15 research outputs found

    Computing information on domain parameters from public keys selected uniformly at random

    Get PDF
    The security of many cryptographic schemes and protocols rests on the conjectured computational intractability of the discrete logarithm problem in some group of prime order. Such schemes and protocols require domain parameters that specify and a specific generator g. In this paper we consider the problem of computing information on the domain parameters from public keys selected uniformly at random from . We show that it is not possible to compute any information on the generator g regardless of the number of public keys observed. In the case of elliptic curves E(GF(p)) or E(GF(2^n)) on short Weierstrass form, or E(K) on Edwards form, twisted Edwards form or Montgomery form, where K is a non-binary field, we show how to compute the domain parameters excluding the generator from four keys on affine form. Hence, if the domain parameters excluding the generator are to be kept private, points may not be transmitted on affine form. It is an open question whether point compression is a sufficient requirement. Regardless of whether points are transmitted on affine or compressed form, it is in general possible to create a distinguisher for the domain parameters, excluding the generator, both in the case of the elliptic curve groups previously mentioned, and in the case of multiplicative subgroups of GF(p). We propose that a good method for preventing all of the above attacks may be to use blinding schemes, and suggest new applications for existing blinding schemes originally designed for steganographic applications

    Mithril: Stake-based Threshold Multisignatures

    Get PDF
    Stake-based multiparty cryptographic primitives operate in a setting where participants are associated with their stake, security is argued against an adversary that is bounded by the total stake it possesses —as opposed to number of parties— and we are interested in scalability, i.e., the complexity of critical operations depends only logarithmically in the number of participants (who are assumed to be numerous). In this work we put forth a new stake-based primitive, stake-based threshold multisignatures (STM, or “Mithril” signatures), which allows the aggregation of individual signatures into a compact multisignature provided the stake that supports a given message exceeds a stake threshold. This is achieved by having for each message a pseudorandomly sampled subset of participants eligible to issue an individual signature; this ensures the scalability of signing, aggregation and verification. We formalize the primitive in the universal composition setting and propose efficient constructions for STMs. We also showcase that STMs are eminently useful in the cryptocurrency setting by providing two applications: (i) stakeholder decision-making for Proof of Work (PoW) blockchains, specifically, Bitcoin, and (ii) fast bootstrapping for Proof of Stake (PoS) blockchains

    SwiftEC: Shallue–van de Woestijne Indifferentiable Function To Elliptic Curves

    Get PDF
    Hashing arbitrary values to points on an elliptic curve is a required step in many cryptographic constructions, and a number of techniques have been proposed to do so over the years. One of the first ones was due to Shallue and van de Woestijne (ANTS-VII), and it had the interesting property of applying to essentially all elliptic curves over finite fields. It did not, however, have the desirable property of being indifferentiable from a random oracle when composed with a random oracle to the base field. Various approaches have since been considered to overcome this limitation, starting with the foundational work of Brier et al. (CRYPTO 2011). For example, if f ⁣:Fq→E(Fq)f\colon \mathbb{F}_q\to E(\mathbb{F}_q) is the Shallue--van de Woestijne (SW) map and h1,h2\mathfrak{h}_1,\mathfrak{h}_2 are two independent random oracles to Fq\mathbb{F}_q, we now know that m↩f(h1(m))+f(h2(m))m\mapsto f\big(\mathfrak{h}_1(m)\big)+f\big(\mathfrak{h}_2(m)\big) is indifferentiable from a random oracle. Unfortunately, this approach has the drawback of being twice as expensive to compute than the straightforward, but not indifferentiable, m↩f(h1(m))m\mapsto f\big(\mathfrak{h}_1(m)\big). Most other solutions so far have had the same issue: they are at least as costly as two base field exponentiations, whereas plain encoding maps like ff cost only one exponentiation. Recently, Koshelev (DCC 2022) provided the first construction of indifferentiable hashing at the cost of one exponentiation, but only for a very specific class of curves (some of those with jj-invariant 00), and using techniques that are unlikely to apply more broadly. In this work, we revisit this long-standing open problem, and observe that the SW map actually fits in a one-parameter family (fu)u∈Fq(f_u)_{u\in\mathbb{F}_q} of encodings, such that for independent random oracles h1,h2\mathfrak{h}_1, \mathfrak{h}_2 to Fq\mathbb{F}_q, F ⁣:m↩fh2(m)(h1(m))F\colon m\mapsto f_{\mathfrak{h}_2(m)}\big(\mathfrak{h}_1(m)\big) is indifferentiable. Moreover, on a very large class of curves (essentially those that are either of odd order or of order divisible by 4), the one-parameter family admits a rational parametrization, which let us compute FF at almost the same cost as small ff, and finally achieve indifferentiable hashing to most curves with a single exponentiation. Our new approach also yields an improved variant of the Elligator Squared technique of Tibouchi (FC 2014) that represents points of arbitrary elliptic curves as close-to-uniform random strings

    Stealth Key Exchange and Confined Access to the Record Protocol Data in TLS 1.3

    Get PDF
    We show how to embed a covert key exchange sub protocol within a regular TLS 1.3 execution, generating a stealth key in addition to the regular session keys. The idea, which has appeared in the literature before, is to use the exchanged nonces to transport another key value. Our contribution is to give a rigorous model and analysis of the security of such embedded key exchanges, requiring that the stealth key remains secure even if the regular key is under adversarial control. Specifically for our stealth version of the TLS 1.3 protocol we show that this extra key is secure in this setting under the common assumptions about the TLS protocol. As an application of stealth key exchange we discuss sanitizable channel protocols, where a designated party can partly access and modify payload data in a channel protocol. This may be, for instance, an intrusion detection system monitoring the incoming traffic for malicious content and putting suspicious parts in quarantine. The noteworthy feature, inherited from the stealth key exchange part, is that the sender and receiver can use the extra key to still communicate securely and covertly within the sanitizable channel, e.g., by pre-encrypting confidential parts and making only dedicated parts available to the sanitizer. We discuss how such sanitizable channels can be implemented with authenticated encryption schemes like GCM or ChaChaPoly. In combination with our stealth key exchange protocol, we thus derive a full-fledged sanitizable connection protocol, including key establishment, which perfectly complies with regular TLS 1.3 traffic on the network level. We also assess the potential effectiveness of the approach for the intrusion detection system Snort

    Efficient compression of SIDH public keys

    Get PDF
    Supersingular isogeny Diffie-Hellman (SIDH) is an attractive candidate for post-quantum key exchange, in large part due to its relatively small public key sizes. A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi showed that the public keys defined in Jao and De Feo\u27s original SIDH scheme can be further compressed by around a factor of two, but reported that the performance penalty in utilizing this compression blew the overall SIDH runtime out by more than an order of magnitude. Given that the runtime of SIDH key exchange is currently its main drawback in relation to its lattice- and code-based post-quantum alternatives, an order of magnitude performance penalty for a factor of two improvement in bandwidth presents a trade-off that is unlikely to favor public-key compression in many scenarios. In this paper, we propose a range of new algorithms and techniques that accelerate SIDH public-key compression by more than an order of magnitude, making it roughly as fast as a round of standalone SIDH key exchange, while further reducing the size of the compressed public keys by approximately 12.5%. These improvements enable the practical use of compression, achieving public keys of only 330 bytes for the concrete parameters used to target 128 bits of quantum security and further strengthens SIDH as a promising post-quantum primitive

    Cryptography on Isogeny Graphs

    Get PDF

    Rational isogenies from irrational endomorphisms

    Get PDF
    In this paper, we introduce a polynomial-time algorithm to compute a connecting O\mathcal{O}-ideal between two supersingular elliptic curves over Fp\mathbb{F}_p with common Fp\mathbb{F}_p-endomorphism ring O\mathcal{O}, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally different techniques. Furthermore, we also show that any supersingular elliptic curve constructed using the complex-multiplication method can be located precisely in the supersingular isogeny graph by explicitly deriving a path to a known base curve. This result prohibits the use of such curves as a building block for a hash function into the supersingular isogeny graph

    EasyUC: using EasyCrypt to mechanize proofs of universally composable security

    Get PDF
    We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.Accepted manuscrip

    Efficient Ephemeral Elliptic Curve Cryptographic Keys

    Get PDF
    We show how any pair of authenticated users can on-the-fly agree on an elliptic curve group that is unique to their communication session, unpredictable to outside observers, and secure against known attacks. Our proposal is suitable for deployment on constrained devices such as smartphones, allowing them to efficiently generate ephemeral parameters that are unique to any single cryptographic application such as symmetric key agreement. For such applications it thus offers an alternative to long term usage of standardized or otherwise pre-generated elliptic curve parameters, obtaining security against cryptographic attacks aimed at other users, and eliminating the need to trust elliptic curves generated by third parties
    corecore