522 research outputs found

    Expectation-Maximization Binary Clustering for Behavioural Annotation

    Get PDF
    We present a variant of the well sounded Expectation-Maximization Clustering algorithm that is constrained to generate partitions of the input space into high and low values. The motivation of splitting input variables into high and low values is to favour the semantic interpretation of the final clustering. The Expectation-Maximization binary Clustering is specially useful when a bimodal conditional distribution of the variables is expected or at least when a binary discretization of the input space is deemed meaningful. Furthermore, the algorithm deals with the reliability of the input data such that the larger their uncertainty the less their role in the final clustering. We show here its suitability for behavioural annotation of movement trajectories. However, it can be considered as a general purpose algorithm for the clustering or segmentation of multivariate data or temporal series.Comment: 34 pages main text including 11 (full page) figure

    Variational Quantum Approximate Spectral Clustering for Binary Clustering Problems

    Full text link
    In quantum machine learning, algorithms with parameterized quantum circuits (PQC) based on a hardware-efficient ansatz (HEA) offer the potential for speed-ups over traditional classical algorithms. While much attention has been devoted to supervised learning tasks, unsupervised learning using PQC remains relatively unexplored. One promising approach within quantum machine learning involves optimizing fewer parameters in PQC than in its classical counterparts, under the assumption that a sub-optimal solution exists within the Hilbert space. In this paper, we introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm - a NISQ-compatible method that requires optimization of fewer parameters than the system size, N, traditionally required in classical problems. We present numerical results from both synthetic and real-world datasets. Furthermore, we propose a descriptor, complemented by numerical analysis, to identify an appropriate ansatz circuit tailored for VQASC.Comment: 21 pages, 6 figure

    A GDP-driven model for the binary and weighted structure of the International Trade Network

    Get PDF
    Recent events such as the global financial crisis have renewed the interest in the topic of economic networks. One of the main channels of shock propagation among countries is the International Trade Network (ITN). Two important models for the ITN structure, the classical gravity model of trade (more popular among economists) and the fitness model (more popular among networks scientists), are both limited to the characterization of only one representation of the ITN. The gravity model satisfactorily predicts the volume of trade between connected countries, but cannot reproduce the observed missing links (i.e. the topology). On the other hand, the fitness model can successfully replicate the topology of the ITN, but cannot predict the volumes. This paper tries to make an important step forward in the unification of those two frameworks, by proposing a new GDP-driven model which can simultaneously reproduce the binary and the weighted properties of the ITN. Specifically, we adopt a maximum-entropy approach where both the degree and the strength of each node is preserved. We then identify strong nonlinear relationships between the GDP and the parameters of the model. This ultimately results in a weighted generalization of the fitness model of trade, where the GDP plays the role of a `macroeconomic fitness' shaping the binary and the weighted structure of the ITN simultaneously. Our model mathematically highlights an important asymmetry in the role of binary and weighted network properties, namely the fact that binary properties can be inferred without the knowledge of weighted ones, while the opposite is not true

    Enhanced reconstruction of weighted networks from strengths and degrees

    Get PDF
    Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate information available. For binary networks, the relevant ensemble is one where the degree (number of links) of each node is constrained to its observed value. However, for weighted networks the problem is much more complicated. While the naive approach prescribes to constrain the strengths (total link weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees are often more informative than the strengths. This implies that the reconstruction of weighted networks would be significantly enhanced by the specification of both strengths and degrees, a computationally hard and bias-prone procedure. Here we solve this problem by introducing an analytical and unbiased maximum-entropy method that works in the shortest possible time and does not require the explicit generation of reconstructed samples. We consider several real-world examples and show that, while the strengths alone give poor results, the additional knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria rigorously confirm that the degree sequence, as soon as it is non-trivial, is irreducible to the strength sequence. Our results have strong implications for the analysis of motifs and communities and whenever the reconstructed ensemble is required as a null model to detect higher-order patterns

    Post-Mortem Examination of the International Financial Network

    Get PDF
    As the recent crisis has forcefully suggested, understanding financial-market interconnectedness is of a paramount importance to explain systemic risk, stability and economic dynamics. In this paper, we address these issues along two related perspectives. First, we explore the statistical properties of the International Financial Network (IFN), defined as the weighted-directed multigraph where nodes are world countries and links represent debtor-creditor relationships in equities and short/long-run debt. We investigate whether the 2008 financial crisis has resulted in a significant change in the topological properties of the IFN. Our findings suggest that the crisis caused not only a reduction in the amount of securities traded, but also induced changes in the topology of the network and in the time evolution of its statistical properties. This has happened, however, without changing the disassortative, core-periphery structure of the IFN architecture. Second, we perform an econometric study to examine the ability of network-based measures to explain cross-country differences in crisis intensity. We investigate whether the conclusion of previous studies showing that international connectedness is not a relevant predictor of crisis intensity may be reversed, once one explicitly accounts for the position of each country within the IFN. We show that higher interconnectedness reduces the severity of the crisis, as it allows adverse shocks to dissipate quicker. However, the systemic risk hypothesis cannot be completely dismissed and being central in the network, if the node is not a member of a rich club, puts the country in an adverse and risky position in times of crises. Finally, we find strong evidence of nonlinear effects, once the high degree of heterogeneity that characterizes the IFN is taken into account.financial networks, crisis, early warning systems
    • …
    corecore