67,963 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Governance for sustainability: learning from VSM practice

    Get PDF
    Purpose – While there is some agreement on the usefulness of systems and complexity approaches to tackle the sustainability challenges facing the organisations and governments in the twenty-first century, less is clear regarding the way such approaches can inspire new ways of governance for sustainability. The purpose of this paper is to progress ongoing research using the Viable System Model (VSM) as a meta-language to facilitate long-term sustainability in business, communities and societies, using the “Methodology to support self-transformation”, by focusing on ways of learning about governance for sustainability. Design/methodology/approach – It summarises core self-governance challenges for long-term sustainability, and the organisational capabilities required to face them, at the “Framework for Assessing Sustainable Governance”. This tool is then used to analyse capabilities for governance for sustainability at three real situations where the mentioned Methodology inspired bottom up processes of self-organisation. It analyses the transformations decided from each organisation, in terms of capabilities for sustainable governance, using the suggested Framework. Findings – Core technical lessons learned from using the framework are discussed, include the usefulness of using a unified language and tool when studying governance for sustainability in differing types and scales of case study organisations. Research limitations/implications – As with other exploratory research, it reckons the convenience for further development and testing of the proposed tools to improve their reliability and robustness. Practical implications – A final conclusion suggests that the suggested tools offer a useful heuristic path to learn about governance for sustainability, from a VSM perspective; the learning from each organisational self-transformation regarding governance for sustainability is insightful for policy and strategy design and evaluation; in particular the possibility of comparing situations from different scales and types of organisations. Originality/value – There is very little coherence in the governance literature and the field of governance for sustainability is an emerging field. This piece of exploratory research is valuable as it presents an effective tool to learn about governance for sustainability, based in the “Methodology for Self-Transformation”; and offers reflexions on applications of the methodology and the tool, that contribute to clarify the meaning of governance for sustainability in practice, in organisations from different scales and types

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Methodological Flaws in Cognitive Animat Research

    Get PDF
    In the field of convergence between research in autonomous machine construction and biological systems understanding it is usually argued that building robots for research on auton- omy by replicating extant animals is a valuable strategy for engineering autonomous intelligent systems. In this paper we will address the very issue of animat construction, the ratio- nale behind this, their current implementations and the value they are producing. It will be shown that current activity, as it is done today, is deeply flawed and useless as research in the science and engineering of autonomy
    • …
    corecore