
Stealth Key Exchange and Con�ned Access to the Record

Protocol Data in TLS 1.3

Marc Fischlin

Cryptoplexity, Technische Universität Darmstadt, Germany
www.cryptoplexity.de

marc.fischlin@tu-darmstadt.de

Abstract.

We show how to embed a covert key exchange sub protocol within a regular TLS 1.3 execution, generating
a stealth key in addition to the regular session keys. The idea, which has appeared in the literature
before, is to use the exchanged nonces to transport another key value. Our contribution is to give a
rigorous model and analysis of the security of such embedded key exchanges, requiring that the stealth
key remains secure even if the regular key is under adversarial control. Speci�cally for our stealth
version of the TLS 1.3 protocol we show that this extra key is secure in this setting under the common
assumptions about the TLS protocol.

As an application of stealth key exchange we discuss sanitizable channel protocols, where a designated

party can partly access and modify payload data in a channel protocol. This may be, for instance, an

intrusion detection system monitoring the incoming tra�c for malicious content and putting suspicious

parts in quarantine. The noteworthy feature, inherited from the stealth key exchange part, is that

the sender and receiver can use the extra key to still communicate securely and covertly within the

sanitizable channel, e.g., by pre-encrypting con�dential parts and making only dedicated parts available

to the sanitizer. We discuss how such sanitizable channels can be implemented with authenticated

encryption schemes like GCM or ChaChaPoly. In combination with our stealth key exchange protocol,

we thus derive a full-�edged sanitizable connection protocol, including key establishment, which perfectly

complies with regular TLS 1.3 tra�c on the network level. We also assess the potential e�ectiveness of

the approach for the intrusion detection system Snort.

Keywords. Key exchange, secure channel, sanitization, TLS

1 Introduction

Common key exchange protocols allow two parties to agree on a session key. We investigate here the notion
of stealth key exchange where the parties can create another joint key, called the stealth key, within an
execution. The steps to generate this extra key are embedded covertly into the regular execution, such that
outsiders remain oblivious if the stealth mode has been used or not. The derived stealth key should be
secure even if an adversarial parties gets to know�or can even control� the regularly established session
key in such an execution.

1

Client Server

x←$ Zq y ←$ Zq

NC ←$ {0, 1}n NS ←$ {0, 1}n

NC , g
x

NS , g
y

σ ←$ Sign (. . .)

σ, cert

key← KDF (gxy, NC , NS , . . .)

Client Server

x←$ Zq y ←$ Zq

a←$ Zq b←$ Zq

NC ←$ Embd (ga) NS ←$ Embd
(
gb
)

NC , g
x

NS , g
y

gb ← Embd−1(NS) ga ← Embd−1(NC)

σ ←$ Sign (. . .)

σ, cert

key← KDF (gxy, NC , NS , . . .)

stkey← KDF
(
gab, gx, gy, . . .

)
Figure 1: Simpli�ed version of TLS 1.3 (left) and stealth mode (right).

1.1 The Approach

The idea of building stealth key exchange protocols relies on the widespread deployment of nonces in
key exchange protocols, e.g., in TLS 1.3 each party sends a random 256-bit value in the Hello messages.
In terms of security these nonces should ensure that sessions are unique, but usually one does not need
to assume anything beyond this property. One can thus use these nonce values to embed further useful
information which can be used to derive the additional stealth key. This idea already appears in several
anti-censorship protocols like Telex [WWGH11] and Decoy Routing [KEJ+11].1

Let us concretely consider the TLS 1.3 key exchange in the (EC)DHE mode with server authentication.
For a simpli�ed version of this protocol see (the left part of) Figure 1. Besides the client and server nonces
NC and NS , the parties also run a Di�e-Hellman key exchange protocol (over an elliptic curve), deriving a
joint secret gxy from the parties' shares gx and gy. This secret gxy is then used in the key derivation step,
applied to nonces NC , NS and additional information.

The idea is now to embed suitable elliptic curve points for yet another Di�e-Hellman key exchange in
the TLS 1.3 nonces. Speci�cally, both parties on top generate another Di�e-Hellman key gab by embedding
their corresponding shares ga and gb into the nonces NC and NS . The stealth key is then computed as in
the original protocol, but by swapping the role of the Di�e-Hellman values and the nonces. That is, the
stealth key is now derived via the key derivation function, applied to the secret gab for �nonces� gx and gy

(and the other data). See the right part of Figure 1.
The �nal step is to make sure that the embedding of the extra Di�e-Hellman values remains hidden.

Here we use the Elligator proposal of Bernstein et al. [BHKL13] which allows to e�ciently create ellip-
tic curve points which are statistically indistinguishable from uniform bit strings. We discuss the exact
embedding algorithms within. Once this is accomplished, we have implemented the stealthiness.

1.2 Applications

We brie�y discuss here some applications of stealth key exchange. The applications partly also serve as a
motivation for our security model in the next subsection. We remark once more that we discuss related

1We give a comprehensive comparison to related works in Section 2, after having discussed the main ideas.

2

concepts in more detail in Section 2.
The �rst application is a weak form of deniable communication. Since the stealth mode cannot be

distinguished from an actual key exchange execution, an outsider cannot know if the parties have agreed
on the extra key. If now the parties use this key to encrypt the communication upfront, before pushing it
through the channel secured by the actual session key, then they can claim to have sent random data.

Another application is to reduce the trust in Trusted Execution Environments (TEEs). Such environ-
ments nowadays usually support, among others, the generation, storage, and computation of Di�e-Hellman
keys. Hence, when used within a protocol like TLS, the user may hope to bene�t from the additional se-
curity guarantees of the TEE (albeit the security of such TEEs may be weaker than expected, e.g., see
[CSFP20] for a discussion for TrustZone, for instance). When using the TEE, however, the user remains
oblivious about how the Di�e-Hellman keys are generated or stored within the TEE, or even if they are
leaked, opening up the possibility of key escrow. With a stealth key exchange the users may generate the
additional stealth key and pre-encrypt transmitted data under that key. In this sense the user pro�ts from
a �good� TEEs and, at the same time, reduces the risk for a �bad� TEE.2

A third example where stealth key exchange may be useful is malware detection for TLS-encrypted
communication. So far, one had to share the session key with the middlebox (e.g., an intrusion detection
system) in order to allow scanning for potential threats. The sharing of ad-hoc session keys is a challenging
problem in itself, but so far practical approaches follow an all-or-nothing principle: either the middlebox
has access to the entire communication or no access at all. The stealth key exchange would allow the users
to use the extra stealth key to pre-encrypt parts of the communication and only give the middlebox access
to other parts. And it remains up to the users to decide which parts remain end-to-end encrypted. We
note that the actual implementation of this idea is far from trivial and presented more comprehensively
in Section 6, with a closer look at the potential integration into the intrusion detection system Snort in
Section 7.

1.3 Security of Stealth Key Exchange

We next discuss what kind of security properties we expect from stealth key exchange protocols. This has
previously not been captured rigorously, according to common security models for key exchange. Intuitively,
there are two relevant properties. First, we demand that the stealth key is con�dential, even if the session
key derived in the same execution is disclosed, or, following the TEE application example, even if the
adversary gets to in�uence the session key. Con�dentiality of the stealth key here refers to the common
notion of indistinguishability from random. We also assume, vice versa, that the session key remains secure
if the stealth key is revealed. The second property of a stealth key exchange is that one cannot tell apart
executions in which a stealth key is generated from those running merely a regular key exchange execution.
This hides the fact whether a stealth key has been agreed upon or not.

We give a security de�nition in the game-based style of Bellare and Rogaway [BR94], capturing potential
correlations between the session key, the stealth key, and the stealthiness of the execution. That is, classical
key exchange protocols de�ne con�dentiality of the session key via a secret challenge bit b, determining if
the adversary gets to learn the session key (b = 0) or a random string instead (b = 1) in a challenge. The
task of the adversary is to predict the bit b. For our security de�nition we use the same challenge bit b to
seize all secrecy properties simultaneously: If the bit b is 0 then we let the parties run in stealth mode, and
also hand the adversary the session key resp. the stealth key if requested. If, on the other hand, the bit b
is 1, then the parties run in regular mode, and if the adversary asks to be challenged about a key then we
return a random (session or stealth) key instead.

2Note that our approach uses the random nonces to establish the stealth key. Hence, at least the nonce generation cannot
be outsourced to the TEE and its random generator.

3

We note that the security model with its session-centric view of one party's communication in an
execution introduces some interesting e�ect for the stealthiness. That is, a party may start in stealth
mode, with the goal of establishing another key, whereas the intended communication partner does not and
instead runs in regular mode. Unless the two parties have already established a shared secret before, they
cannot secretly coordinate if they both want to run in stealth mode when the key exchange begins. They
can learn this after completion of the key exchange protocol, of course, for example, by trying to use the
extra key.

1.4 Stealth TLS 1.3

We next prove that the stealth version of TLS 1.3 satis�es the strong security guarantees of a stealth key
exchange protocol, when using an appropriate embedding. For the nonce embeddings we use Elligator 2
for Curve25519 [BHKL13], since Curve25519 is also one of the recommended elliptic curves for TLS 1.3.
Hence, our security proof shows that the Elligator embedding allows to derive a stealth key which is as
secure as the regular TLS channel key (for Curve25519), and remains secure if the session key is leaked or
even determined by the adversary. In other words, deriving another fresh key within a given TLS 1.3 is
possible, and the fact that this extra key is derived cannot be spotted from the outside.

One could argue that stealth key exchange does not improve over the trivial solution to run another
execution with the partner, say, another TLS 1.3 exchange, to generate yet another key. However, such
extra executions may be easy to detect and may be prohibited, e.g., for political reasons. The stealth key
exchange mode, on the other hand, goes undetected. Another di�erence lies in the availability of the secret
to authorized parties. If a government enforces key escrow for any connection, then simply running two
instances would not allow to create a key shared only by the communication partners. We note that our
intrusion detection system case displays an example where (partial) access to the data may be desired.
Remarkably, the embedding technique can be used to provide such a trade-o�. Finally, and this depends
on the embedding and the protocol, the stealth mode may be faster than two executions, especially in
terms of latency.

1.5 Sanitizable Channel Protocols

As a concrete application of the stealth version of TLS 1.3 we show how to lift the mode to accomplish
(controlled) sanitization for a TLS 1.3 channel. Going back to the intrusion detection example, we let the
sender and receiver run the stealth key exchange protocol, agreeing on the stealth key for establishing an
end-to-end protected connection, and letting the receiver use a static Di�e-Hellman part shared with the
detection system. The latter implies that detection system, also called sanitizer, and receiver and sender
all share the regular session key of the connection. We note that the static Di�e-Hellman share demolishes
forward secrecy, but our security proof still shows that the stealth key is nonetheless forward secure.

The idea is now to let the sender and receiver use the stealth key to conceal information from the
sanitizer, protecting the inner data msec with the stealth key to derive an inner ciphertext csec. Then the
sender inserts this inner ciphertext csec together with the accessible part mplain of the message through the
regular channel protocol for the session key. This allows the sanitizer to check for the plain part only, hiding
the msec-part from the sanitizer. In fact, we use a more �ne-grained distinction into secure, con�dential,
authenticated, and plain message parts.

We show the above approach is secure if the underlying authenticated encryption scheme is secure, in
a suitable model for sanitizable channels. We emphasize that the �nal ciphertexts are slightly longer than
if encrypting msec and mplain directly, because the inner ciphertext csec also includes an authentication tag.
Nonetheless, when using either of the two suggested authenticated encryption methods in TLS 1.3, GCM
or ChaChaPoly, the �nal ciphertext is a legitimate ciphertext according to TLS 1.3 standards. Thus, when

4

executing the stealth key exchange protocol together with the sanitizable channel, this perfectly complies
with the TLS 1.3 standard on the network level.

An interesting feature for the sanitizable channel protocol is that we can preserve the stealthiness from
the key exchange to the channel protoocl. This means that even the sanitizer cannot know if the sender
and receiver actually exchange additional messages in the inner ciphertext. For this we use a common
property of the authenticated encryption schemes, namely, that one cannot distinguish actual ciphertexts
created with the secret key from random bits. Our security model will capture this stealth property of the
sanitizable channel, such that our TLS 1.3 based solution, shown secure in this model, also provides this
extra feature.

We �nally discuss how our sanitizable channel protocol could be integrated into a network intrusion
detection system like the open-source program Snort. Snort comes with a prede�ned set of rules for checking
network tra�c, of which roughly half touch upon HTTP tra�c. Suppose we grant Snort, as the sanitizer,
access to HTTP meta-information like the header data by putting these data in the accessible part mplain,
but hide the actual HTTP content from Snort in the inner ciphertext csec. Then we can still cover a vast
majority of all HTTP-related rules in Snort but now work over encrypted communication.

2 Related Work

Our result relies on several ideas and techniques appearing in the literature. We discuss here �and delineate
from� the most relevant works.

2.1 Steganography

Stealth key exchange is related to steganographic techniques in cryptography which can be traced back
to Simmons' work about the prisoner's problem [Sim83]. The case of public-key steganography has been
studied extensively, starting with the initial idea mentioned in [AP98, Cra98] to the �rst formalization
by von Ahn and Hopper [vH04]. Several other works focusing on steganographic techniques for public-key
encryption followed, e.g., [BC05, Hop05, LK06, BL18]. We note that only the work by von Ahn and Hopper
[vH04] discusses key exchange but merely for passive adversaries; all other works in this realm consider
encryption.

The most important di�erence to our setting here is that steganographic schemes embed a message into
a regular communication, whereas stealth key exchange �only� aims to generate an extra key. This may
sound like a subtle di�erence but has crucial consequences for the design. Steganographic schemes often
embed bits of the message via rejection sampling [BC05], such that for transmitting each bit covertly many
samples and one ciphertext are necessary. In fact, Dedíc et al. [DIRR09] show that an exponential number
of samples is required unless one exploits speci�cs of the communication channel. We can bypass the lower
bounds since we are only interested in the partners agreeing on an additional secret key.

2.2 Embeddings

The idea of embedding elliptic curve points as bit strings in an indistinguishable way dates back to
Möller [Möl04]. In his solution, he uses the fact that the x-coordinate of the point either denotes a
valid curve point or a valid point on the twist. This allows to represent public keys as random strings.
Möller's idea has been used in StegoToros [WWY+12] to include stegographic techniques in TOR.

The most widely used embedding today is the Elligator approach of Bernstein et al. [BHKL13]. It comes
in two �avors, Elligator 1 and Elligator 2. Elligator 1 is based on an approach by Fouque et al. [FJT13]
and works for some elliptic curves. Elligator 2 is more general and in particular works with Curve25519

one of the options in TLS 1.3 for elliptic curves. This is why we use Elligator 2 here. We also remark that

5

Bernstein et al. [BHKL13] discuss issues with the covertness of other elliptic curves available in TLS 1.3,
especially with NIST's curve P-256 which may not easily yield almost uniform bit strings. The reason is
basically that the order of curve P-256 is not su�ciently close to a power of 2.

Tibouchi [Tib14] presents an improvement for Elligator, denoted as Elligator Squared, which overcomes
the issue of repeated sampling to �nd a suitable curve point and may thus be less vulnerable against
time-based side channels. Aranha et al. [AFQ+14] further improve the e�ciency for Elligator Squared.
Unfortunately, the size of the embedded bit string in Elligator Squared is twice as large as in the Elligator
case, such that we could not embed it easily into the 256-bit nonce in TLS 1.3 for the same security level.
That is, we would have to use a 128-bit curve instead, which does not seem to provide decent security.

2.3 Analyses of TLS 1.3

TLS 1.3 [Res18] has been developed between 2014 and 2018 by the IETF. The process has been accom-
panied by a number of scienti�c analyses during the standardization, both cryptographically [DFGS15,
KMO+15, KW16] as well as by formal methods and symbolic analyses [BBD+15, BFK16, DFK+17,
CHSv16, CHH+17]. The most relevant analysis for us here is the one in [DFGS15] (see also [DFGS21]
for an updated version) as it uses a similar security model (but in the multi-stage setting). Noteworthy,
since we give a reduction to the security of the basic TLS 1.3 protocol, the latest results about tight security
proofs of TLS 1.3 [DG21, DJ21] immediately transfer to our setting. Note that we do not investigate the
pre-shared key mode of TLS 1.3 such that corresponding tightness results as in [DDGJ22] do not apply to
our setting here.

For the sanitizable channel protocol we use that GCM is a secure authenticated encryption scheme with
associated data (AEAD) when used with a pseudorandom permutation [MV04] like AES in TLS 1.3. The
same holds for the composition of ChaCha20 and poly1305 [Pro14], assuming ChaCha20 is pseudorandom
and poly1305 is a universal hash function. In our security proof we use additional common properties of
such AEAD schemes, namely, that ciphertexts cannot be distinguished from random and that the length of
the ciphertext can be deduced from the length of the input message. Both AEAD schemes used in TLS 1.3
satisfy these properties (under the aforementioned assumptions).

2.4 Middleboxes

It is well known that end-to-end encrypted payload and packet inspection by middleboxes are usually
irreconcilable. Clearly, the privacy requirements of the users are very important. However, De Carné de
Carnavalet and van Oorschot [dCdCvO20] give an overview over cases where accessing secured data may
still be desirable. This includes legal reasons like lawful interception or fraud detection, security reasons like
malware download protection or intrusion detection, performance reasons like caching and compression,
and other reasons like parental control. Note that some cases are even in the interest of the end users.

A simple solution is to make sure that the middlebox has access to the channel key such it can access
the payload in clear. In previous TLS versions this could be implemented relatively smoothly by using
static keys in the key exchange, for which the middlebox knows the secret keys. But this, of course,
sacri�ces forward security and was one of the reasons to forgo this option in TLS 1.3. Nonetheless, Green
et al. [GDH+17] describe a TLS 1.3 variant with static keys to resurrect accessibility, at the cost of forward
secrecy.

More sophisticated alternatives for the middlebox problem are the Blindbox protocol [SLPR15] and the
recently proposed concept of zero-knowledge middleboxes (ZKMB) [GAZ+21]. In the (most basic version
of the) Blindbox protocol the sender sends encrypted tokens in addition to the protected communication,
secured under a token key derived also from the channel key. The middlebox holds a (secret) set of
detection rules in form of keywords. The client provides the middlebox at the beginning of the connection

6

with the encrypted versions of the keywords such that detection is possible. This is done obliviously,
without revealing the token key. The overhead of the cryptographic operations make BlindBox an order of
magnitude slower than original connections.

As pointed out by the authors of the ZKMB solution [GAZ+21] the issue with Blindbox is that it
modi�es the actual connection protocol. Preserving the protocol structure is an important compatibility
property. The ZKMB protocol overcomes this limitation for showing policy compliance. The idea is
that the client and server establish a regular connection, and the client proves in zero-knowledge to the
middlebox that the encrypted payload obeys certain rules. Hence, the client-server connection entirely runs
the original connection protocol. Relying on recent progress in e�cient zero-knowledge proofs the overhead
for long-lived connections is only a few milliseconds. For regular TLS connections the overhead in terms of
time and storage for precomputations is still signi�cant, though.

Our stealth TLS 1.3 variant comes close in spirit to the multi-context TLS (mcTLS) solution [NSV+15].
In mcTLS the parties generate an end-to-end TLS connection but, at the same time, each party also
establishes a connection with the middlebox. This results in di�erent symmetric keys, one shared between
the end points, and one shared between each party and the middle box. The di�erent keys can now be
used to protect the payload in such a way that the middlebox is able to access data encrypted with the
key shared with the sending party, called context encryption in [NSV+15].

Our solution for middleboxes follows the same idea of using context encryption, but has several ad-
vantages. First, our solution does not need to modify the TLS 1.3 protocol on the outer layer; only the
pre-encryption the inner data inreases the length of the outer encryption (which remains a valid channel en-
cryption). This is an important compatibility property accomplished with the ZKMB protocol [GAZ+21].
Second, and related to the necessary but not necessarily su�cient compatibility property, we achieve
stealthiness (almost) for free. Third, mcTLS puts additional trust in the middlebox in terms of certi�cate
veri�cations. However, De Carné de Carnavalet and Mannan [dCdCM16] point out potential vulnerabilities
due to sloppy certi�cate checks of middleboxes.

Finally, let us remark that the Blindbox solution and especially the ZKMB protocol have an advantage
in terms of �exibility and security over our approach. Both protocols support checking of general properties
which are hidden from the middlebox. In contrast, our solution only allows for context encryption, dividing
the payload coarsely into visible and protected parts. In addition, the deployment of the (semi-)static keys
diminishes forward secrecy. In return, our solution blends in easily into the existing protocol and does not
require any modi�cations on the network layer.

2.5 Anti-censorship

Closely related to the issue of middleboxes in secure connections is the question of anti-censorhsip. The
idea of using covert data to prevent censorship has been put forward in several works before, and some
approaches share some of the techniques used here. Arguably, the most prominent examples in this regard
are Telex [WWGH11], Cirripede [HNCB11], and Decoy Routing [KEJ+11]. All three approaches are based
on similar principles, but di�er in details. The idea is to have a client in a TLS connection covertly trigger
a dedicated decoy server on the path to the actual server. This allows to bypass censorship since the decoy
server, once alerted, will contact the server on behalf of the client and relay the communication. In order
to do so, the client and the decoy server need to be establish a joint secret which the client uses in the
connection to the actual server and which is thus known to the decoy server. The approaches di�er in the
way how the decoy server is triggered and how the joint secret between client and decoy server is computed.

Both Telex and Decoy Routing let the client embed a secret tag into nonce in a TLS connection.
Speci�cally, the client holds a public key gs of the decoy server and embeds gr|H(grs) in the nonce for
randomness r, hash function H, and a (short) Di�e-Hellman key grs. The decoy server is able to detect
that the second half equals the hash while outsiders should not be able to distinguish the cases. The client

7

is then supposed to use KDF(grs) as the secret in the key establishment with the server, such that the
decoy server also holds the session key. We note that the follow-up design of TapDance [WSH14] explicitly
uses Elligator 2 for the embedding.

Decoy Routing [KEJ+11] also uses the nonce in the client hello message to trigger a special event, but
relies on a pre-shared secret between client and station to embed the tag via HMAC. It also uses this pre-
shared secret to agree on the client's secret in the connection. On the other hand, Cirripede [HNCB11] once
more uses the Di�e-Hellman based approach, but uses a pre-shared secret during registration to ensure
that client and decoy server know the same connection secret.

The main di�erence to our work here is that all the aforementioned approaches are mainly interested
in the covertness to bypass censorship. In contrast, we are interested in the (combined) stealthiness and
key secrecy in an end-to-end connection, albeit our application examples show that third parties can get
involved if desired. Another di�erence is that we provide a rigorous cryptographic analysis of the achieved
properties. The �nal point is that we work with TLS 1.3 whereas the earlier proposals of course considered
earlier versions.

2.6 Anamorphic Encryption

Recently, Persiano et al. [PPY22] introduced the notion of anamorphic public-key encryption. The idea
is to allow the sender and receiver covertly transmit information, even if an observer gets to determine
the message to be sent, and gets access to the secret key of the recipient. Their approach is to have an
additional insdistinguishable key generation algorithm which, on top of the public and secret key, outputs
another special key, the double key. When sharing this double key with the sender, the two parties can
covertly communicate. Persiano et al. [PPY22] give constructions based on rejection sampling and based
on the Naor-Yung paradigm. In [KPP+23] the idea was extended to signature schemes.

Anamorphic encryption, like the approach of embedding information into nonces, displays similar ideas
to covertly communicate in the presence of observers. There are, nonetheless, major di�erences between our
work and anamorphic encryption. At foremost, we work in the domain of key exchange, implicitly solving
the question on how the stealth (or, double) key is securely shared between sender and receiver. Then, our
solution even works in the setting where the observer chooses the ephemeral secrets on the receiver's side
(cf. the TEE example), whereas in anamorphic public-key encryption the receiver presents a suitable secret
key to the observer. A disadvantage of our solution is that, when referring to communication of data, our
embedding of the covertly sent messages in the channel protocol increases the length of the ciphertext,
such that we can hardly hide the fact that we are using a scheme with allows for covert communication.
In contrast, in anamorphic encryption the �anomorphic� ciphertexts are indistinguishable from the ones of
a given innocuous system.

2.7 Sanitizable Cryptography

The notion of sanitizable signature schemes has been introduced by Ateniese et al. [ACdMT05]. Such
schemes allow a designated party, called the sanitizer, to modify a signed message according to some
prede�ned rule, such that authenticity of the derived message is still veri�able. We lift here this idea to
channel protocols. As the intrusion detection system in our setting plays the role of the designated party
being able to make admissible changes to the payload, we use the term sanitizable channel here.

Many works in the area of sanitizable cryptography nowadays focus on signature schemes, with only a
few exceptions. One is the work by Fehr and Fischlin [FF15] which covers sanitizable signcryption schemes.
Such schemes combine (public-key) encryption with signatures, making sure that the sanitizer does not
learn the original message when sanitizing the signature, nor possibly even the resulting sanitized message.
The work does not investigate symmetric-key channel protocols.

8

Access control encryption, introduced by Damg
ard et al. [DHO16] and subsequently extended by
[KW17, FGKO17, WC21], also involves a sanitizer which ensures that only admissible information can
be passed from senders to receivers. Access control encryption rather implements the classical access con-
trol requirements (like the no-read rule and the no-write rule) and moreover aims to provide anonymity.
All of the aforementioned solutions are geared towards public-key cryptography and indeed use public-key
operations to achieve the security properties. Neither of the works looks into real-world channel protocols
with a single sender and receiver sharing a symmetric key.

3 Security Model for Stealth Key Exchange

We start by presenting the security model for stealth key exchange. We follow the classical game-based
model of Bellare and Rogaway [BR94]. We only consider the single-stage setting where the parties agree
on a single session key upon termination of the key exchange phase. TLS 1.3, in contrast, is a so-called
multi-stage protocol [FG14] in which several keys are derived �and possibly deployed� during the key
exchange phase.

We assume that we are given a two-party key exchange protocol Π. The protocol should be correct
in the sense that, if two parties faithfully execute the protocol then they derive the same session key. We
capture this more liberally by demanding that in such an execution the two parties output the same session
identi�er sid which identi�es connected sessions. The choice of sid is part of the protocol description. We
will later stipulate as a security requirement that identical session identi�ers sid also imply identical session
keys.

3.1 Attack Model

We assume a set of user identities U , each user u being equipped with a key pair (sku, pku) generated at the
outset of the attack, together with a valid certi�cate certu containing the public key pku. We assume that
algorithm KGen is used to create each certi�ed key pair. The certi�cates and thus also the public keys are
known to the adversary. Let C be an initially empty set of corrupt users. If the adversary later corrupts a
user id ∈ U then id is added to C. We note in the initialization of a session we allow a party's identity to
be set to ∗, indicating that this party does not authenticate towards the other party. The understanding
here is that ∗ matches any entry from U , i.e., id = ∗ for any id ∈ U and also ∗ = ∗.

There is also a global bit b for de�ning security, chosen randomly at the outset and hidden from the
adversary. This bit determines if the adversary gets to see the actual (session or stealth) key or a random
value. Here, we assume that the session key and the stealth key are chosen according to some e�cient
distributions Dregular resp. Dstealth. The bit also decides if to run in stealth or regular mode, for sessions
where the adversary does not explicitly determine the choice.

Sessions capture the state of a communicating party within the key exchange protocols. They are
described by a tuple

(label, owner, party, partner, role,mode, state, sid,

key, stkey, isTested, isRevealed, isCorrPrtner) ,

where label is a unique administrative identi�er, owner is a user identity, party and partner are the user
identities indicating the intended communication partners (with party ∈ {owner, ∗}, where party = ∗ or
partner = ∗ denotes that the party does not authenticate), role ∈ {initiator, responder} describes the role
of the session, mode ∈ {regular, stealth} describes the mode, state ∈ {accept, reject, running} the status of
the execution, sid the session identi�er (initialized to ⊥ and set upon acceptance), key the session key
(initialized to ⊥ and set upon acceptance), stkey the stealth key (initialized to ⊥ and set upon acceptance

9

in mode stealth), Boolean values isTested and isRevealed (with sub types regular and stealth, all four entries
set to false in the beginning), and Boolean value isCorrPrtner initialized to false. We sometimes write
label.owner, label.partner etc. for the corresponding entries in the tuple for the unique identi�er label.

The adversary can communicate with each session and change its status through oracle queries. We
highlight here two important aspects related to the stealthiness. One is that the adversary can, upon
initializing a session, determine the mode, i.e., if the session should execute a regular protocol execution
or run in stealth mode. But we also allow the adversary to leave this entry unspeci�ed, in which case we
assign the mode according to the challenge bit b. We then need to prevent trivial attacks in which the
adversary checks (via Test or Reveal queries) if there exists a stealth key or not, thereby learning the secret
bit b.

The other important point refers to the independence of the stealth key from the session key. Since we
want the stealth key to be con�dential even if the adversary has control over the cryptographic secrets for
the regular key exchange part (cf. the TEE example), we also admit the adversary to optionally provide
the ephemeral and long-term secrets upon session initialization. If the adversary chooses to do so, then
the session key is marked as revealed, but the stealth key can still be tested. We can also view this as a
possibility to disclose the secrets for deniability reasons, but still be able to use the stealth key securely. Like
session identi�ers the precise de�nition of this auxiliary data is part of the protocol description, potentially
also causing the protocol to abort immediately if aux is not sound.

Init (owner, party, partner, role, [mode] , [aux]): Initializes a session for user owner ∈ U , with party ∈ {owner, ∗},
with intended partner partner ∈ U ∪ {∗}, role, and if the optional argument mode is presented,
in the corresponding mode. If no mode is determined then we use mode ← regular if b = 0
and mode ← stealth if b = 1. In this case, i.e., if no mode argument is passed on, we also set
isRevealed.stealth ← true; else we still let isRevealed.stealth ← false. This is to prevent trivial
attacks on the bit b by testing for the existence of a stealth key if no mode value is given.

Also set state ← running, sid ← key ← stkey ← ⊥ and isTested.regular ← isTested.stealth ←
isRevealed.regular← false. If partner ∈ C is corrupt then mark isCorrPrtner← true, else isCorrPrtner←
false. Generate a new identi�er label and store the passed values in the corresponding entries of
the tuple. If the optional argument aux is present then the party will use this value in the regular
session as auxiliary input, but we set isRevealed.regular ← true; if no value aux is passed then the
party follows the protocol description. Returns label to the adversary.

Send (label,m): Sends protocol message m to the session with label. Here, m may be empty if the session
owner is the initiator and should start sending the �rst message. If the session label accepts when
processing the incoming message and changes to state state ← accept, then label.sid must be set
according to the protocol description to a value di�erent from ⊥. In this case, the session must
also set a session key label.key and, if run in stealth mode, label.mode = stealth, also a stealth key
label.stkey.

Corrupt (id): Takes as input a user identity id and returns skid. Sets in all running sessions label.state =
running with this intended partner label.partner = id the corruption entry label.isCorrPrtner ← true.
Note that completed sessions are not a�ected, in order to implement forward secrecy.

Reveal (label,mode): Takes as input a session label and a requested mode. If the session has not accepted,
label.state ̸= accept, or has been revealed before, label.isRevealed.mode = true, then immediately
return ⊥. Else, if the adversary wants to learn the session key, mode = regular, then return key and
set label.isRevealed.regular← true. If the adversary requests the stealth key, mode = stealth, and the
session has been run in stealth mode, label.mode = stealth, then return the stealth key stkey and set
label.isRevealed.stealth← true. In any other case return ⊥.

10

Test (label,mode): Takes as input a session label and a requested mode. If the key has been tested before,
label.isTested.mode = true, or the session has not accepted, label.state ̸= accept, then immediately
return ⊥. Else, if b = 1 then return the session key key (if mode = regular) resp. the stealth key stkey
(if mode = stealth), where potentially stkey = ⊥. If b = 0, on the other hand, pick a random key
k ←$ Dmode and return k. In either case, b = 0 or b = 1, set label.isTested.mode← true.

We assume that the adversary eventually stops and outputs a guess b∗ for b. We denote by ExpStKEA,Π,KGen,U
the above experiment of adversary A against the key exchange protocol Π, in which one �rst creates the
certi�ed keys for the users in U via algorithm KGen, and picks a challenge bit b ←$ {0, 1}, and then lets
the adversary interact with the oracles as speci�ed above.

3.2 Security Requirements

We follow the common security notions for session matching and key secrecy. The matching property says
that identical session identi�ers imply identical keys. Note that for stealth keys this can only hold if both
parties were running in stealth mode. Uniqueness refers to the fact that at most two sessions should be
partnered. The opposite role property states that in two partnered sessions one party takes the role of the
initiator and the other party the role of the responder. Authentication says that partnered sessions point
to the same intended partner. Note that here we use that ∗ matches any identity from U (and ∗ itself)
by de�nition, such that unauthenticated parties always obey this property. We remark that our session
matching coincides with the notion in [DFGS21] when considering only single-stage security for the �nal
keys.

Definition 3.1 (Session Matching) Let Π be a stealth key exchange protocol for users U and key gen-

eration algorithm KGen, and A be an adversary. Consider experiment ExpStKeyA,Π,KGen,U as above. Let

ExpMatch
A,Π,KGen,U denote the event that any of the four following properties is violated during the execution of

the experiment:

Matching Keys: For any acceptingsessions label, label′ with label.sid = label′.sid ̸= ⊥ we have label.key =
label.key′ ̸= ⊥ and, furthermore, if label.mode = label′.mode = stealth, then also label.stkey =
label′.stkey ̸= ⊥.

Uniqueness: There do not exist three distinct acceptingsessions label, label′, label′′ such that label.sid =
label′.sid = label′′.sid ̸= ⊥.

Opposite Roles: There do not exist distinct accepting sessions label, label′ such that label.sid = label′.sid ̸=
⊥ but label.role = label′.role.

Authentication: For any distinct accepting sessions label, label′ with label.sid = label′.sid ̸= ⊥ we have

label.party = label′.partner as well as label.partner = label′.party.

For the common asymptotic security notions we demand that for any e�cient adversary A the proba-
bility of ExpMatch

A,Π,KGen,U is negligible.
Since we subsume both key secrecy and the indistinguishability of regular and stealth executions under

one notion, we rather call the combined property indistinguishability. This property says that the adversary
cannot predict the challenge bit b signi�cantly better than guessing. For this, we need to exclude some
trivial attacks, though. The �rst two properties say that a tested key in a session cannot be revealed, and
that the tested key cannot be revealed or tested in a partnered session. Recall that excluding testing on
both sides is usually an admissible strategy, since the adversary can already deduce the response for the
second test itself, as partnering is usually publicly veri�able.

11

The third property captures cases where the adversary could already know a tested key trivially. This
can either be because the partner is not authenticated (partner = ∗) or if the partner has been corrupted
before the session has been completed (isCorrPrtner = true). Recall that, if the adversary corrupts the
partner of a session after completion, then the isCorrPrtner predicate is not set. This ensures forward
secrecy. To strengthen the notion, we even allow corrupt or unauthenticated partners if the session has
been involved in an genuine execution run exclusively by the honest instance of the partner, i.e., if there is
another session label′ partnered with the tested session.

Definition 3.2 (Indistinguishability) Let Π be a stealth key exchange protocol for users U and key

generation algorithm KGen, and A be an adversary. Consider experiment ExpStKeyA,Π,KGen,U as above. The

adversary A wins the experiment ExpStKeyA,Π,KGen,U , denoted as event ExpIndA,Π,KGen,U being equal to 1, if b∗ = b
and, in addition, all the following points are satis�ed:

No Reveal nor Test for the same key: For any accepting session label and any mode ∈ {regular, stealth},
if label.isTested.mode = true then we have label.isRevealed.mode = false.

No Reveal nor Test on partner for tested key: For any accepting session label and any mode ∈ {regular,
stealth} with label.isTested.mode = true there does not exist a session label′ ̸= label with label.sid =
label′.sid such that label′.isRevealed.mode = true or label′.isTested.mode = true (or both).

No tested key with unauthenticated or already corrupt partner(unless there is a matching

honest session): For any accepting session label and any mode ∈ {regular, stealth} such that

label.isTested.mode = true, either label.partner ̸= ∗ and label.isCorrPrtner = false, or there exists an

accepting session label′ ̸= label with label.sid = label′.sid.

In the usual asymptotic notation we would now demand that the protocol Π provides indistinguishability
(for U and KGen) if for any e�cient adversary the probability of ExpIndA,Π,KGen,U returning 1 is at most

negligibly above 1
2 .

4 Stealth TLS Version

We next describe our stealth version of TLS 1.3, called sTeaLS, and prove it to be secure. For this we
assume that the client and server use an elliptic curve for the Di�e-Hellman steps which supports e�cient
embeddings. As a concrete example, the parties may use Curve25519 with Elligator 2 as explained in
Section 4.2.

4.1 Protocol Description

We describe here the the case of both parties running either in regular or in stealth mode. A schematic
protocol description can be found in Figure 2. If only one party runs in stealth mode it still tries to compute
the stealth key as described within, and will succeed with overwhelming probability to compute another
key�although the other party does not hold the stealth key.

The protocol follows the idea outlined in the introduction. In regular mode it executes a (EC)DHE-
variant of the TLS 1.3 protocol with optional authentication of the parties. The protocol starts with the
parties computing the early secrets (key

bind
, key

cets
, key

eems
) from the pre-shared key (preset to 0 for the

(EC)DHE case). Since we are only interested in the the stealthiness of the �nal tra�c application keys (for
client and server), denoted as key

cats
and key

sats
in the protocol, we assume that all intermediate keys are

made immediately available to the adversary (which can be formally implemented in multi-stage settings
via a Reveal query).

12

The actual protocol execution start with the client sending a client hello message CH, which includes
a 256-bit nonce NC , and a client key share CKS carrying a Di�e-Hellman contribution gx. In the regular
mode the client picks the nonce NC randomly, whereas in stealth mode NC is the embedding of another
Di�e-Hellman share ga. We note that some mild restrictions on ga apply, i.e., it must be suitable for the
embedding (see Section 4.2). We write a ←$ Eq for the sampling according to this restriction. The server
answers accordingly with the server hello SH and (random or embedded) Nonce NS and server key share
SKS with value gy. We remark that, formally, the key share messages are part of the hello messages but it
is convenient for us to make them explicit. We also require that Di�e-Hellman shares like gx and gy can
be represented with 256 bits, as is the case for example for Curve25519.

The authentication is done via signatures σC on the client side resp. σS on the server side for the
data exchanged so far. When sending this signature in the client certi�cate verify message CCV the client
also includes the certi�cate in the CCERT message. Analogously for the server (which goes �rst to save a
round trip). We note that we assume that the other party checks the signature and the certi�cate, and
also that the certi�cate identity matches the pre-speci�ed peer identity. These messages are protected
under the handshake tra�c secrets of the client (key

chts
) and server (key

shts
), respectively. Once more we

assume that these intermediate keys are handed to the adversary, such that we can in particular decrypt
the actually exchange protocol messages.

The parties also use message authentication keys key
CFIN

and key
SFIN

to compute a MAC over the
communication data. Unlike the signature step this part is mandatory. However, remarkably it does not
serve a basic security purpose for the security of the keys [DFGS21]. In particular, we again assume that
the keys, derived from the handshake secrets are available to the adversary.

The �nal step is to compute the session key key, given by the client application tra�c secret key
cats

and
the server application tra�c secret key

sats
. The additional exporter master secret key

ems
and resumption

master secret key
rms

are once more irrelevant for us and can be made available to the adversary. The stealth
key is now computed by swapping the nonces and the Di�e-Hellman shares, i.e., using nonces N∗

C ← gx

and N∗
S ← gy and key shares ga ← Embd−1

256(NC) and g
b ← Embd−1

256(NS) with Di�e-Hellman key gab. Run
the signature steps and the key derivation steps as in the original protocol for these swapped values.

Since we give a reduction for our stealth version to TLS 1.3 directly, we do not detail the multiple
key derivation steps in the protocol. Instead, we represent them abstractly as a key derivation function
KDF('derive', IKM, context), applied in a certain derivation context 'derive' for intermediate keying
material IKM (in our setting, a Di�e-Hellman value) and context information, namely the transcript hash
over all previously exchanged communication data. In TLS 1.3 this key derivation is implemented via
nested executions of the HKDF key derivation function.

For the desciption of security game it remains to specify the session identi�er and the admissible
auxiliary input aux. As in [DFGS21] the session identi�er is given by the communication transcript,

sid = (CH, CKS, SH, SKS, [SCERT, σS], SFIN, [CCERT, σC], CFIN),

containing the authentication data if the parties authenticate.
For the auxiliary information we demand that aux = (eph, sk) contains the ephemeral Di�e-Hellman

secret x ∈ Zq to be used, as well as the long-term signing key sk of the party if authentication is required
and Init is called with party ̸= ∗ (else sk = ⊥ is admissible). We also require that secret keys are uniquely
determined given the public key, and that the correctness of the secret key can be checked e�ciently. This
holds for example for the ECDSA algorithm or the RSA-PSS algorithm (if the secret key is given in the
factorization-based representation), and assuming the collision resistance of the deployed hash function,
also for EdDSA. All these algorithms are proposed by TLS 1.3 as admissible signature algorithms [Res18].
We let the protocol immediately abort if the input aux contains improper values in this regard. If the data
are sound then the party can execute the protocol entirely with these given cryptographic values.

13

Client Server

(key
bind

, key
cets

, key
eems

)← KDF('early', 0, CH)

Reveal (key
bind

, key
cets

, key
eems

)

x←$ Zq // eph y ←$ Zq // eph

compute gx ∈ {0, 1}256 compute gy ∈ {0, 1}256

regular:NC ←$ {0, 1}256 regular:NS ←$ {0, 1}256

stealth: a←$ Eq stealth: b←$ Eq

NC ←$ Embd256 (g
a) NS ←$ Embd256

(
gb
)

CH : NC

CKS : gx

SH : NS

SKS : gy

(key
chts

, key
shts

, key
CFIN

, key
SFIN

)← KDF('hs', gxy, CH..SKS)

Reveal (key
chts

, key
shts

, key
CFIN

, key
SFIN

)

[σS ←$ Sign (skS , CH..SCERT)]

τS ← MAC(key
SFIN

, CH..SCV)

[SCERT : {certS}]
[SCV : {σS}]
{SFIN : τS}

[check SCERT, σS]

[σC ←$ Sign (skC , CH..CCERT)]

τC ← MAC(key
CFIN

, CH..CCV)

[CCERT : {certC}]
[CCV : {σC}]
CFIN : {τC}

[check CCERT, σC]

(key
cats

, key
sats

, key
ems
, key

rms
)← KDF('ms', gxy, CH..CFIN)

key← (key
cats

, key
sats

)

CH∗ ← Embd−1
256(g

x), SH∗ ← Embd−1
256(g

y), CKS∗ ← ga, SKS∗ ← gb

(key∗
cats

, key∗
sats

, key∗
ems
, key∗

rms
)← KDF

(
'ms', gab, CH∗|CKS∗|SH∗|SKS∗|..CFIN

)
stkey← (key∗

cats
, key∗

sats
)

sid← (CH, CKS, SH, SKS, [SCERT, σS], SFIN, [CCERT, σC], CFIN)

Figure 2: Stealth version of TLS 1.3. Here [] denote optional authentication steps of the parties, and { } denote protocol
messages secure under the handshake tra�c secret keys. We note that the exponents a and b are chosen from a suitable subset
Eq ⊆ Zq which allow for embedding the curve points into strings (see Section 4.2).

14

4.2 Embedding

We brie�y discuss one option for the embedding algorithm Embd here. It closely follows the Elligator 2
approach in [BHKL13]. This embedding can be applied for instance to Curve25519 [Ber06] which is one of
the elliptic curve options in TLS 1.3 [Res18]. Other options exist, among other, Elligator 1. Abstractly we
need that the random mapping Embd maps a large portion of the elliptic curve points to a string which is
statistically close to a uniform string. We denote by ∆n

Embd the statistical distance to uniformly distributed
n-bit strings.

Curve25519 is the elliptic curve y2 = x3 + Ax2 + Bx mod q for A = 486662, B = 1, and prime
q = 2255 − 19. For this curve Bernstein et al. [BHKL13] design an injective mapping ι : S → E(Fq)
from a set S of strings to the elliptic curve. Here the set S can be described by a standard encoding σ
of bit strings of length b = ⌊log q⌋ = 254 into elements from Fq, namely, σ(x0 . . . xb−1) =

∑
xi2

i. We
assume that each string is encoded with leading 0's to consist of exactly b bits. Now S is de�ned as
S = σ−1({0, 1, . . . , (q − 1)/2}). Note that by the choice of q these are all bit strings of length 254, except
for a negligible subset.

Given S and σ, one can de�ne the embedding ψ : Fq → E(Fq) as follows. Let u be a non-square in Fq

(like u = 2 for Curve25519) and
√

be a square-root function over Fq (e.g., taking the element from 0 to

(q − 1)/2 for the two roots a,−a for some a2). Let χ : Fq → {±1, 0} de�ned as χ(a) = a(q−1)/2 indicate if
a is zero (χ(a) = 0), a non-zero square (χ(a) = 1), or a non-square (χ(a) = −1). For any r ∈ F∗

q set

v ← −A/(1 + ur), ϵ← χ(v3 +Av2 +Bv),

x← ϵv − (1− ϵ)A/2, y ← −ϵ
√
x3 +Ax2 +Bx.

Then ψ(r) = (x, y) describes the curve point for r. One additionally sets ψ(0) = (0, 0) such that ψ is now
de�ned over Fq.

De�ne ι := ψ ◦ σ. For the inverse ψ−1 : ψ(Fq) → Fq de�ne
√

F2
q the the set of preimages of squares

under
√
, and

ψ−1((x, y))←


√
−x/((x+A)u) y ∈

√
F2
q√

−(x+A)/ux) y /∈
√

F2
q

.

This also de�nes the inverse ι−1 := σ−1 ◦ψ−1. Note that since ι is injective around half of the elliptic curve
points have a preimage under ψ. Hence, when picking an elliptic curve point we need on the average two
attempts to �nd a point in the range of ψ.

For our application to stealth TLS we are not entirely done yet. Recall that ψ maps 254-bit strings to
elliptic curve points such that, when applying ψ−1 to a suitable random curve point P , we get an almost
uniform 254-bit string. Our algorithm Embd256(P) now simply computes ψ−1(P) and appends two random
high-order bits. The (deterministic) inverse Embd−1

256(s) drops these two bits and applies ψ to the remaining
string.

As pointed out in [BHKL13] the sampling via ψ−1 and thus via Embd256 is statistically close to uniform.
This is due to the fact that the order of the �eld is 2255− 19 and thus (q+1)/2 very close to 2254. Another
point is that the actual Curve25519 works in a prime order subgroup (with cofactor 8), such that extra
care must be taken to hide public keys in strings if using the genuine Curve25519 algorithms. One option
is then to use a base point generating the full group instead, the other option is to add a low-order point
to the Curve25519 point. See Loup Valliant's page elligator.org for more implementation details. Let
us point out that the deployment of the embedding may introduce timing-based side channels. Since the
embedding is computationally more expensive than simply picking nonces, this may reveal if the party runs
in stealth mode via time measurements. We neglect this issue here since previous analyses of TLS 1.3 did
not consider such side channels or randomness leakage either.

15

4.3 Advanced Security Features

As explained, our goal is not to re-prove TLS security, but instead to give a reduction from the indistin-
guishability our stealth variant to the key secrecy of the regular version of TLS. By construction, the stealth
key computation can be thought of as a TLS version in which we swap the nonce and curve point for deriv-
ing the key. It is therefore natural to de�ne a swapped version of TLS, denoted swTLS 1.3, which already
includes the exchange of the two values for computing the key. Our security proof will then use a reduction
to the regular TLS 1.3 protocol for attacking the session key, and to the swapped version swTLS 1.3 for
attacking the stealth key. Both protocols are required to provide key secrecy against adversary which can
determine nonces, as we discuss �rst.

Key Indistinguishability against Nonce-Setting Adversaries. The �rst requirement, for both
TLS 1.3 and swTLS 1.3, says that key secrecy still holds if we let the adversary determine the nonce value
in executions of the honest parties. This appears to be a reasonable assumption in light of previous results
about TLS 1.3. That is, Dowling et al. [DFGS21] do not make any assumptions about the nonces in the
key secrecy proof (but only for session matching). Davis and Günther [DG21] only require that the pair
of nonce and ephemeral group element is unique in their tight key secrecy proof. If we let the adversary
determine the nonce then the minor term for collisions in their security bound decreases from S2 · 2−256 · 1q
to S2 · 1q for the number S of executions. Only the result by Diemert and Jager [DJ21] in their tightness
result about key secrecy uses that the nonces are unique.

Formally, we need to specify how an adversary B can interact with the standard TLS protocol, and
here we mean our stealth TLS protocol in mode regular (with the intermediate keys being immediately
exposed). Adversary B is also allowed to choose nonces. The experiment is almost identical to our model
for stealth attacks, with two exceptions:

� Init, Reveal, and Test do not take an additional input mode (since TLS 1.3 only runs in regular mode).

� Init does not take the optional aux input. Instead, it takes an optional nonce input which the session
owner then uses as a nonce in the protocol execution. The stipulation here is that B never chooses
the same value nonce twice.

We note that formally we can subsume the changes under our model by always requiring mode = regular for
each oracle call and session, and by interpreting the optional aux as the optional nonce input. The latter
is admissible because it depends on the protocol what to do with this input, if present. We accordingly
write ExpSecrecy-NSA,Π,KGen,U (NS for nonce setting) for the adversary winning this experiment in predicting the
challenge bit b and obeying the other restrictions.

The Swapped TLS Protocol. We next discuss the swTLS 1.3 variant and its security. In this variant
we exchange the nonce in the hello messages with the key share value in all subsequent evaluations of the
signature algorithm and the key derivation function. In our presentation of the core protocol messages
where the hello message only consists of the nonce:

CH|CKS|SH|SKS 7→ CKS|CH|SKS|SH

in all applications of KDF and of Sign. Again, strictly speaking the key shares are part of the hello messages.
According to that terminology we exchange the key share entry with the nonce entry in the hello messages.
We leave all other steps unchanged, including also session identi�ers.

We note that we do not require TLS 1.3 to be secure in the original and in the swapped order simul-
taneously. Indeed, this infringes with any of the known proofs in [DFGS21, DG21, DJ21] which require

16

the input to the signature to be unique, whereas adaptive swapping could easily violate this. We only
require that both TLS 1.3 and swTLS 1.3 are individually secure according to the nonce-setting key secrecy
experiment above.

Once more, consulting [DFGS21, DG21], the security proofs show key secrecy (in the nonce-setting
scenario) for swTLS 1.3 as well, assuming the hardness of the underlying Di�e-Hellman problem and security
of the deployed cryptographic primitives. The reason is that these proofs rely on abstract collision-resistance
of the hash function for the transcript hash used in key derivation and signing. Since (bijectively) changing
the order of the inputs does not infringe with collision resistance, these results also show security of the
swapped version.

Another property of swTLS 1.3 we require is that we are also able to swap nonce values nonce with elliptic
curve points Z in the hello messages. For this we extract the nonce-embedded point Embd−1

n (nonce) again,
and vice versa interpret the point Z as a 256-bit nonce value. The latter is possible by assumption about
the deployed group and holds for instance for Curve25519. This swapping has the e�ect that we now work
with a Di�e-Hellman problem over �embeddable� points only. Nevertheless, it is reasonable to assume
for Curve25519 and Elligator 2 that the problem is still hard, since half of the points allow for such an
embedding.

5 Security Proof of Stealth TLS 1.3

We show security of our stealth protocol. We note that correctness of sTeaLS holds obviously. If two parties
faithfully execute the protocol, then they obtain the same session identi�er. With the session matching
property below it follows that they also have the same session and stealth keys then.

5.1 Session Matching

Proposition 5.1 Let sTeaLS be the stealth TLS 1.3 protocol (for a set of users U and key generation

algorithm KGen). Then for any adversary A initializing at most S sessions we have

Pr
[
GameMatch

A,sTeaLS,KGen,U
]
≤ S2 · 1

q
· 2−n + S ·∆n

Embd,

where n = 256 is the nonce length, q is the size of the underlying elliptic curve, and ∆n
Embd is the statistical

distance from uniform for the embedding algorithm in sTeaLS.

Proof. We have to show the four properties, matching keys, uniqueness, opposite roles, and authentication.
For matching keys note that identical session identi�ers

sid = (CH, CKS, SH, SKS, [SCERT, σS], SFIN, [CCERT, σC], CFIN)

imply that the Di�e-Hellman shares are identical, as well as all the other inputs to the key derivation
function, such that the parties derive the same keys. Note that this also holds for the stealth key for
which we swap the key share and nonce entries. The other property which holds unconditionally is the
authentication property: If a party authenticates for entry id ̸= ∗, then it needs to provide a certi�cate
with the correct identity, else the other party aborts. Since the certi�cate is part of the session identi�er sid
for authentication, it follows that the identity entries match for identical session identi�ers. For unauthen-
ticated parties the entry ∗ matches any other value anyway, such that, overall, the authentication property
holds in all cases.

Next we show uniqueness and the opposite-roles property simultaneously. For this we �rst assume, in
a thought experiment, that for sessions in stealth mode the nonces are not generated by the embedding

17

algorithm but are chosen as random strings. Since we have at most S sessions and the statistical distance of
this modi�cation for each session is at most ∆n

Embd, this can increase the adversary's success probability by
at most S ·∆n

Embd. For this modi�ed protocol we can now apply the same line of reasoning as in [DFGS21],
saying that the probability of a collision among two client sessions (initiated with role = initiator) or two
server sessions (initiated with role = responder) on the random nonces (of length n = 256) and random
group elements (for group size q) is at most S2 · 1q · 2

−n. Only if both entries match the session identi�ers
can be identical. But this means that we cannot have threefold collisions among any kind of sessions
resp. colliding sid for identical roles, except with that probability. □

5.2 Indistinguishability

The indistinguishability proof is more elaborate. Recall that we reduce the security of the stealth protocol
to the security of TLS 1.3 resp. swTLS 1.3 in the nonce-setting scenario. For the theorem's statement it
is convenient to denote by AdvxA,Π,KGen,U := Pr

[
ExpxA,Π,KGen,U = 1

]
− 1

2 the advantage over the guessing
probability for any type of experiment.

Theorem 5.2 For any key generation KGen algorithm and and user set U , and any adversary A initializing

at most S sessions, there exist adversaries B and C (with roughly the same e�ciency as A) such that

AdvIndA,sTeaLS,KGen,U

≤ 2S ·
(
AdvSecrecy-NSB,TLS 1.3,KGen,U +AdvSecrecy-NSC,swTLS 1.3,KGen,U

)
+ S ·∆n

Embd

where n = 256, q is the order of the group, and ∆n
Embd is the statistical distance from uniform for the

embedding algorithm in sTeaLS.

Proof. We proceed in a number of game hops. Let Gamei be the i-th game in the sequence of games,
starting with Game0 being ExpIndA,sTeaLS,KGen,U . We will eventually turn Game0 into a game Game2

which is either ExpSecrecy-NSB,TLS 1.3,KGen,U or ExpSecrecy-NSC,swTLS 1.3,KGen,U , and account for the di�erences in the games by

collecting the probabilities. For this we let Advi := Pr[Gamei] − 1
2 be the corresponding advantages in

the game.

Game1. Our �rst step is to use the embedding algorithm also in the regular mode. That is, in Game1
in each session with mode = regular, instead of picking the nonce N ←$ {0, 1}n randomly, pick some
c ←$ Eq ⊆ Zq and compute N as N ←$ Embdn(g

c). The only di�erence to stealth executions is that we
do not use the covert key in the following. The di�erence to Game0 is given by the statistical distance
between the two sampling procedures, times the maximal number S of sessions:

Adv0 ≤ Adv1 + S ·∆n
Embd.

Game2. In the next game hop we assume that the adversary only makes a single Test oracle query for a
session, and announces at the beginning for which number t of initialized session this will happen and also
what type of mode the query will be (regular or stealth). Denote this type prediction by modet. It follows
by a hybrid argument (see for example [DFGS21, Appendix A]) that the reduction to a single Test query
will increase the advantage by a factor S at most, and predicting the type by guessing it will incur a factor
2. Hence,

Adv1 ≤ 2S ·Adv2.

We next bound the adversary's success probability in the two cases, a Test call for the regular session
key and for the stealth key.

18

Bounding the Case modet = regular. When testing the session key, we turn the adversary A against
sTeaLS into one B against TLS 1.3, obeying the necessary restrictions in experiment ExpSecrecy-NSB,TLS 1.3,KGen,U .
Note that B also knows the correct initialization number t, on which the Test call is made, from the
beginning on. Algorithm B is also aware of the fact that the Test query is for the session key.

Adversary B runs a black-box simulation of A, essentially relaying all communication between A and
the oracles, with the following changes:

� If A requests to initialize any session, then our adversary B �rst checks the validity of the inputs, e.g.,
that the sk entry in the potential aux = (eph, sk) input is only ⊥ if no authentication occurs, party = ∗,
and otherwise that it constitutes a matching secret key to the public key. For any mismatch B
immediately returns ⊥, emulating perfectly the protocol description for invalid aux. Else, B initializes
a new session in its experiment, but samples c ←$ Eq ⊆ Zq and passes nonce ←$ Embdn(g

c) as the
optional nonce argument. The knowledge of c allows B to later compute the stealth key for this
session (once the session has accepted) and to reveal it.

Note that if A does not provide the optional argument mode upon initialization, with the intention to
make it depend on the secret bit b, then isRevealed.stealth would be set to true in the attack and lead
to an answer ⊥ in a Reveal query for that session. Hence, B can ignore this case of an undetermined
argument mode, since B can answer Reveal queries for the stealth key with ⊥ and since the (only)
Test query is for a regular key. If the adversary initializes the t-th session, to be tested later, then
we may assume that no optional argument aux = (eph, sk) is passed on, else the security experiment
would set isRevealed.regular ← true and this session could not be successfully tested on the regular
key anymore.

In any case adversary B stores aux for the session (if provided) and returns the administrative identi�er
label to A.

� If the adversary A calls Send(label,m) for some session then B forwards this request to its own Send
oracle, with one exception: If upon initialization adversary A has provided auxiliary information
aux = (eph, sk) then our algorithm B does not forward the Send request, but instead computes the
answer locally with the help of all the data.

� If adversary A makes a Corrupt(id) call the B forwards this call to its own game, and returns the
answer.

� If the adversary A calls Reveal(label,mode) then, for mode = regular, adversary B makes a call to
Reveal(label) in its own game and hands back the response. If, on the other hand mode = stealth,
then B either answers ⊥ if the session has not accepted or if label.isRevealed.stealth = true (e.g., if
upon initialization of the session no mode has been speci�ed). Or, B locally computes the stealth
key stkey with the help of the communication data and the exponent c for creating the nonce in the
session, and returns the key.

� If A makes the Test(label,mode) call then it must be for mode = regular and B can simply forward
the request as Test(label) to its own game, and return the answer.

This describes our adversary B. We �rst note that B provides a perfect simulation of Game2 when
interacting with the TLS 1.3 protocol (in the nonce-setting case). We �nally need to check the freshness
conditions, and show that if A in its attack is successful then so is B in its attack. To see this consider the
three cases:

No Test and Reveal for same session: We note that B would only make a Reveal query to the t-th session
if A would do so in its simulation. But then A would not be successful either. Note that if A provided

19

aux = (eph, sk) upon initializing the t-th session, and B would run a local copy instead, then in the
game label.isRevealed.regular would be set to true, such that A could not win. We conclude that B
only violates this property if A does.

No Test and Reveal for partner: Assume that there is a partnered session to the t-th session. If A made
a Reveal query to the partner, or provided aux = (eph, sk) in the partner session, then it cannot
succeed anymore for the t-th session. Since B would only make a Reveal query to a partner if A did,
and not even initiate a partner session if receiving aux from A, it follows that B merely violates this
property if A does.

No corrupt partner, and no unauthenticated partner unless there is another matching hon-

est execution: Here we observe that, according to the other two cases, if B would not initiate the
matching honest execution, this can only be because it received aux from A upon initialization and
instead run a local copy. But then this would infringe with the second property, because then the
other execution in A's game would set isRevealed.regular to true when handing over aux. It follows
that B obeys this property if A does.

In summary, we have now shown how to turn any successful A into a successful nonce-setting attacker B
against TLS, such that we can bound the case modet = regular by

Adv2 ≤ AdvSecrecy-NSB,TLS 1.3,KGen,U

in case modet = regular.

Bounding the Case modet = stealth. Next assume that modet = stealth. In this case we build an
adversary C attacks the swapped swTLS 1.3 protocol. The reduction C is very similar to B above, but
instead swaps the nonces and curve points when relaying communication (such that the internal change of
the input order in the transcript hash of swTLS 1.3 eventually mimics the attack of A on the stealth TLS
version in Game2):

� Whenever C receives an Init query of A with input aux = (eph, sk), then C checks that either party = ∗
or that sk is the unique secret key to the public key pk of that user. If not, then C immediately aborts
this session and returns ⊥, as in the protocol description for invalid aux. Else C asks to initiate a
session of swTLS 1.3 and sets the nonce value in this initialization to be nonce ← geph. Note that,
unlike B, our algorithm C here does not run this session locally, but instead calls the game to execute
the session for the given nonce. This is where we need the security against nonce-setting adversaries.
The session will thus choose an �embeddable� curve point Z as its share and use the (same) signature
key sk to sign, when progressing in the execution. For a given value aux algorithm C internally notes
that isRevealed.regular ← true for this session, according to the attack model. If A does not hand
over aux upon initialization, then C chooses c and sets the nonce to nonce ← gc when calling Init in
its game. In this case isRevealed.regular← false in the internal simulation of C.
In either case, C knows the secret exponent for the nonce value and can thus compute a stealth key
if required to do so. We remark that if A does not provide an input mode for this initialization, then
C sets isRevealed.stealth ← true according to the game anyway, and can later answer Reveal queries
for the stealth key easily with ⊥. The same holds if mode = regular is passed on, in which case the
session is not supposed to be able to compute a stealth key. Hence, the only case where C needs to
provide the stealth key is when mode = stealth is used by A for initialization.

� Whenever C receives an incoming protocol message for a party, via a Send query of A, and this
message contains a nonce nonce ∈ {0, 1}n and a curve point Z as hello and key share entries, then

20

C computes nonce′ ← Z and Z ′ ← Embd−1
n (nonce), and forwards the message with nonce′ and Z ′

instead of nonce and Z to its Send oracle. If C receives a message containing a nonce nonce and curve
point Z as a response from a Send call, then C swaps the two values analogously, nonce′ ← Z and
Z ′ ← Embd−1

n (nonce), before handing the answer back to A. Note that we can view a curve point Z
as an n-bit string by assumption about the curve, allowing C to move the curve point to the nonce
entry.

� A Corrupt(id) query of A in the simulation is immediately relayed in C's game.

� For a Reveal(label,mode) query ofA our algorithm C can either compute the correct answer formode =
regular, because C knows that isRevealed.regular = true or, if isRevealed.regular = false, knows the
ephemeral secret. If, on the other hand, mode = stealth then C calls its external Reveal(label) oracle
for swTLS 1.3 to get the answer. Since C swaps nonces and curve points on the external interface, and
the swTLS 1.3 protocol swaps the input to the transcript hash, it follows that the external session key
corresponds to the internal stealth key in A's simulation.

� The Test query of A for the t-th session and mode = stealth, adversary C makes the Test query in its
game to get the answer.

The simulation is perfect by construction. The swapping of nonces and points on C's interface between
A and swTLS 1.3, combined with the input re-ordering for signing in swTLS 1.3, ensures that the stealth
key from A's point of view correspond exactly to the session keys in swTLS 1.3. We observe that this uses
the fact that the signature key sk is uniquely determined by the public key, such that A's expectation to
use the given (and correct) sk for signing matches the key used in the swTLS 1.3 protocol. Hence, if A
predicts the challenge bit b in Game2 for the case modet = stealth, then so does C against swTLS 1.3. It
remains to argue that C, analogously to B, does not violate the freshness conditions:

No Test and Reveal for same session: Algorithm C only makes a Reveal query to the t-th session if A
does so in the simulation for the stealth key; in any other case C can answer based on its local data.
In case of such a Reveal query of A, however, A could not win.

No Test and Reveal for partner: Next presume that there is a partnered session to the t-th session. If A
made a Reveal query to the partner session for the stealth key, then it could not win anymore when
testing the stealth key in the t-th session. However, in any other case, C would not make a Reveal
query to a partner, because all other Reveal queries are for unpartnered sessions.

No corrupt partner, and no unauthenticated partner unless there is another matching hon-

est execution: Here we use the fact that C initializes exactly the same sessions as A does. Hence, if
C violates any of the properties, then so does A. It follows that C does not infringe with this property
unless A does.

We have thus shown that we can transfer any successful adversary A into a successful nonce-setting attacker
C against swTLS 1.3, such that we can bound the case modet = stealth by

Adv2 ≤ AdvSecrecy-NSC,swTLS 1.3,KGen,U .

This concludes the proof. □

On the Auxiliary Input Information. Let us revisit the auxiliary information aux = (eph, sk) in our
security model, potentially passed on by adversary A upon initialization. The secret key argument sk may
be equal to ⊥ if the session owner does not authenticate, party = ∗, in which case only the ephemeral

21

secret eph enters the protocol execution. In our TEE example we assume that such secrets are stored and
maintained by a trusted environment and are never handed out; the TEE would perform all operations
involving these secrets in its protected space. Indeed, in our reductions the algorithms do not need to know
eph explicitly. It would su�ce that the adversary, representing the TEE, would give geph and perform the
Di�e-Hellman computations involving eph, on behalf of the reductions, and merely hand back the result.
However, this would signi�cantly increase the complexity of the security model since we would then have
to determine when to call for the adversary's assistance.

The case of the secret signing key sk ̸= ⊥ is more delicate. If we would ask the adversary instead to sign
the data with the protected key sk if required, then our reduction B would still succeed, but our reduction
C to the swapped version would not work anymore. The reason is that C uses the external instance of
the swTLS 1.3 protocol to run the simulated instance. By checking that sk is correct and the fact that
it is up to C to compute the signature, the reduction can simply use the externally given signature from
the swTLS 1.3 instance. Hence, besides re�ning the model, one would also need to follow a di�erent proof
strategy if one would like to allow for adversarial signatures.

6 Sanitizable Stealth Channels

We next discuss the notion of sanitizable channels. Readers who are merely interested in the idea of how
to derive a lightweight and read-only sanitizable channel in TLS 1.3 may skip this section and consult
Appendix A instead.

The terminology of sanitizable channels follows the case of signature schemes [ACdMT05] where a
designated party can make admissible modi�cations to a signed message. In sanitizable channels the sender
and receiver exclusively share a stealth key stkey, e.g., generated in stealth mode in the key exchange step,
as well as a channel key chkey. The channel key is also available to the sanitizing party like an intrusion
detection system on the receiver's side. Knowledge of the channel key chkey enables the sanitizer to read
or write (parts of the transmitted payload), whereas the stealth key still allows the parties to communicate
securely from end to end. In addition, we expect the entire message to be protected from outsiders in the
common way.

We �rst present the general design of such sanitizable channels. In Section 6.5 we discuss the speci�c
case of the TLS 1.3 record protocol and how one can support partly access for the sanitizer. The latter
corresponds to the application example for Intrusion Detection Systems presented in Section 7.

6.1 Preliminaries

Messages and Modi�cations. Any message m = (msec,mconf,mauth,mplain) transmitted over the sani-
tizable channel may consist of four parts:

� msec is the part transmitted securely between the end points, con�dential, authenticated, and inac-
cessible to the sanitizer.

� mconf is the part hidden from the sanitizer, but which the sanitizer may modify, e.g., for pruning
encrypted data in transit. We note that our AEAD-based solution does not support such con�dential-
only message parts but we present the model with this message type.

� mauth is the part which the sanitizer can read but not modify undetectedly, e.g., to check for viruses
in that part.

� mplain is fully available to the sanitizer and can be modi�ed, e.g., to be able to detach viruses if
detected.

22

It is convenient to write |m|∀ = |m′|∀ if the lengths of each components in the two message vectors match,
i.e., if |msec| = |m′

sec|, |mconf| = |m′
conf|, |mauth| = |m′

auth|, and |mplain| = |m′
plain|.

We assume that the admissible sanitization operation are captured via a set MOD which contains
modi�cations Mod applied to message tuples, Mod(m), but where only the mconf- and mplain-part are
actually modi�ed and the msec- and mauth-part are unchanged. Usually, these modi�cations only allow
simple operations on mconf such a truncation or adding values, but may substitute the entire mplain part.
Note that the admissible sanitizer is indeed not supposed to change other message parts, but our attacker
may later try to do so, of course. We say that two modi�cations Mod and Mod

′ are length-equivalent if
for any admissible message m we have |Mod(m)|∀ = |Mod

′(m)|∀. This means that the two modi�cations
always output message components of the same length for identical input messages.

Since the two parties may not even establish a stealth key stkey during the key exchange step, preventing
them from communicating con�dentially besides the sanitizer, we also allow the sender to set the parts
for msec and mconf to a value of the form ⋄ℓ. The intention here being that the parties put a nonsensical
placeholder of predetermined length ℓ instead. The length ℓ will allow us to deduce how many random
bits we need to put, instead of applying the encryption algorithm. Similarly, since the parties cannot
authenticate the message parts against the sanitizer, we assume that mauth is then also of the form ⋄ℓ.

Key Establishment. We assume that the sender and the receiver have executed the key exchange
protocol. The two parties may, or may have not, used the stealth mode to generate a stealth key stkey.
For sure, they have generated a session key chkey in such a way that the sanitizer also knows this key
chkey (but the sanitizer remains oblivious about the existence of the stealth key). One option is to let the
receiver securely pass the session key to the sanitizer upon establishment, albeit this appears to be very
inconvenient in the �rewall setting. An alternative is to let the sanitizer provide the ephemeral secret of
the receiver in the key exchange step, being able to compute chkey from the transcript of communication.
This requires the sanitizer to either communicate with the receiver while the key exchange protocol runs,
or by sharing a local key with the receiver from which the ephemeral secret is derived. Alternatively, the
receiver may re-use a sanitizer-provided ephemeral secret in multiple executions. In fact, this corresponds
to the static Di�e-Hellman share solution for TLS 1.3 [GDH+17]. The disadvantage in the latter case is
that this solution infringes with forward security (yet, forward security in the stealth part of the connection
is still preserved).

Another possibility in the TLS stealth scenario, which hides the usage of a static key towards the sender
and outsiders, is to use the static public key gs of the sanitizer together with the embedded Di�e-Hellman
share of the receiver. That is, the receiver embeds gb into its nonce NS , independently of the question if
it wants to run in stealth mode or not. It now uses the key derivation function on shared keying material
gbs, together with the nonce NC of the client it has received in the �rst step and its own (embedded) nonce
NS (similar to TLS 1.3 handshake key derivation). The receiver then uses this derived secret as its own
Di�e-Hellman secret y when computing gy as its key share in the connection. We note that the receiver
can still compute the stealth key with the help of b with the sender's embedded share ga, without the
sanitizer being able to derive this stealth key.

In the de�nition of a sanititzable channel protocol below we abstract away all these mechanisms and
assume a key generation algorithm ChKGen which returns the keys and the initial states of the parties. In
TLS 1.3 the state of the parties for the record layer is simply a counter, incremented each time a ciphertext is
processed. The counter value is added to a random o�set, called client_write_iv resp. server_write_iv
in TLS. The random o�sets are formally part of the secret keys chkey and stkey.

Channel Protocol. AMOD-sanitizable stealth channel protocol consists of e�cient probabilistic algo-
rithms CH = (ChKGen, ChSend,ChRcv,ChSanit), where ChKGen takes a parametermode ∈ {regular, stealth}

23

and returns a key pair (chkey, stkey) �where stkey = ⊥ for mode = regular� together with a pair
of a sender, receiver, and sanitizer initial state, (stS , stR, stSan). Algorithm ChSend takes as input the
keys chkey, stkey, a parameter mode ∈ {stealth, regular}, and the state state, and an admissible message
m = (msec,mconf,mauth,mplain), and returns a ciphertext c and the updated state state. For mode = regular

only messages of the form m = (⋄ℓsec , ⋄ℓconf , ⋄ℓauth ,mplain) are admissible input messages, meaning that the
sender only transmits the actual payload but not any stealth information (except for the potential length of
the stealth data). Algorithm ChRcv takes as input the keys chkey, stkey (possibly stkey = ⊥), the receiver
state stR, and a ciphertext c, and outputs a message m = (msec,mconf,mauth,mplain) as well as the updated
state stR. Note that ChRcv needs to be able to cope with sanitized and potentially unsanitized ciphertexts,
without being told explicitly. Similarly, the receiver always tries to recover potential stealth messages, i.e.,
implicitly uses mode = stealth. Finally, algorithm ChSanit receives as input the key chkey, the current state
stSan, and the description of a modi�cation Mod ∈ MOD, and returns a new ciphertext cSan and the
updated state.

We next tie all algorithms together through the completeness notions, where we assume the common
decryptable properties for stealth and non-stealth ciphertext. On top, we stipulate that the sanitizer
algorithm always works on either kind of ciphertext. AMOD-sanitizable stealth channel protocol CH =
(ChKGen, ChSend,ChRcv,ChSanit) is complete if the following holds:

� For any (chkey, stkey, st0S , st
0
R, st

0
San) ←$ ChKGen(), any admissible messages m1,m2, . . . ,mj , any se-

quence of modes mode1, . . . ,modej , any ciphertext sequence

(stiS , c
i)←$ StSend(chkey, stkey,modei, sti−1

S ,mi)

for i = 1, 2, . . . , j, we always have

(stiR,m
i) = StRcv(chkey, stkey, sti−1

R , ci)

for i = 1, 2, . . . , j.

� For any (chkey, stkey, st0S , st
0
R, st

0
San) ←$ ChKGen(), any admissible messages m1,m2, . . . ,mj , any se-

quence of modes mode1, . . . ,modej , any ciphertext sequence

(stiS , c
i)←$ ChSend(chkey, stkey,modei, sti−1

S ,mi)

for i = 1, 2, . . . , j, any sequence of admissible operations Mod
i ∈ MOD for i = 1, 2, . . . , j, any

(ciSan, st
i
San)←$ ChSanit(chkey, ci, sti−1

San) for i = 1, 2, . . . , j, we always have

(stiR,Mod
i(mi)) = ChRcv(chkey, stkey, sti−1

R , ciSan)

for i = 1, 2, . . . , j.

Note that our completeness notion works in the case that either all ciphertexts reach the receiver without
modi�cation, or that are ciphertext all sanitized. One could mix these two properties but our solution only
achieves this all-or-nothing property.

6.2 Security Model

To de�ne security of our sanitizable channel we follow the security notion of Bellare et al. [BKN04]. This
notion allows the adversary to create ciphertexts via a left-or-right sender oracle, the choice of which
message to encrypt made according to a secret challenge bit b. The adversary can also decrypt arbitrary
ciphertexts via a receiver oracle, where the receiver oracle suppresses the actual message response unless

24

the adversary manages to create a valid out-of-sync ciphertext, i.e., which has not been created at the
same point by the sender. In this case the adversary will learn the message but only if b = 0. The latter
follows the idea of combining indistinguishability and integrity into a single notion, e.g., as done for IND-
CCA3 security of authenticated encryption of Shrimpton [Shr04]. That is, if the adversary manages to
create a new valid ciphertext and thus breaks integrity, then it will also learn the bit b and can then break
indistinguishability.

The formal security experiment for sanitizable channel protocols appears in Figure 3. In our case we
simultaneously consider two security modes. One is security against outsiders, i.e., where the adversary is
not the sanitizer. In this case, we demand the common channel security of [BKN04] for the overall protocol.
This should even hold if we augment the adversary's capabilities by granting access to a sanitization oracle,
which the adversary can query about arbitrary ciphertexts. Since the sanitizer may modify parts of the
message we extend the left-or-right security of the sending oracle and allow the adversary to pass two
possible modi�cations Mod

0,Mod
1 (as long as these modi�cations show identical output-length behavior

for messages).

ExpIND-CCACH,A,MOD

b←$ {0, 1}, ctrS , ctrR ← 0, C,M← []

(chkey, stkey, stS , stR, stSan)←$ ChKGen(stealth)

insider,out-of-sync← false

stA ←$AOSanKey()

b∗ ←$AOSnd,ORcv,OSan(stA)

return b = b∗

OSanKey()

insider← true

return chkey

OSnd(mode0,m0,mode1,m1)

if |m0|∀ ̸= |m1|∀ then return ⊥
if insider and (m0

auth,m
0
plain) ̸= (m1

auth,m
1
plain) then return ⊥

(stS , c)←$ ChSend(chkey, stkey,modeb, stS ,m
b)

ctrS ← ctrS + 1, C[ctrS]← {c}, M[ctrS]← (msec,mauth)

return c

OSan(c,Mod
0,Mod

1)

if insider or Mod
0,Mod

1 /∈MOD or Mod
0,Mod

1 not length-equivalent then return ⊥
(stSan, cSan)← ChSanit(chkey, stSan, c,Mod

b)

for i = 1 to ctrS do if c ∈ C[i] then C[i]← C[i] ∪ {cSan}
return cSan

ORcv(c)

ctrR ← ctrR + 1, (stR,m)← ChRcv(chkey, stkey, stR, c)

if m = (msec,mconf,mauth,mplain) ̸= ⊥ then

if insider then

if ctrR > ctrS or (msec,mauth) /∈ {M[ctrR], (⋄|msec|, ⋄|mauth|)} then out-of-sync← true

else

if ctrR > ctrS or c /∈ C[ctrR] then out-of-sync← true

if out-of-sync and b = 0 then return m

return ⊥

Figure 3: IND-CCA notion for sanitizable stealth channels

.

25

The second security mode covers insider attacks, i.e., where the adversary is the sanitizer. In this case,
however, the adversary is only allowed to query the sending oracle for message pairs with equal mauth and
mplain parts, because the sanitizing adversary may access these parts in clear. Another modi�cation to the
other case is that now the adversary is supposed to learn the secret bit b if it manages to make the receiver
output a di�erent (msec,mauth) pair than the intended one and thus break integrity as a sanitizer.3

We remark that the stealthiness of our key exchange protocol actually allows us to show a stronger
notion for our sanitizable channel. Inheriting this from the key exchange step, knowledge of the channel
key does not allow to deduce if a stealth key has been established or not. In this sense, even the sanitizer
may not know if the sender has actually sent the con�dential part (msec,mconf) or merely put random
bits (when given the length information ℓsec, ℓconf instead). We thus allow the adversary to also pass the
operation mode mode0,mode1 ∈ {regular, stealth} when requesting the encryption of a message pair m0,m1

to the left-or-right sender oracle. Since the adversary can control the mode via the send oracle we always
let key generation run in mode stealth in the attack.

Since we opted for the receiver to not know in advance if the sender uses the stealth transportation, we
need to account for another potential attack when the adversary is the sanitizer. Namely, the adversary
may simply use the channel key chkey and overwrite any information protected under the stealth key
stkey. Hence, we exclude this from happening by requiring the adversary to create a new pair (msec,mauth)
di�erent from (⋄∗, ⋄∗).

Definition 6.1 (IND-CCA) For a MOD-sanitizable stealth channel CH = (ChKGen,ChSend,ChRcv,
ChSanit) and an adversary A let

AdvIND-CCACH,A,MOD := Pr
[
ExpIND-CCACH,A,MOD = 1

]
− 1

2

for the experiment ExpIND-CCACH,A,MOD in Figure 3.

With the usual asymptotic requirement we would now demand that the advantage of every e�cient adver-
sary A is negligible.

6.3 Construction

We next describe the construction of a sanitizable (stealth) channel. It is based on any authenticated
encryption schemes with associated data, with some mild additional requirements for the AEAD scheme.
As mentioned before, our construction does not support con�dential-only message parts mconf such that
we omit this part here (and also omit putting an empty message symbol ϵ for sake of simplicity).

Authenticated Encryption with Associated Data. An authenticated encryption scheme with associ-
ated data (AEAD) [Rog02] consists of three e�cient algorithms, AEKGen for key generation, AEEnc for en-
cryption and AEDec for decryption. The encryption and decryption algorithm take as input a uniformly dis-
tributed key key←$ AEKGen() from some key space K. In addition, the encryption algorithm takes a nonce
value nonce, associated data AD, and a message m. It returns a ciphertext c← AEEnc(key, nonce,AD,m).
The decryption algorithm takes as input a nonce nonce, associated data AD, and a ciphertext, and outputs
a message m or an error symbol.

We assume that both encryption and decryption are deterministic. Furthermore there is a length
function AElen(|m|) which determines the ciphertext output length of AEEnc given the input-message length
only. It is convenient for us to de�ne the inverse length function as well, stating that AElen−1(AElen(ℓ)) = ℓ

3Noteworthy, this rather resembles message integrity than ciphertext integrity for this inner message part. This is inevitable
for a general de�nition since the outer ciphertext is under control of the sanitizer.

26

for any input message of length ℓ. We note that these are all properties which Rogaway [Rog02] already
assumes as well, and that schemes like GCM and ChaChaPoly obey.

We use Rogaway's original security de�nitions for AEAD schemes [Rog02]. The �rst one is IND$-CPA
which states that the adversary cannot distinguish ciphertexts AEEnc(key, nonce,AD,m) ∈ {0, 1}AElen(|m|)

from random strings c ←$ {0, 1}AElen(|m|). Formally we can capture this via an experiment ExpIND-$CPAAEAD,A
by picking a key key ←$ AEKGen() and a secret bit b ←$ {0, 1}, and giving an adversary A oracle access
to AEEnc(key, · · ·) if b = 0, or to the random sampler if b = 1, allowing multiple and adaptive queries
(nonce,AD,m). The experiment outputs 1 if the adversary predicts b. Let

AdvIND$-CPAAEAD,A := Pr
[
ExpIND$-CPAAEAD,A

]
− 1

2
.

The other security property de�ned by Rogaway [Rog02] is (ciphertext) integrity. The corresponding
experiment ExpINT-CTXTAEAD,A again picks a key key ←$ AEKGen(), and the allows the adversary to query
(nonce,AD,m) to an encryption oracle. The goal of the adversary is to output a valid ciphertext c and
values nonce,AD such that AEDec(key, nonce,AD, c) ̸= ⊥ but such that c was never a response to an
encryption query (nonce,AD,m). Let

AdvINT-CTXTAEAD,A := Pr
[
ExpINT-CTXTAEAD,A

]
.

In our proofs we use the fact that we can also consider an adversary which outputs a sequence of q potential
forgeries, (noncei,ADi, ci) and wins if one of these ciphertexts is valid and has not been a response to an
encryption query before. Shrimpton [Shr04] shows that this increases the advantage by a factor of at most
q.

Sanitizable Channel. We next describe our sanitizable channel protocol. The formal description ap-
pears in Figure 4. The idea is to use the stealth key stkey within the AEAD scheme to protect con�dentiality
and integrity of msec; if there is no stealth key then the sender simply puts random bits. In case of a stealth
key we protect the integrity of mauth by including this message part in the authenticated associated data
for encrypting msec. As a nonce we use a counter value. Denote the resulting ciphertext part by csec.

We will use a counter to update the nonces for the encryption steps. Since the sender and the sanitizer
share the channel key chkey, and the sanitizer may re-encrypt the data, we use a one-bit pre�x and 0∥ctr if
the sender needs a nonce, and 1∥ctr for the sanitizer. We note that for TLS 1.3 encryption and decryption
use a random o�set which can be considered to formally be a part of the key (such that the encryption and
decryption process �rst xor the o�set to the counter value). For sake of compatibility we also use a one-bit
pre�x 0∥ctr for the nonce of the inner stealth encryption, although we never need 1-pre�xes anywhere.

Finally, the message parts mauth and mplain are added to csec in plain. Then we use the channel key
chkey, known also by the sanitizer, to encrypt the �message� (csec,mauth,mplain) under chkey for associated
data AD and extended counter value 0∥ctr. Note that the sanitizer can access the encapsulated �message�
if it knows the correct counter value and associated data. For the associated data we assume that they are
computable from the length of the input message resp. recoverable from the length of the ciphertext. This
matches the approach in the TLS 1.3 record protocol where the associated data consists of constants and the
length of ciphertext. Formally, we thus have a function AD← ad(|m|) for encryption and AD← ad−1(|c|)
with the idea that ad(|m|) = ad−1(|c|) for any valid ciphertext c for the message m.

Once the outer encryption is undone with the help of chkey, the sanitizer can apply arbitrary operations
on mplain. The modi�cation options are described the admissible operations Mod, forming the setMOD.
We note that the sanitizer re-encrypts the entire message, consisting of the unaltered csec and mauth, and
the modi�ed mplain part with the AEAD scheme for key chkey, counter value 1∥ctr, and associated data
AD.

27

ChKGen(mode)

chkey←$ AEKGen()

stkey←$ AEKGen()

if mode ̸= stealth then stkey← ⊥
stS , stR, stSan ← 0

return

(chkey, stkey, stS , stR, stSan)

ChSend(chkey, stkey,mode, stS ,m)

m = (msec,mauth,mplain)

stS ← stS + 1

if stkey ̸= ⊥ and mode = stealth then

csec ← AEEnc(stkey, 0∥stS ,mauth,msec)

else

csec ←$ {0, 1}AElen(|msec|)

mstealth ← (csec,mauth,mplain)

AD← ad(|mstealth|)
c← AEEnc(chkey, 0∥stS ,AD,mstealth)

return c

ChSanit(chkey, stSan, c,Mod)

if stSan = ⊥ or Mod /∈MOD then return ⊥
AD← ad−1(|c|)
stSan ← stSan + 1

mstealth ← AEDec(chkey, 0∥stSan,AD, c)
if mstealth = ⊥ then

stSan ← ⊥
return ⊥

msan ←Mod(mstealth)

AD← ad(|msan|)
cSan ← AEEnc(chkey, 1∥stSan,AD,msan)

return cSan

ChRcv(chkey, stkey, stR, c)

if stR = ⊥ then return ⊥
stR ← stR + 1

AD← ad−1(|c|)
m← AEDec(chkey, 0∥stR,AD, c)
if m = ⊥ then

m← AEDec(chkey, 1∥stR,AD, c)
if m = ⊥ then

stR ← ⊥
return ⊥

m = (csec,mauth,mplain)

if stkey ̸= ⊥ then

msec ← AEDec(stkey, 0∥stR,mauth, csec)

else

msec ← ⊥
if msec = ⊥ then

msec ← ⋄AElen
−1(|csec|)

mauth ← ⋄|mauth|

return (msec,mauth,mplain)

Figure 4: Sanitizable Channel Protocol based on AEAD scheme.

The receiver will try both possibilities to decrypt, under counter value 0∥stR (for sender ciphertexts)
and 1∥stR (for sanitized ciphertexts), and work with the message for which decryption succeeds. We remark
that for a random ciphertext decryption will fail with overwhelming probability such that, strictly speaking,
our scheme has a negligible decryption error. If both decryptions fail then the receiver closes the channel
by setting stR ← ⊥. Note that, by construction, our solution thus requires that the counter value of the
sanitizer and the receiver are in sync. This means that the sanitizer in our solution needs to at least learn
about each ciphertext sent to the receiver.

6.4 Security Proof

We next show security of our construction for arbitrary modi�cations on the plain part mplain. That is, we
consider the set

MODplain =
{
Mod

∣∣Mod(msec,mauth,mplain) = (msec,mauth,m
′
plain)

}
.

28

Recall that the security experiment requires the modi�cation to be length-preserving, meaning here that
the modi�ed message m′

plain needs to be as long as mplain.

Theorem 6.2 The sanitizable channel protocol in Figure 4 is an IND-CCA secure MODplain-sanitizable

stealth channel if the AEAD scheme AEAD is IND$-CPA and INT-CTXT. More precisely, for any adversary

A against the sanitizable stealth channel, making in total at most q queries to the sanitization and receiver

oracle, there exist adversaries Bout, Cout, Bin, and Cin (with roughly the same running time as A) such that

AdvIND-CCACH,A ≤ 2q ·AdvINT-CTXTAEAD,Bout
+ 2 ·AdvIND$-CPAAEAD,Cout +

2q ·AdvINT-CTXTAEAD,Bin
+ 2 ·AdvIND$-CPAAEAD,Cin .

Proof. We distinguish between the two attack strategies, when A acts as an outsider (not requesting chkey
at the outset) resp. as an insider (learning chkey at the beginning and triggering insider to be set to true).

Outsider Attacks. We start with A mounting an outsider attack. In this case we play against the
AEAD scheme for key chkey, formally describing a reduction Bout which uses A and its attack on the
channel protocol against the INT-CTXT and IND$-CPA properties of AEAD. Our �rst step is to argue
that the adversary A can never make out-of-sync become true, unless one breaks integrity of the AEAD
scheme. Also, the adversary never manages to submit a valid ciphertext c to the sanitizer oracle which has
not been the response of the sender oracle for the same counter value. To this end we build the following
reduction Bout against INT-CTXT property of the AEAD scheme

� Algorithm Bout generates another key stkey ←$ AEKGen() and picks the challenge bit b ←$ {0, 1}
internally. Algorithm Bout also initializes the counter values stS , stR, stSan as in the scheme, and the
game's counter values ctrS , ctrR. It also initializes the arrays C[] and M[] as in the game to be
empty, and two other internal arrays Cred[] andMred[] also to be empty.

� When A makes a call (mode0,m0,mode1,m1) to its ChSend oracle then Bout simulates the oracle
as follows: Bout immediately returns ⊥ if |m0|∀ = |m1|∀ does not hold. Else it increments stS and
creates cbsec from mb

sec as in the protocol. Here, the ciphertexts may be picked randomly, if the
corresponding mode modeb equals regular. Algorithm Bout next creates the �stealthi�ed� message
mb

stealth ← (cbsec,m
b
auth,m

b
plain) and calls its encryption oracle for the unknown key chkey about nonce

0∥stS , associated data AD = ad(|mb
stealth|), and the message mb

stealth to get a ciphertext c. It returns
this ciphertext c to A, increments ctrS and stores c in C[ctrS] as well as the message mb

stealth in
M[ctrS].

� When A calls the sanitize oracle about a ciphertext c and modi�cations Mod
0,Mod

1, then Bout
�rst increments stSan and puts (0∥stSan,AD, c) for AD ← ad−1(|c|) as a potential forgery in its list.
Then Bout checks that c = C[stSan]. If not, then B aborts. Else it recovers m ← M[stSan], applies
msan ← Mod

b(m), and calls its encryption oracle about (1∥stSan,AD,msan) for AD ← ad(|msan|) to
get a ciphertext cSan. It returns cSan to A and stores cSan in Cred[stSan] and msan inMred[stSan].

� When A calls the receiving oracle about a ciphertext c then Bout �rst checks that stR ̸= ⊥ and then
increments stR. Then it checks if c is in C[stR] and, if so sets m←M[stR]. Else it checks if c equals
Cred[stR] and, if so, set m ← Mred[stR]. In any other case it sets m ← ⊥ and continues as in the
game. In any case it adds (0∥stR,AD, c) and (1∥stR,AD, c) for AD← ad−1(|c|) to its list of potential
forgeries.

29

This concludes the description of our adversary B. We note that for A to make out-of-sync = true as
an outsider, it needs to provide a ciphertext c sent to the receiver oracle which has not been created for
the counter value by the sender nor by the sanitizer. Here we use the fact that the local counter values
correspond exactly to the game's values ctrS and ctrR. Analogously, a new valid ciphertext c submitted
to the sanitizer would equally be found by Bout. It follows that Bout will capture such a forgery (for empty
associated data) in its list of at most 2q decryption processes, and thus succeeds in its integrity experiment
with the same advantage as A does in triggering out-of-sync = true, times 2q.

With the above reduction we now have that A never makes the receiver oracle return anything but ⊥.
We can thus easily simulate this oracle from now on. Accordingly, we can always �nd the correct message
m inM[stSan] for sanitizing the ciphertext, such that we do not need access to the decryption function for
key chkey anymore in the entire attack. The next step is now obvious and uses the IND$-CPA property:
Whenever the game is now supposed to create a ciphertext under key chkey, we sample a uniform bit string
of the corresponding length instead. We can easily turn this into a reduction Cout with oracle access to the
encryption function or the random sampler. We skip the details since they are straightforward.

In this �nal game the adversary A is now perfectly oblivious about the secret bit b and cannot do better
than guessing.

Insider Attacks. We next consider the case that the adversary A asks for the channel key chkey at the
beginning of the experiment and makes insider being set to true. The strategy is identical to the outsider
case. We �rst show, via a reduction Bin to the INT-CTXT property of the AEAD scheme for key stkey,
that the adversary A cannot make out-of-sync being set to true via �bad� decryption queries. Note that
we do not need to take care of the decryption queries in the sanitization step, because this only involves the
channel key chkey known by Bin. Furthermore, the admissible modi�cationsMOD only a�ect the public
part mplain. In more detail:

� Algorithm Bin generates the channel key chkey ←$ AEKGen() itself and also selects the random
challenge bit b ←$ {0, 1}. It initializes the counter values stS , stR, stSan as in the scheme, and the
counter values ctrS , ctrR, as well as the arrays C[] andM[].

� When A queries its send oracle about (mode0,m0,mode1,m1) then Bin uses its encryption oracle to
compute csec (or, samples it at random if modeb = regular) and proceeds otherwise as in the game.
It stores the �nal intermediate ciphertexts csec in Cred[stS] and the original input message mb in
Mred[stS].

� If A calls the sanitization oracle about a ciphertext c and two operations Mod
0,Mod

1, then Bin
simply executes the protocol steps with knowledge of chkey. Note that this is possible since all
operations can be carried out on the plain part mplain. Furthermore, the csec part remains unchanged
forMODplain.

� When A calls the receiving oracle about c then Bin runs the �rst steps according to the protocol. In
particular,it obtains a message mstealth = (csec,mauth,mplain). If csec does not match C[stR] then Bin
outputs the tuple (0∥stR,mauth, csec) to its list of potential forgeries and sets stR ← ⊥ and returns
⊥. Else, if the value matches, then Bin looks up msec inM[stR] and uses this value to complete the
steps of the receiving oracle.

Our adversary Bin perfectly simulates the game for A, up to a step where A potentially forces a valid
forgery csec in the receiving oracle. However, in order to make out-of-sync = true, the adversary would
need to make (msec,mauth) to deviate from the stored values (or use a fresh counter value). In either case
the inner ciphertext must be valid or else msec,mauth ∈ ⋄∗ and the event is not triggered. If the counter

30

value is new or mauth as the associated data is new, we immediately get a contradiction to the integrity
game. If only msec is new, then by the completeness of the AEAD scheme the ciphertext part csec cannot
match the value stores in C[stR] for the original message. Hence, this also breaks integrity.

The �nal step, now that we eliminated each application of the decryption key stkey through lookups
or by using ⊥, we can once more give a reduction Cin to the IND$-CPA property of the encryption part
AEEnc(stkey, · · ·). In this step we exploit the fact that for insiders the parts (m0

auth,m
0
plain) = (m1

auth,m
1
plain)

must be equal such that Cin can simulate this part without knowledge of the challenge bit b. □

6.5 Read-Only Access in the Record Protocol by TLS

In this section we argue that a read-only sanitizer, i.e., which may access mstealth but does not modify it
to any msan, can be easily embedded into the TLS 1.3 record protocol. Note that we can enforce read-only
access by putting covertly sent data in msec and immutable parts inmauth according to out terminology,
letting the receiver only accept empty mplain-parts.

Recall that TLS 1.3 uses random o�sets client_write_iv resp. server_write_iv which are added
to the counter value and then used as nonce. Formally, we assume that these o�sets are part of the keys
chkey resp. stkey �which indeed coincides with the key deriviation process in the TLS 1.3 handshake. In
this sense it is understood that the authenticated encryption for the extended key (key, offset) encrypts as
AEEnc(key, nonce⊕ offset,AD,m) and decryption works correspondingly. Note that since the nonce values
are under adversarial control in the AEAD security experiments anyway, this does not weaken the security
of the AEAD scheme.

Next, recall that the TLS 1.3 record protocol uses as associated data the concatentation of the con-
stant ContentType opaque_type = application_data; /* 23 */ and the constant ProtocolVersion

legacy_record_version = 0x0303;, followed by the (expected) length of the ciphertext in bytes. Hence,
given the message for encryption one can deduce the ciphertext length, and given the ciphertext length the
value is readily available anyway. We can therefore easily de�ne our functions ad and ad−1 for computing
the associated data from the message resp. ciphertext length, as required by our scheme.

Finally, note that for read-only sanitizers we can omit the pre�x bit 0 or 1 for the counters and work
with the plain counter value directly when encrypting and decrypting. This does not weaken the overall
security of our channel protocol if the sanitizer only has rad-only access and can never modi�es the message
mstealth. It follows that the outer channel encryption in our general scheme, with the choices above, is a
valid TLS 1.3 record protocol message.

There are, however, two things to consider regarding the length of the nested ciphertext c. First note
that, compared to subliminal communication, an outsider can observe that ciphertexts in this version are
longer than when using the original record protocol. As explained inthe introducton, we do not aim to hide
this fact. Secondly, TLS 1.3 sets an upper bound of 214 +256 bytes for the length of ciphertexts, requiring
that input messages are of at most 214 bytes (or else need to be fragmented) [Res18]. This needs to be
taken into account with the ciphertext expansion due to the double encryption here. Indeed, we need to
make sure that the combined length of (csec,mauth) is at most 214 bytes, resulting in an overall bound of
214 − 256 for msec and mauth and possibly further fragmentations. Let us stress once more that our goal
is not to hide the fact that we are using the stealth channel. If this is obeyed, then c is a perfectly legit
TLS 1.3 record protocol ciphertext which supports read-only access for the sanitizer.

7 Towards Integration into Intrusion Detection Systems

In this section we describe how one can use our sanitizable channels in combination with a network intrusion
detection and prevention system like the well-known open-source system Snort (https://www.snort.org/).
We assume that the keys have already been established, as described in Section 6.1 about setting up the

31

Figure 5: IDS checking HTTP header information in sanitizable channel.

sanitizable channel. The reader may for now think of the intrusion detection system using a static Di�e-
Hellman key which the receiver obtains when logging into the local network, and which is then used in the
stealth key exchange step to establish the channel key (accessible also by the intrusion detection system).
The stealth key is only available to the sender and receiver.

Snort in version 3 comes with a set of 4, 031 prede�ned rules, called the Community Ruleset. This set
is updated frequently, we refer here to the one of February 6th, 2023. The rules allow to detect malicious
network behavior of various types. As an example, consider the rule with identi�er sid 26261 for detecting
potential phishing attacks (parts omitted for readability):

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg: ←↩
"MALWARE-OTHER Fake postal receipt HTTP Response phishing attack"; ←↩
flow:to_client,established; http_header; content: ←↩
"|3B 20|filename=Postal-Receipt.zip|0D 0A|",fast_pattern,nocase; ←↩
... classtype:trojan-activity; sid:26261; rev:3;)

The rule checks if the incoming network tra�c on HTTP ports contains suspicious �le names in the
HTTP header. The HTTP header contains meta-information about the actual HTTP content and the
sending party. In secured HTTPS connections the header is also encrypted and thus inaccessible to an
intrusion detection system like Snort.

With our sanitizable channel protocol, combined with the stealth key exchange, we could give Snort
as the sanitizer access to the HTTP header information (and similar meta-data such as the HTTP status
code and URI) by placing this information into the mplain-part or mauth-part, protected under the channel
key chkey shared also with the sanitizer. We put the HTTP content into the inner msec-part, protected by
the outer channel key chkey as well as the inner stealth key stkey only known by the sender and receiver
(see Figure 5). Then Snort can access the header information and apply quali�ed rules, whereas the actual
HTTP content remains hidden from Snort. From the outside, the communication still appears to be a valid
HTTPS resp. TLS connection, integrating smoothly into existing network environments.

To estimate the usefulness we note that the Community Ruleset currently lists roughly half of the rules
with reference to HTTP �elds http_* (altogether 2, 011 rules). Of this set, 470 rules use the http_header
�eld and no reference to the body http_client_body. If we also grant Snort access to other HTTP data

32

such as the URI in outgoing tra�c via the http_uri �ag, or the http_cookie �ag for Cookie header
information, then the coverage increases signi�cantly. Among the Community Ruleset, 1, 776 rules include
one of the http_* �elds without listing http_client_body. These are 44% of all rules and 88% of all
HTTP-related rules.

The solution still comes with some inconveniences, though. First of all, one carefully needs to evaluate if
revealing the HTTP information to Snort is admissible. Secondly, scanning the content is still not possible.
Third, HTTPS currently does not di�erentiate between con�dentiality levels for the HTTP parts and one
would thus need to change the protocol in order to accommodate the speci�cation of di�erent con�dentiality
levels for data.

8 Conclusion

Our results show that, with some extra e�ort, existing cryptographic mechanisms can be enhanced to
enable further features. As for the overhead, we note that we did some initial experiments for the stealth
key exchange on commodity hardware. The computational costs in our experiments went up by roughly a
factor 2.5 compared to the plain TLS 1.3 handshake protocol. This matches the expected overhead from
theory, since one runs roughly two TLS key exchanges, plus Elligator needs two attempts to �nd a suitable
point on the average, plus inversion time for the embedding. Based on the results in [PST20] about using
post-quantum primitives in TLS connections for various network settings, it is plausible that the common
network latency will also level out the slowdown due to our stealth computations.

We stress again that the changes to achieve stealthiness in TLS 1.3 require protocol modi�cations at the
end points but not on the network layer. That is, the protocol is fully compatible with common TLS 1.3
network tra�c. Still, integrating the sanitizable channel to enable HTTPS scanning as explained in Sec-
tion 7 asks for modi�cations on the application-channel interface, for both the HTTPS part�semantically
labeling header and body data� as well as on the TLS channel side, processing the di�erent inputs parts
accordingly. This certainly poses further engineering challenges. It is, however, beyond our cryptographic
treatment here, showing that a graceful access, being fully under control of the sending party, is crypto-
graphically possible.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) � SFB 1119 �
236615297 and by the German Federal Ministry of Education and Research and the Hessian Ministry of
Higher Education, Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

References

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signa-
tures. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors,
ESORICS 2005, volume 3679 of LNCS, pages 159�177. Springer, Heidelberg, September 2005.

[AFQ+14] Diego F. Aranha, Pierre-Alain Fouque, Chen Qian, Mehdi Tibouchi, and Jean-Christophe
Zapalowicz. Binary elligator squared. In Antoine Joux and Amr M. Youssef, editors, SAC
2014, volume 8781 of LNCS, pages 20�37. Springer, Heidelberg, August 2014.

[AP98] Ross J. Anderson and Fabien A. P. Petitcolas. On the limits of steganography. IEEE J. Sel.

Areas Commun., 16(4):474�481, 1998.

33

[BBD+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: Taming the composite state machines of TLS. In 2015 IEEE

Symposium on Security and Privacy, pages 535�552. IEEE Computer Society Press, May
2015.

[BC05] Michael Backes and Christian Cachin. Public-key steganography with active attacks. In
Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 210�226. Springer, Heidelberg,
February 2005.

[Ber06] Daniel J. Bernstein. Curve25519: New Di�e-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages
207�228. Springer, Heidelberg, April 2006.

[BFK16] Karthikeyan Bhargavan, Cédric Fournet, and Markulf Kohlweiss. mitls: Verifying protocol
implementations against real-world attacks. IEEE Secur. Priv., 14(6):18�25, 2016.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-
curve points indistinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 967�980. ACM Press, November
2013.

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably re-
pairing the SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-mac paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206�241, 2004.

[BL18] Sebastian Berndt and Maciej Liskiewicz. On the gold standard for security of universal
steganography. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,

Part I, volume 10820 of LNCS, pages 29�60. Springer, Heidelberg, April / May 2018.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO'93, volume 773 of LNCS, pages 232�249. Springer, Heidelberg,
August 1994.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1773�1788. ACM Press, Octo-
ber / November 2017.

[CHSv16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated analysis
and veri�cation of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016 IEEE

Symposium on Security and Privacy, pages 470�485. IEEE Computer Society Press, May
2016.

[Cra98] Scott Craver. On public-key steganography in the presence of an active warden. In David
Aucsmith, editor, Information Hiding, Second International Workshop, Portland, Oregon,

USA, April 14-17, 1998, Proceedings, volume 1525 of Lecture Notes in Computer Science,
pages 355�368. Springer, 1998.

[CSFP20] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. Sok: Understanding the pre-
vailing security vulnerabilities in trustzone-assisted TEE systems. In 2020 IEEE Symposium

on Security and Privacy, SP 2020, pages 1416�1432. IEEE, 2020.

34

[dCdCM16] Xavier de Carné de Carnavalet and Mohammad Mannan. Killed by proxy: Analyzing client-
end TLS interce. In 23nd Annual Network and Distributed System Security Symposium,

NDSS. The Internet Society, 2016.

[dCdCvO20] Xavier de Carné de Carnavalet and Paul C. van Oorschot. A survey and analysis of TLS
interception mechanisms and motivations. CoRR, abs/2010.16388, 2020.

[DDGJ22] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. On the concrete security of
TLS 1.3 PSKmode. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,

Part II, volume 13276 of LNCS, pages 876�906. Springer, Heidelberg, May / June 2022.

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 1197�1210. ACM Press, October 2015.

[DFGS21] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, October 2021.

[DFK+17] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko, Aseem
Rastogi, Nikhil Swamy, Santiago Zanella-Béguelin, Karthikeyan Bhargavan, Jianyang Pan,
and Jean Karim Zinzindohoue. Implementing and proving the TLS 1.3 record layer. In 2017

IEEE Symposium on Security and Privacy, pages 463�482. IEEE Computer Society Press,
May 2017.

[DG21] Hannah Davis and Felix Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In Kazue Sako and Nils Ole Tippenhauer, editors, Applied Cryptography and

Network Security (ACNS), 2021, volume 12727 of Lecture Notes in Computer Science, pages
448�479. Springer, 2021.

[DHO16] Ivan Damgård, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing
information �ow with cryptography. In Martin Hirt and Adam D. Smith, editors, TCC 2016-

B, Part II, volume 9986 of LNCS, pages 547�576. Springer, Heidelberg, October / November
2016.

[DIRR09] Nenad Dedic, Gene Itkis, Leonid Reyzin, and Scott Russell. Upper and lower bounds on
black-box steganography. Journal of Cryptology, 22(3):365�394, July 2009.

[DJ21] Denis Diemert and Tibor Jager. On the tight security of TLS 1.3: Theoretically sound
cryptographic parameters for real-world deployments. Journal of Cryptology, 34(3):30, July
2021.

[FF15] Victoria Fehr and Marc Fischlin. Sanitizable signcryption: Sanitization over encrypted data
(full version). Cryptology ePrint Archive, Report 2015/765, 2015. https://eprint.iacr.

org/2015/765.

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google's QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
1193�1204. ACM Press, November 2014.

[FGKO17] Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk, and Claudio Orlandi. Access control
encryption for equality, comparison, and more. In Serge Fehr, editor, PKC 2017, Part II,
volume 10175 of LNCS, pages 88�118. Springer, Heidelberg, March 2017.

35

https://eprint.iacr.org/2015/765
https://eprint.iacr.org/2015/765

[FJT13] Pierre-Alain Fouque, Antoine Joux, and Mehdi Tibouchi. Injective encodings to elliptic
curves. In Colin Boyd and Leonie Simpson, editors, ACISP 13, volume 7959 of LNCS, pages
203�218. Springer, Heidelberg, July 2013.

[GAZ+21] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Wal�sh. Zero-knowledge
middleboxes. IACR Cryptol. ePrint Arch., page 1022, 2021.

[GDH+17] Matthew Green, Ralph Droms, Russ Housley, Paul Turner, and Steve Fenter. Data Center
use of Static Di�e-Hellman in TLS 1.3. Internet-Draft draft-green-tls-static-dh-in-tls13-01,
Internet Engineering Task Force, July 2017. Work in Progress.

[HNCB11] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar, and Nikita Borisov. Cirripede:
circumvention infrastructure using router redirection with plausible deniability. In Yan Chen,
George Danezis, and Vitaly Shmatikov, editors, ACM CCS 2011, pages 187�200. ACM Press,
October 2011.

[Hop05] Nicholas Hopper. On steganographic chosen covertext security. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume
3580 of LNCS, pages 311�323. Springer, Heidelberg, July 2005.

[KEJ+11] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer, David Mank-
ins, and W. Timothy Strayer. Decoy routing: Toward unblockable internet communication.
In Nick Feamster and Wenke Lee, editors, USENIX Workshop on Free and Open Commu-

nications on the Internet, FOCI '11, San Francisco, CA, USA, August 8, 2011. USENIX
Association, 2011.

[KMO+15] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi.
(De-)constructing TLS 1.3. In Alex Biryukov and Vipul Goyal, editors, INDOCRYPT 2015,
volume 9462 of LNCS, pages 85�102. Springer, Heidelberg, December 2015.

[KPP+23] Mirek Kutylowski, Giuseppe Persiano, Duong Hieu Phan, Moti Yung, and Marcin Zawada.
Anamorphic signatures: Secrecy from a dictator who only permits authentication! IACR

Cryptol. ePrint Arch., page 356, 2023.

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In IEEE European

Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,

2016, pages 81�96. IEEE, 2016.

[KW17] Sam Kim and David J. Wu. Access control encryption for general policies from standard
assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 471�501. Springer, Heidelberg, December 2017.

[LK06] Tri Van Le and Kaoru Kurosawa. Bandwidth optimal steganography secure against adaptive
chosen stegotext attacks. In Jan Camenisch, Christian S. Collberg, Neil F. Johnson, and Phil
Sallee, editors, Information Hiding, 8th International Workshop, IH 2006, Alexandria, VA,

USA, July 10-12, 2006. Revised Selcted Papers, volume 4437 of Lecture Notes in Computer

Science, pages 297�313. Springer, 2006.

[Möl04] Bodo Möller. A public-key encryption scheme with pseudo-random ciphertexts. In Pierangela
Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Re�k Molva, editors, ESORICS 2004,
volume 3193 of LNCS, pages 335�351. Springer, Heidelberg, September 2004.

36

[MV04] David A. McGrew and John Viega. The security and performance of the Galois/counter
mode (GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, IN-

DOCRYPT 2004, volume 3348 of LNCS, pages 343�355. Springer, Heidelberg, December
2004.

[NSV+15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn, Diego R.
López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter Steenkiste. Multi-
context TLS (mctls): Enabling secure in-network functionality in TLS. In Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015,
pages 199�212. ACM, 2015.

[PPY22] Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic encryption: Private
communication against a dictator. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 34�63. Springer, Heidelberg,
May / June 2022.

[Pro14] Gordon Procter. A note on the CLRW2 tweakable block cipher construction. Cryptology
ePrint Archive, Report 2014/111, 2014. https://eprint.iacr.org/2014/111.

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-quantum cryp-
tography in TLS. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography

- 11th International Conference, PQCrypto 2020, pages 72�91. Springer, Heidelberg, 2020.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 2002, pages 98�107. ACM Press, November 2002.

[Shr04] Tom Shrimpton. A characterization of authenticated-encryption as a form of chosen-
ciphertext security. Cryptology ePrint Archive, Report 2004/272, 2004. https://eprint.

iacr.org/2004/272.

[Sim83] Gustavus J. Simmons. The prisoners' problem and the subliminal channel. In David Chaum,
editor, CRYPTO'83, pages 51�67. Plenum Press, New York, USA, 1983.

[SLPR15] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep packet
inspection over encrypted tra�c. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM 2015, pages 213�226. ACM, 2015.

[Tib14] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as
uniform random strings. In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC 2014,
volume 8437 of LNCS, pages 139�156. Springer, Heidelberg, March 2014.

[vH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323�341. Springer,
Heidelberg, May 2004.

[WC21] Xiuhua Wang and Sherman S. M. Chow. Cross-domain access control encryption: Arbitrary-
policy, constant-size, e�cient. In 2021 IEEE Symposium on Security and Privacy, pages
748�761. IEEE Computer Society Press, May 2021.

37

https://eprint.iacr.org/2014/111
https://eprint.iacr.org/2004/272
https://eprint.iacr.org/2004/272

[WSH14] Eric Wustrow, Colleen Swanson, and J. Alex Halderman. TapDance: End-to-middle anti-
censorship without �ow blocking. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security

2014, pages 159�174. USENIX Association, August 2014.

[WWGH11] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. Telex: Anticensorship
in the network infrastructure. In USENIX Security 2011. USENIX Association, August 2011.

[WWY+12] Zachary Weinberg, Je�rey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. StegoTorus: a camou�age proxy for the Tor anonymity system.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 109�120.
ACM Press, October 2012.

A Integration into the TLS 1.3 Record Protocol

In this section we describe how one can use the stealth key exchange to derive a sanitizable channel. The full
description of the construction of the sanitizable channel and the security proofs can be found in Section 6.
In this overview we only describe a sanitizable version of the TLS 1.3 record layer in which the sanitizer
has partly access to desigated parts of the record protocol data.

Key Establishment. We assume that the sender and the receiver have executed the TLS 1.3 key ex-
change protocol. The two parties have used the stealth mode to generate a stealth key stkey in addition
to the session key chkey. This is done in such a way that the sanitizer also knows this key chkey (but
the sanitizer remains oblivious about the stealth key). One option was to let the receiver securely pass
the session key to the sanitizer upon establishment, albeit this appears to be very inconvenient in the
�rewall setting. An alternative is to let the sanitizer provide the ephemeral secret of the receiver in the
key exchange step, being able to compute chkey from the transcript of communication. This requires the
sanitizer to either communicate with the receiver while the key exchange protocol runs, or by sharing a
local key with the receiver from which the ephemeral secret is derived. Alternatively, the receiver may
re-use a sanitizer-provided ephemeral secret in multiple executions. In fact, this corresponds to the static
Di�e-Hellman share solution for TLS 1.3 [GDH+17]. The disadvantage in the latter case is that this so-
lution infringes with forward security (yet, forward security in the stealth part of the connection is still
preserved).

TLS 1.3 Record Protocol. We note that the key in TLS 1.3 consists of the actual encryption and
decryption key and a random o�set, called client_write_iv resp. server_write_iv in TLS, depending
on the direction of communication. In this sense it is understood that our derived keys chkey and stkey
both contain such a random o�set.

The key and the o�set are used to encrypt the payload message m in the TLS 1.3 record protocol via
a scheme for authenticated encryption with associated data (AEAD) [Rog02] as c ← AEEnc(key, offset ⊕
stS ,AD,m). Here, offset ⊕ stS is used as a nonce for the AEAD scheme and stS is a counter (the state
of the sender), incremented with each sent ciphertext. The associated data in TLS 1.3 are given by the
constant ContentType opaque_type = application_data (which equals 23), followed by the constant
ProtocolVersion legacy_record_version = 0x0303, followed by the (expected) length of the ciphertext
in bytes. The latter can be derived from the length of the input messagem for the suggested AEAD schemes.
To decrypt the receiver calls m← AEDec(key, offset⊕ stR,AD,m) where stR is the current counter value of
the receiver (incremented, too, after successful decryption) and AD is given by the constants and ciphertext
length as for encryption.

38

Partly Accessible Channel. We can now proceed as follows to build the stealth channel. Recall that
sender, receiver, and sanitizer all share the session key chkey (including the o�set choffset), but only sender
and receiver know the stealth key stkey (with its own o�set stoffset). We assume that we have a message
part msec which should be sent con�dentially between sender and receiver, and a part mplain which should
only be accessible by the sanitizer (but not to outsiders). We now use a nested encryption, encrypting the
msec-part under the stealth key and then the derived ciphertext together with mplain under the channel
key:

csec ← AEEnc(stkey, stoffset⊕ stS ,AD,msec)

c← AEEnc(chkey, choffset⊕ stS ,AD
′, (csec,mplain))

Here AD and AD′ are the corresponding associated data.
We note that, with this construction, the sanitizer may alter themplain-part. If we want to give read-only

access to the message part, then we put mplain into the associated data (AD,mplain) in the inner encryption.
Since the associated data are authenticated via the stealth key stkey, the sanitizer cannot modify mplain

without the receiver detecting modi�cations of mplain. In fact, this means we rather put the accessible part
in mauth and leave mplain empty, according to the terminology of message parts in sanitizable channels in
Appendix 6. From now on we will hence use the term mauth for the read-only accessible part.

The sender then transmits c. The receiver and the sanitizer can individually recover (csec,mauth) with
the help of chkey. The sanitizer can check the information in mauth, but only the receiver is able to also
recover the message msec from csec with the help of stkey. If mauth is part of the associated data in csec,
then the receiver can also check its integrity. We note that outsiders, which do not know chkey, cannot
access either of the two parts.

There are two things to consider regarding the length of the nested ciphertext c. First note that,
compared to subliminal communication, an outsider can observe that ciphertexts in this version are longer
than when using the original record protocol. As explained inthe introducton, we do not aim to hide this
fact. Secondly, TLS 1.3 sets an upper bound of 214 + 256 bytes for the length of ciphertexts, requiring
that input messages are of at most 214 bytes (or else need to be fragmented) [Res18]. This needs to be
taken into account with the ciphertext expansion due to the double encryption here. Indeed, we need to
make sure that the combined length of (csec,mauth) is at most 214 bytes, resulting in an overall bound of
214 − 256 for msec and mauth and possibly further fragmentations. Let us stress once more that our goal
is not to hide the fact that we are using the stealth channel. If this is obeyed, then c is a perfectly legit
TLS 1.3 record protocol ciphertext which supports read-only access for the sanitizer.

39

	Introduction
	The Approach
	Applications
	Security of Stealth Key Exchange
	Stealth TLS 1.3
	Sanitizable Channel Protocols

	Related Work
	Steganography
	Embeddings
	Analyses of TLS 1.3
	Middleboxes
	Anti-censorship
	Anamorphic Encryption
	Sanitizable Cryptography

	Security Model for Stealth Key Exchange
	Attack Model
	Security Requirements

	Stealth TLS Version
	Protocol Description
	Embedding
	Advanced Security Features

	Security Proof of Stealth TLS 1.3
	Session Matching
	Indistinguishability

	Sanitizable Stealth Channels
	Preliminaries
	Security Model
	Construction
	Security Proof
	Read-Only Access in the Record Protocol by TLS

	Towards Integration into Intrusion Detection Systems
	Conclusion
	Integration into the TLS 1.3 Record Protocol

