Here we classified these two types of Tseq samples as non-

transitioning and transitioning behavioural sequences, respectively. The second subcategory of

sample, corresponded to whether a herder switched targets between t f and t f +Thor . That is, at Thor ,

a herder could be corralling the same target that was being corralled at the end of Tseq or switch to

a different target, with these two possibilities classified as non-switching and switching behaviour,

respectively (Figure 5.3). In Figure D.1 the distributions of the four corresponding sample types for

each prediction horizon,τhor are illustrated.

Figure D.2 details the performance of the trained LSTMN N models for each samples type as a

function of Tseq = 0.5, 1 and 2 s and Thor = 1, 8, 16 and 32 time steps in the future. Models were

trained on a set of training samples that matched the actual distribution of samples for each Thor .

Note that model performance for each sample type is somewhat proportional to the number of

samples of a given type in the training set. Recall, that when an even distribution of samples is

employed of train Thor >> 0 models, these models (i.e., Thor = 16 or 32) perform equally well for all

sample types (Chapter 5,Section 5.2.
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Figure D.1: Percentage different type of samples in the training set for different prediction horizon
and Tseq = 1s.

D.2 Kendall rank correlation coefficients

The ordinal association of SHAP value rankings (the first top 10 reported in Tables D.3-D.4) was com-

puted using the Kendall rank correlation coefficient (Kendall’s τ,[98]) for subgroups of N top ranked

input features. Table D.1 includes the Kendall coefficients, and associated p-values, as a function

of expertise. Table D.2 includes the Kendall coefficients as a function of the short τhor = 1 and long

τhor = 16 prediction horizon for each level expertise.

D.3 SHAP value tables

A detailed summary of SHAP feature values for each LSTMN N model, prediction horizon and target

ID is provided in Tables D.3-D.4.
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Figure D.2: Vertexes are the accuracy of the trained models for each decision time interval Tseq and
horizon τhor . Accuracy is scored on Ntest = 2000 of (black) mixed, (grey) non transitioning and (red)
transitioning samples.

Short timescale
All features Top 10 Top 5 Top 3

Kendall tau p-value Kendall tau p-value Kendall tau p-value Kendall tau p-value
Label 0 0.1578 0.1136 0.3778 0.1557 -0.4 0.4834 0.3334 1
Label 1 0.1241 0.2134 0.2 0.4843 0.4 0.4834 1 0.3334
Label 2 0.0177 0.8589 0.2 0.4843 -0.4 0.4834 0.3334 1
Label 3 0.1418 0.1550 0.2889 0.2912 0 1 -1 0.3334
Label 4 0.1294 0.1944 0.2889 0.2912 0 1 0.3334 1

Long timescale
All features Top 10 Top 5 Top 3

Kendall tau p-value Kendall tau p-value Kendall tau p-value Kendall tau p-value
Label 0 0.1188 0.2336 0.1555 0.6006 0.4 0.4834 0.3334 1
Label 1 -0.0372 0.7089 0.0222 1 0 1. -0.3334 1
Label 2 -0.0957 0.3371 -0.1555 0.6006 -0.2 0.8167 -0.3334 1
Label 3 0.1347 0.1767 0.0667 0.8618 -0.6 0.2334 -0.3334 1
Label 4 -0.0301 0.7625 -0.4222 0.1083 -0.4 0.4834 -0.3334 1

Table D.1: Kendall τ’s values and corresponding p-values between novice and expert SHAP ranking
for both short and long timescale.
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expert models
All features Top 10 Top 5 Top 3

Kendall tau p-value Kendall tau p-value Kendall tau p-value Kendall tau p-value
Label 0 0.2801 0.0049 0.1111 0.7275 0 1 0.3334 1
Label 1 0.0851 0.3935 0.4667 0.0725 0.8 0.0834 0.3334 1
Label 2 0.0904 0.3646 0.5555 0.0286 1 0.0167 1 0.3334
Label 3 0.0745 0.4553 0.2 0.4843 -0.2 0.8167 0.3334 1
Label 4 0.0106 0.9151 0.2889 0.2912 0.4 0.4834 0.3334 1

novice models
All features Top 10 Top 5 Top 3

Kendall tau p-value Kendall tau p-value Kendall tau p-value Kendall tau p-value
Label 0 0.0567 0.5695 0.0667 0.8618 0 1 0.3334 1
Label 1 -0.0514 0.6062 -0.2444 0.3807 -0.8 0.0834 -1 0.3334
Label 2 -0.1862 0.0619 -0.4222 0.1083 -0.4 0.4834 -1 0.3334
Label 3 0.1844 0.0645 0.5111 0.0466 0.4 0.4834 1 0.3334
Label 4 0.0284 0.7761 -0.1555 0.6006 -0.4 0.4834 -0.3334 1

Table D.2: Kendall τ’s values and corresponding p-values between short and long timescale SHAP
ranking for both novice and expert models.

Short timescale
Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

values values values values values
1 herd. velocity 0.0405 herd.targ.0 dist. 0.0447 herd.targ.1 dist. 0.0530 herd.targ.2 dist. 0.0465 herd.targ.3 dist. 0.0454
2 herd.targ.1 dist. 0.0376 targ.0 acceler. 0.0278 targ.1 acceler. 0.0348 targ.2 acceler. 0.0267 targ.3 acceler. 0.0325
3 herd.targ.2 dist. 0.0328 herd.1 targ.0 dist. 0.0211 herd.1 targ.1 dist. 0.0232 herd.1 targ.2 dist. 0.0188 herd.1 targ.3 dist. 0.0249
4 herd.targ.3 dist. 0.0321 herd. velocity 0.0189 herd. velocity 0.0189 herd. velocity 0.0171 herd.targ.2 dist. 0.0203
5 herd.targ.0 dist. 0.0319 herd.targ.3 dist. 0.0161 herd.targ.0 dist. 0.0174 herd.targ.1 dist. 0.0170 herd. velocity 0.0198
6 herd. acceler. 0.0306 herd.targ.1 dist. 0.0159 herd.targ.3 dist. 0.0141 herd.targ.3 dist. 0.0167 herd.targ.1 dist. 0.0168
7 targ.3 acceler. 0.0257 herd.targ.2 dist. 0.0127 herd.targ.2 dist. 0.0139 herd.targ.0 dist. 0.0149 targ.3 goal dist. 0.0151
8 targ.1 acceler. 0.0255 herd. acceler. 0.0124 targ.1 goal dist. 0.0126 targ.1 acceler. 0.0113 herd.targ.0 dist. 0.0145
9 targ.0 acceler. 0.0227 targ.0 goal dist. 0.0109 h acceler. 0.0125 targ.2 goal dist. 0.0099 herd. acceler. 0.0142
10 targ.2 acceler. 0.0227 herd.1 targ.3 dist. 0.0103 herd.1 targ.3 dist. 0.0102 herd. acceler. 0.0099 herd.1 targ.0 dist. 0.0113

Long timescale
Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

values values values values values
1 herd. acceler. 0.0322 herd.targ.0 dist. 0.0356 herd.targ.1 dist. 0.0297 herd.targ.2 dist. 0.0249 herd.targ.3 dist. 0.0340
2 herd.targ.3 dist. 0.0307 herd.1 targ.0 dist. 0.0253 herd.1 targ.1 dist. 0.0212 targ.2 goal dist. 0.0181 herd.1 targ.3 dist. 0.0306
3 herd.targ.0 dist. 0.0285 herd.targ.3 dist. 0.0216 targ.1goal dist. 0.0177 herd.1 targ.2 dist. 0.0160 herd.targ.0 dist. 0.0163
4 herd.targ.1 dist. 0.0263 targ.0 goal dist. 0.0173 herd.targ.0 dist. 0.0176 herd.targ.3 dist. 0.0159 targ.3goal dist. 0.0151
5 targ.3 velocity 0.0257 herd.targ.1 dist. 0.0163 herd.targ.3 dist. 0.0139 herd.targ.1 dist. 0.0143 targ.3 acceler. 0.0144
6 herd.goal dist. 0.0248 herd.1 targ.3 dist. 0.0149 herd. acceler. 0.0124 herd.1 targ.3 dist. 0.0137 herd. acceler. 0.0141
7 herd.1 targ.3 dist. 0.0239 targ.0 direction 0.0135 targ.1 acceler. 0.0108 herd.targ.0 dist. 0.0118 herd.targ.1 dist. 0.0136
8 targ.1 velocity 0.0227 herd.1 targ.2 dist. 0.0134 herd.1 targ.3 dist. 0.0107 targ.2 acceler. 0.0113 herd.1 targ.0 dist. 0.0130
9 herd. velocity 0.0216 herd.goal dist. 0.0115 targ.1 direction 0.0102 targ.2 direction 0.0109 herd.targ.2 dist. 0.0125
10 targ.0 velocity 0.0200 targ.0 acceler. 0.0100 herd.targ.2 dist. 0.0098 herd. goal dist. 0.0106 targ.3 velocity 0.0107

Table D.3: Top 10 ranked features and corresponding SHAP values for each class predicted by the
model trained on novice pairs with a sequence Tseq = 1s
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Short timescale
Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

values values values values values
1 herd.targ.2 dist. 0.0399 herd.targ.0 dist. 0.0178 herd.1 targ.1 dist. 0.0174 herd.targ.2 dist. 0.0148 herd.1 targ.3 dist. 0.0267
2 herd.targ.0 dist. 0.0396 herd.targ.3 dist. 0.0158 herd.targ.1 dist. 0.0169 herd.targ.1 dist. 0.0095 herd.targ.3 dist. 0.0231
3 herd.targ.3 dist. 0.0337 herd.1 targ.0 dist. 0.0129 herd.targ.0 dist. 0.0153 herd.targ.3 dist. 0.0094 herd.targ.2 dist. 0.0211
4 herd.1 targ.3 dist. 0.0333 herd.targ.2 dist. 0.0117 herd.targ.3 dist. 0.0133 herd.targ.0 dist. 0.0094 herd.targ.0 dist. 0.0196
5 herd.targ.1 dist. 0.0277 targ.0 acceler. 0.0114 herd.targ.2 dist. 0.0126 herd.1 targ.2 dist. 0.0087 herd.targ.1 dist. 0.0122
6 herd.1 targ.1 dist. 0.0273 herd.targ.1 dist. 0.0106 targ.1 acceler. 0.0112 targ.2 acceler. 0.0080 targ.3 goal dist. 0.0104
7 hgoal dist. 0.0244 targ.0 goal dist. 0.0074 targ.1 direction 0.0100 targ.2 velocity 0.0058 targ.3 acceler. 0.0098
8 targ.1 direction 0.0230 herd. goal dist. 0.0071 targ.1 velocity 0.0087 targ.1 direction 0.0046 targ.3 velocity 0.0090
9 targ.1 velocity 0.0212 herd. velocity 0.0061 herd.goal dist. 0.0074 targ.1 velocity 0.0042 herd. goal dist. 0.0084
10 targ.2 velocity 0.0197 herd. acceler. 0.0057 targ.2 velocity 0.0068 herd. velocity 0.0042 herd. velocity 0.0081

Long timescale
Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

values values values values values
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

values values values values values
1 herd.1 targ.1 dist. 0.0351 herd.1 targ.0 dist. 0.0159 herd.1 targ.1 dist. 0.0233 herd.1 targ.2 dist. 0.0184 herd.1targ.3 dist. 0.0242
2 herd.1 targ.3 dist. 0.0322 herd.targ.3 dist. 0.0092 herd.targ.2 dist. 0.0137 herd.targ.0 dist. 0.0121 herd.targ.2 dist. 0.0126
3 herd. targ.2 dist. 0.0279 herd.targ.0 dist. 0.0091 herd.targ.0 dist. 0.0106 herd.targ.3 dist. 0.0106 targ.3 goal dist. 0.0100
4 herd. targ.0 dist. 0.0250 herd.targ.2 dist. 0.0086 targ.1 goal dist. 0.0098 herd.targ.1 dist. 0.0091 herd.targ.0 dist. 0.0098
5 targ.2 velocity 0.0242 targ.2 direction 0.0074 herd.targ.3 dist. 0.0094 herd.targ.2 dist. 0.0097 herd.1targ.1 dist. 0.0091
6 herd.targ.3 dist. 0.0230 targ.2 velocity 0.0074 herd.targ.1 dist. 0.0093 targ.2 velocity 0.0088 herd.targ.3 dist. 0.0076
7 herd. goal dist. 0.0223 targ.0 goal dist. 0.0072 herd. goal dist. 0.0084 herd.1 targ.1 dist. 0.0087 herd.targ.1 dist. 0.0072
8 herd.herd.1 dist. 0.0197 herd.1targ.1 dist. 0.0069 targ.1 velocity 0.0069 targ.1 velocity 0.0086 herd.herd.1 dist. 0.0071
9 targ.2 direction 0.0196 herd.targ.1 dist. 0.0066 herd.1 targ.3 dist. 0.0067 targ.2 goal dist. 0.0084 targ.2 direction 0.0067
10 targ.1 velocity 0.0195 herd.1targ.3 dist. 0.0056 targ.2 velocity 0.0062 herd.herd.1 dist. 0.0074 herd.1targ.0 dist. 0.0063

Table D.4: Top 10 ranked features and corresponding SHAP values for each class predicted by the
model trained on expert pairs with a sequence Tseq = 1s
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I
n this appendix we provide further details on the prediction performance and explanation of

the human target selection policies discussed in Chapter 6.

E.1 Prediction performance for fixed and variable prediction horizons

In chapter 6, target selection strategies of team members tasked to corral NT target agents in a large-

scale slow-paced multi-agent environment were modelled by training Long-Short-Term-Memory

neural networks (LSTMN N ) through supervised machine learning. We fed the LSTMN N with se-

quences of system evolution covering intervals of t f − ti = Tseq and selected the correct prediction

horizon at a fixed (t f +τhor ) and variable (τhor ∈ (τhor,mi n ,τhor,max )) timescales. Prediction perfor-

mance for Tseq = 2 s are reported in Table E.1, showing performance comparable to the case of

Tseq = 5 s discussed in chapter 6.

E.2 Kendall rank correlation coefficients

The ordinal association of SHAP value rankings (the first top 10 reported in Tables E.3-E.4) was com-

puted using the Kendall rank correlation coefficient (Kendall’s τ,[98]) for subgroups of N top ranked

input features. Table E.2 includes the Kendall coefficients, and associated p-values, as a function of

the visibility condition.
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Accuracy Precision Recall F1 score

Shorter timescale

Full visibility 98.36 ± 0.3 98.28 ± 0.34 98.52 ± 0.28 98.38 ± 0.31
Partial visibility 97.77 ± 0.32 97.87 ± 0.31 97.79 ± 0.32 97.82 ± 0.31

Longer timescale

Full visibility 97.72 ± 0.32 97.63 ± 0.33 97.89 ± 0.31 97.74 ± 0.32
Partial visibility 98 ± 0.29 98.12 ± 0.26 98 ± 0.29 98.05 ± 0.28

Variable timescale

Full visibility 94.44 ± 0.47 94.60 ± 0.47 95.04 ± 0.45 94.79 ± 0.45
Partial visibility 94.56 ± 0.48 94.90 ± 0.44 95.15 ± 0.47 94.96 ± 0.45

Table E.1: Average performance [%] of the multi-label predictor trained on time-series of length
Tseq = 2 s and tested on 100 sets of Ntest = 2000 samples for shorter (Thor = 2s) and longer (Thor =
5.2s) and variable timescales.

All features Top 20 Top 10 Top 5
Kendall tau p-value Kendall tau p-value Kendall tau p-value Kendall tau p-value

Label 0 0.12 0.0120 0.06 0.73 0.22 0.48 0.33 0.75
Label 1 0.22 0.0003 0.27 0.12 0.61 0.02 0.67 0.33
Label 2 0.2 0.0013 0.34 0.05 0.39 0.18 1 0.08
Label 3 0.13 0.0325 -0.37 0.03 -0.17 0.61 0 1
Label 4 0.16 0.0095 0.17 0.33 0.22 0.48 0.67 0.33
Label 5 0.29 0 0.18 0.29 0.28 0.36 0.33 0.75
Label 6 0.12 0.0580 0.16 0.37 0.17 0.61 -0.33 0.75
Label 7 0.23 0.0002 0.1 0.58 0 1 0 1
Label 8 0.06 0.3681 -0.37 0.03 -0.33 0.26 0 1
Label 9 0.19 0.0023 -0.12 0.49 -0.17 0.61 -1.00 0.08

Table E.2: Kendall τ’s values and corresponding p-values between full and partial visibility SHAP
ranking.

E.3 SHAP value tables

A detailed summary of SHAP feature values for each LSTMN N model of target switching decision,

discussed in chapter 6, is provided in Tables E.3-E.4.
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Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

1 herd. ang. vel 0.0346 herd.targ.0 dist 0.0070 herd.targ.1 dist 0.01193 herd.targ.2 dist 0.0114 herd.targ.3 dist 0.0104
2 herd.targ.6 dist 0.0128 herd.targ.0 angle 0.0063 herd.0 targ.1 dist 0.0070 herd.0 targ.2 dist 0.0071 herd. ang. vel 0.0097
3 herd. goal dist 0.0128 herd.targ.6 dist 0.0058 herd. ang. vel 0.0067 herd. ang. vel 0.0051 herd.0 targ.3 dist 0.0054
4 targ.8 acceler. 0.0119 herd. ang. vel 0.0058 herd.1 targ.1 dist 0.0053 herd.targ.4 dist 0.0045 herd.0 targ.5 angle 0.0047
5 targ.6 acceler. 0.0116 targ.8 acceler. 0.0058 herd.0 targ.3 dist 0.0047 herd.1 targ.1 dist 0.0045 herd.1 targ.7 angle 0.0047
6 herd.0 targ.5 dist 0.0116 herd.0 targ.5 dist 0.0058 targ.6 acceler. 0.0044 targ.2 acceler. 0.0042 targ.7 acceler. 0.0045
7 herd.0 targ.5 angle 0.0113 targ.0 acceler. 0.0058 herd.0 targ.5 angle 0.0042 herd.0 targ.7 angle 0.0042 herd.1 targ.3 dist 0.0044
8 herd.targ.0 angle 0.0103 targ.0 vel 0.0050 targ.1 acceler. 0.0041 targ.2 goal dist 0.0041 targ.3 vel 0.0044
9 herd.0 targ.1 angle 0.012 targ.7 goal dist 0.0046 herd.0 targ.1 angle 0.0040 targ.8 goal dist 0.0041 targ.3 acceler. 0.0044
10 targ.0 acceler. 0.0098 herd.1 targ.7 angle 0.0043 herd.1 targ.1 angle 0.0039 herd.targ.5 dist 0.0040 herd.0 targ.6 dist 0.0043

Label 5 Label 6 Label 7 Label 8 Label 9
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

1 herd.targ.4 dist 0.0108 herd.targ.5 dist 0.0086 herd.targ.6 dist 0.0101 herd. ang. vel 0.0091 herd.targ.8 dist 0.0145
2 herd. ang. vel 0.0075 herd. ang. vel 0.0069 targ.6 acceler. 0.0071 herd.targ.7 dist 0.0076 targ.8 acceler. 0.0085
3 herd.targ.7 dist 0.0057 herd.1 targ.5 dist 0.0056 herd. ang. vel 0.0065 herd.1 targ.7 dist 0.0063 herd.1 targ.8 dist 0.0079
4 targ.4 acceler. 0.0054 targ.5 acceler. 0.0048 herd.targ.8 dist 0.0054 targ.7 acceler. 0.0053 herd.0 targ.8 dist 0.0078
5 herd.1 targ.4 dist 0.0049 targ.8 acceler. 0.0043 herd.1 targ.6 dist 0.0053 herd.0 targ.7 dist 0.0049 herd. ang. vel 0.0075
6 herd.0 targ.4 dist 0.0044 herd.0 targ.4 dist 0.0043 herd.0 targ.6 dist 0.0052 targ.7 goal dist 0.0048 herd. goal dist 0.0064
7 targ.4 goal dist 0.0044 herd.targ.3 dist 0.0042 herd.1 targ.7 rel angle 0.0042 herd.targ.4 dist 0.0044 herd.targ.5 dist 0.0056
8 herd.0 targ.0 dist 0.0041 herd.0 goal angle 0.0040 targ.6 direction 0.0040 herd.0 targ.5 rel angle 0.0043 herd.1 targ.7 angle 0.0056
9 herd.1 targ.7 dist 0.0041 herd.1 targ.3 dist 0.0039 targ.6 goal dist 0.0040 herd.0 targ.1 angle 0.0041 targ.8 direction 0.0055
10 herd.1 targ.4 angle 0.0040 herd. goal dist 0.0038 herd.1 targ.6 angle 0.0040 herd.targ.6 dist 0.0040 herd.1 targ.5 dist 0.0053

Table E.3: Top 10 ranked features and corresponding SHAP values for each class of Ntest = 6000 full
visibility samples predicted by the model trained with a sequence Tseq = 5 s and variable prediction
horizon (tτhor,mi n , tτhor,max = (0.2s,2s)).

Label 0 Label 1 Label 2 Label 3 Label 4
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

1 herd.ang. vel 0.0294 herd. targ.0 dist 0.0152 herd. targ.1 dist 0.0082 herd. targ.2 dist 0.0118 herd. targ.3 dist 0.0121
2 targ.8 acceler. 0.0145 herd.0 targ.0 dist 0.0099 herd.0 targ.1 dist 0.0060 herd. targ.0 dist 0.0074 herd.0 targ.2 rel angle 0.0057
3 targ.1 goal angle 0.0145 herd.1 targ.0 dist 0.0089 herd.ang. vel 0.0047 herd.1 targ.2 dist 0.0067 herd. targ.0 dist 0.0049
4 herd.goal dist 0.0142 herd.ang. vel 0.0074 herd.1 targ.7 rel angle 0.0043 herd.0 targ.3 rel angle 0.0065 herd.0 targ.3 dist 0.0047
5 targ.2 acceler. 0.0135 herd.0 targ.3 rel angle 0.0074 herd. targ.0 dist 0.0043 targ.2 goal dist 0.0062 herd.1 targ.3 dist 0.0046
6 targ.0 acceler. 0.0131 herd.0 targ.2 rel angle 0.0069 herd.0 targ.0 dist 0.0042 herd.ang. vel 0.0060 herd.0 targ.6 dist 0.0044
7 targ.4 acceler. 0.0129 herd. targ.2 dist 0.0067 herd.0 targ.8 dist 0.0039 targ.1 goal angle 0.0055 herd.0 targ.0 dist 0.0044
8 herd. targ.8 dist 0.0129 targ.0 acceler. 0.0067 herd. targ.6 dist 0.0035 targ.2 goal angle 0.0054 herd.1goal angle 0.0039
9 herd. targ.6 dist 0.0129 targ.0 goal dist 0.0066 herd.1 targ.2 dist 0.0034 herd.0 targ.2 rel angle 0.0053 targ.3 acceler. 0.0038
10 targ.8 vel_r 0.0127 herd.0 targ.1 dist 0.0062 herd. targ.4 angle 0.0034 herd.0 targ.0 dist 0.0048 herd.ang. vel 0.0038

Label 5 Label 6 Label 7 Label 8 Label 9
Features SHAP Features SHAP Features SHAP Features SHAP Features SHAP

1 herd. targ.4 dist 0.0080 herd. targ.5 dist 0.0115 herd. targ.6 dist 0.0096 herd. targ.7 dist 0.0121 herd. targ.8 dist 0.0101
2 h ang. vel 0.0068 herd.0 targ.5 dist 0.0081 herd.0 targ.6 dist 0.0060 herd.1 targ.7 dist 0.0087 h ang. vel 0.0066
3 herd. targ.8 dist 0.0057 herd. targ.8 dist 0.0078 h ang. vel 0.0058 h ang. vel 0.0071 targ.8 acceler. 0.0065
4 herd.0 targ.6 dist 0.0052 h ang. vel 0.0075 herd.1 targ.7 dist 0.0049 herd. targ.1 dist 0.0055 targ.8 vel_r 0.0051
5 herd.h1 rel angle 0.0051 herd. targ.6 dist 0.0065 targ.6 acceler. 0.0043 herd. targ.8 angle 0.0054 herd.0 targ.8 dist 0.0047
6 targ.4 acceler. 0.0050 herd.1 targ.5 dist 0.0065 herd. targ.1 dist 0.0042 herd.0 targ.2 rel angle 0.0053 targ.4 acceler. 0.0046
7 targ.1 goal dist 0.0049 targ.5 goal dist 0.0062 herd. targ.8 dist 0.0039 targ.1 goal angle 0.0052 herd. targ.0 dist 0.0045
8 herd.1 targ.7 rel angle 0.0049 herd. targ.0 dist 0.0059 herd.1 targ.2 dist 0.0038 targ.8 acceler. 0.0051 herd.1 targ.7 dist 0.0044
9 herd.1 targ.4 dist 0.0048 herd.0 targ.3 rel angle 0.0058 targ.0 acceler. 0.0037 targ.0 goal dist 0.0049 herd. targ.6 dist 0.0044
10 herd.0 targ.2 rel angle 0.0047 herd.0 targ.0 dist 0.0057 herd. targ.7 dist 0.0037 targ.7 acceler. 0.0049 targ.8 dir_motion 0.0043

Table E.4: Top 10 ranked features and corresponding SHAP values for each class of Ntest = 6000
partial visibility samples predicted by the model trained with a sequence Tseq = 5 s and variable
prediction horizon (tτhor,mi n , tτhor,max = (0.2s,2s)).
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