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Abstract. Stake-based multiparty cryptographic primitives operate in
a setting where participants are associated with their stake, security is ar-
gued against an adversary that is bounded by the total stake it possesses

—as opposed to number of parties— and we are interested in scalability,
i.e., the complexity of critical operations depends only logarithmically in
the number of participants (who are assumed to be numerous).
In this work we put forth a new stake-based primitive, stake-based thresh-
old multisignatures (STM, or “Mithril” signatures), which allows the ag-
gregation of individual signatures into a compact multisignature pro-
vided the stake that supports a given message exceeds a stake threshold.
This is achieved by having for each message a pseudorandomly sampled
subset of participants eligible to issue an individual signature; this en-
sures the scalability of signing, aggregation and verification.
We formalize the primitive in the universal composition setting and pro-
pose efficient constructions for STMs. We also showcase that STMs
are eminently useful in the cryptocurrency setting by providing two
applications: (i) stakeholder decision-making for Proof of Work (PoW)
blockchains, specifically, Bitcoin, and (ii) fast bootstrapping for Proof of
Stake (PoS) blockchains.

1 Introduction

A wide class of multiparty cryptographic protocols is currently considered in the
stake-based setting, where a public-key directory of n keys associates each key
mvki with a real number si, — the key’s stake. In the stake-based setting, the
adversary has a corruption bound expressed in terms of total stake controlled —
rather than number of keys or identities — and the complexity metrics of the
protocol aim to scale with logN rather than N .

While any standard “key-based” multiparty protocol can be trivially ported
to the stake-based setting by “flattening” out the stake distribution and associ-
ating each unit of stake (aka coin) to a distinct cryptographic key, the result-
ing constructions are typically extremely inefficient. Motivated by advances in
blockchain technology, an array of recent protocol design efforts have focused on
the topic of native stake-based design, with prominent examples in the area of



consensus protocols, e.g., Algorand [17] and the Ouroboros protocols [39, 37, 19],
and more recently secure multiparty computation [7, 18].

Pushing the state of the art forward in this direction, this work puts forth
stake-based threshold multisignatures (STM).

– First, in an STM, as in a threshold signature, a quorum of signers is required
to engage, in order for a signature to be produced. However, in line with the
stake-based setting, that threshold is expressed in terms of stake rather than
a number of keys or identities.

– Second, in an STM, as in a multisignature, signers can act independently
and sign messages that can be individually verified. When they do sign the
same message, their individual signatures can be aggregated as long as they
exceed the agreed threshold. The aggregate can be verified with respect to
a global key that represents the whole stakeholder set.

– Third, in an STM, in line with the scalability objective of the stake-based set-
ting, we want the operations of issuing a signature, aggregation of individual
signatures and verification to depend logarithmically in n.

Beyond the theoretical interest in designing such a cryptographic scheme,
STMs constitute an eminently useful primitive in the setting of cryptocurrencies.
Specifically, by associating an STM key to their cryptocurrency account, it is
possible for the set of owners of a cryptocurrency to certify any specific message
in a collective manner. Observe that all three properties identified above are
essential in the cryptocurrency setting. First, by imposing a stake threshold,
e.g., 1/2 or 2/3, we ensure that the majority or supermajority of stakeholders
endorse the message. Second, by allowing stakeholders to sign in an individually
verifiable manner, we allow signed messages to be collected over a public peer-
to-peer network while preventing DoS attacks. Third, logarithmic dependency
in n, ensures the scalability of the operation even for billions of stakeholders.

STMs can have profound implications in the topic of blockchain governance,
(e.g., it is possible for all Bitcoin holders to ratify a particular software upgrade)
but also other applications such as fast blockchain bootstrapping of cryptocur-
rency wallets. Specifically, to articulate the latter application, in a proof-of-stake
blockchain like Cardano or Tezos, using an STM, it is possible to certify the state
of the ledger efficiently at regular intervals by creating certified checkpoints. This
can facilitate a fast bootstrapping process for a wallet application joining the
system: instead of the wallet acting as a “full node” and processing all ledger
transactions to sync up to the recent state, it can “hop” from checkpoint to
checkpoint starting from the genesis block (or the most recently known trusted
block) until the latest checkpoint is reached from which point it can process
transactions normally.

Our contributions. In more detail, our contributions are as follows.

– Formalization of the Stake-based Threshold Multisignature primitive. The
fundamental concept in achieving a scalable STM is to pseudorandomly as-
sociate with each message a sufficiently large committee drawn from the
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stakeholder distribution. For this reason, we introduce the notion of an eli-
gibility check before signing. At the same time, we also use the notion of an
index, which iterates over the available seats in the committee.
Thus, for any message msg, the STM functionality can be thought of as
initiating a lottery for each of the m available committee seats, and each
prospective signer can check to see if they win it (it is feasible for somebody
to win multiple seats). Here m is a security parameter of the primitive. Each
winning ticket can be seen as an eligibility credential allowing the party to
create a signature for msg. The probability of a ticket winning or not is
a function of the party’s stake, and it is calculated so that the party has
the same probability of winning irrespectively of how her stake is organized
(e.g., either aggregated in a single public-key or dispersed to many). Eligible
parties for a message msg are subsequently capable to create a signature.
Finally, once signatures from k different “seats” are produced, these can
be aggregated in a public manner. We present our modeling as an ideal
functionality in the universal composition (UC) setting.

– A scalable instantiation. We describe two instantiations of our primitive:
one optimized for speed and simplicity of implementation, and one that is
optimized for space. We do so in a modular way, by building two proof sys-
tems around the same relation. Our relation directly uses batch verification
for efficiency and to also enable random oracle calls to be outsourced to the
verifier. In this way, it is simple to extend our current design in view of
different requirements or assumptions.

– Efficiency Considerations and Applications. We compare the space efficiency
of our construction with that of similar primitives and describe two potential
applications in which sour design is readily applicable: We describe how STM
functionality can be integrated into bitcoin by using using pay-to-script-hash
p2sh to facilitate registration. Second, we describe how STMs can facilitate
bootstrapping in Proof of Stake (PoS) blockchains.

1.1 System Overview and Design Challenges

The operation of our primitive, Stake-based threshold multisignatures (detailed
in Sect. 3) is fairly simple: the semantics are similar to those of a standard
threshold signature scheme, while adding an eligibility predicate based on user
stake. The purpose of the predicate is to pre-emptively filter the number of users
signing each message to a quantity independent of the number of total users, and
independent of the particulars of the stake distribution.

In typical stake-based blockchain constructions, blocks are produced by turn-
ing into a verifiable or distributed randomness generation to select the users
responsible for block production, and then by having the selected users sign the
blocks. Our construction (Sect. 4) aims to instantiate our primitive by combin-
ing this random selection with the signature. To extend the lottery analogy, in
our construction the individual signatures will be at the same time their own
eligibility tickets. On top of this, we will also need a mechanism that checks that
a particular message is in fact supported by stakeholders of a sufficient amount
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of stake — a form of signature aggregation. To accomplish this, we run m inde-
pendent signing sessions in parallel and require that at least k of them result in
a successful signature, for suitable choices of the parameters k,m. Subsequently
we facilitate signatures aggregation by using them as witnesses in a properly
crafted aggregation relation.

Verifying signatures in this system would require verifiers to know the public
keys and stake held by each user, which can often be cost-prohibitive in large
communities. We formalize this requirement by requiring a key registration func-
tionality that organizes the participants’ stake; to minimize the assumptions
placed on the setup of the primitive we assume the functionality is aware of the
stake of participants and invites them to register their cryptographic keys. Upon
termination of this phase the parties can retrieve those keys and organize them
in a Merkle tree (note that this Merkle tree organization can take place as part
of a setup operation and hence need not encumber the parties computationally).

In this way, verifiers only need to be made aware of the tree root rather than
the entirety of the contents. In turn, this implies that signatures need to contain
the path to their key and stake alongside their signature and session index(es)
for which they claim they are eligible. This is still a net gain, as the length of
the Merkle tree path is only logarithmic with regard to to the number of users.

The challenging part of the design of an STM is ensuring an efficient way
exists to demonstrate correct aggregation. While using tools such as bulletproofs
[13], is compatible with our approach and can result in space efficient construc-
tions, we have to make sure that the relation we choose apply the proof system
machinery can be as compactly computed as possible. To achieve this and tak-
ing advantage of the fact that there are no privacy considerations in our setting
(hiding the set of signers is not an objective) we adopt a hybrid approach where
we allow the aggregation relation to be shown in part by direct verification and
in part by a general purpose proof system.

Taking into account all the above, one can observe that a straightforward im-
plementation of an STM would be designing aggregation around a proof where
the prover has in its possession k signatures corresponding to keys and each one
has a VRF sub-key that evaluates to a value less than a suitable threshold. Un-
fortunately this approach requires a proof system with k VRF verifications that
will not be very efficient. Instead, we exploit the fact that BLS-based MSP-PoP
signatures [10, 50] are unique, efficiently batchable and aggregateble and short.
Exploiting the uniqueness feature and combining it with a suitable mapping
based on Elligator squared [53], we are able to facilitate the calculation of a well
distributed value based on which we can check eligibility fairly (which, note, it
is based both on the stake of the user and the index of the committee seat).
Moreover, due to the batch aggregation and the short signature property, we are
able to validate the signatures with a single elliptic curve operation, outside the
proof system, while encumbering only minimally the size of the overall proof.

In a nutshell, the above technique provides a “semi-aggregateable” VUF,
where “semi” reflects the fact that we aggregated the elements that are required
for the heavier aspect of verification into a single object (now requiring a single
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pairing operation), while other elements (such as range checks for lottery deter-
mination) remain unaggregated (and hence linear in k), but their verification
can be efficiently encoded into a circuit suitable for an efficient proof system.

As an alternative, one might consider envision a different design with a unique
signature scheme optimized for efficient verification rather than aggregation or
batching. In our view, there are no simple answers to this natural question: deter-
ministic versions of standard signatures (e.g ECDSA) fall short of being unique
if the signer is free to use arbitrary randomness. RSA-based constructions en-
joy uniqueness, but are non-trivial to efficiently and map values to, if we want
to avoid direct invocation of random oracles. Finally, signature-based construc-
tions are challenging to efficiently verify in a circuit even if instantiated with an
arithmetic-friendly hash.

Armed with the above design approach, we utilize bulletproofs [13] and an
efficient arithmetic hash such as Poseidon [33] to implement the Merkle tree
resulting in a space efficient STM with length independent of k, (Sect. 4.2). For
completeness we also present a simpler instantiation (Sect 4.3) where we just use
hashing, in the random oracle model, and as a proof system, we simply reveal the
witness. Note that in both cases, we use proofs of possession to ensure resistance
to rogue key attacks.

In Section 5 we evaluate the efficiency of our construction in terms of com-
mittee size, proof sizes and an estimate for constraints on the bulletproof-based
instantiation. The number of constraints that are needed for the circuit is approx-
imately 222, and aggregate proof sizes can be as small as 4KB using Bulleproofs.
Concatenation based proofs are ca. 100-350KB in size, but are faster to verify.

In terms of applications, in Section 7 we observe that our construction can be
readily integrated into standard Bitcoin script to equip all accounts with STM
functionality. In particular, using pay-to-script-hash p2sh it is possible to en-
tangle an STM public-key to one’s address and then use the Bitcoin blockchain
as the key-registration service for our construction as described above. Subse-
quently all enabled UTXOs can engage in STM generation.

We also examine the problem of bootstrapping light clients in Proof of Stake
(PoS) blockchains. The general challenge in this setting is that the client needs
to verify the ledger upon joining the network and that block verification fun-
damentally depends on stake (so it cannot be conducted in the same way as
an SPV client in the bitcoin setting, that can just count the blocks’ aggregate
difficulty). As a result, a client bootstrapping in the PoS setting needs to fol-
low the stake as it moves between accounts to be in sync over time with the
stakeholder distribution and validate all the blocks. The amount of work to be
performed scales linearly with the number of transactions in the ledger which
can be extremely large. Using mithril, a different approach can be followed: in-
stead of verifying transactions, the stakeholders can issue checkpoints at regular
intervals using an STM signature. The client needs only to verify all checkpoints
till the most recent one after which individual blocks and transactions can be
verified sequentially. In this way the operation becomes linear in the number of
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checkpoints instead of linear in the number of transactions. The frequency of
the checkpoints can be set to be at regular intervals.
Related Work. Multisignatures, introduced in [35] enable combining multiple
signatures of the same message into one. Note that the interesting case is the
setting where verification complexity would be sublinear in the number of signers,
otherwise one can simply string all signatures together in order to obtain a
multisignature.

In [50] Ristenpart and Yilek demonstrate how proofs of possession can enable
more efficient aggregation for BLS-based constructions while avoiding “rogue-
key” attacks, in which an adversary may create a malicious key related to an
honest one with the goal that the malicious key can be used to sign a multisig-
nature over both keys.

The related but distinct primitive of threshold signatures was introduced in
[20]. In a threshold signature, there is a threshold t so that a signature only
can be produced with respect to the group key as long as t shareholders engage.
Many threshold signature schemes require a key generation protocol that requires
the coordination of the signers over a number of rounds, e.g.,[30], [52], [16].
Nevertheless it is desirable, especially in the blockchain setting, to have an ad-hoc
key generation where signers can post their keys in an asynchronous fashion and
that the subgroup which acts for a particular message is determined dynamically.

Threshold signatures and multisignatures were combined in [41] highlighting
the properties of traceability in the context of threshold signatures. The concept
of accountability, i.e., that the subgroup involved in a multisignature needs to
be reliably identified by the verifier was formalized in this context in the form
of accountable subgroup multisignatures (AMS) [45].

Ad-hoc threshold multisignatures (ATMS) were put forth in [29]. ATMS is
like a threshold signature, in the sense that a quorum of signers need to issue
“signature shares” that are subsequently combined. Signature shares however
are verifiable as signatures too and key generation is ad-hoc without requiring
coordination from participants. This allows a committee to be fixed ahead of
time whilst allowing for individual members to abstain or be unavailable for
some operations. In contrast, our notion of a “threshold” is predicated by the
stake held by each user and additionally involves random eligibility sampling to
keep participation requirements manageable. Essentially, whereas in an ATMS
scheme selecting a committee is an external operation, in STM it is (implicitly)
performed internally. This is beneficial to security (as there is no need to identify
committee members) as well as liveness: a (partly) inactive committee stops
progress in an ATMS scheme, but an STM scheme can recover by signing an
alternative message (as eligibility is pseudorandomly redistributed per message).

More recently, Micali et. al. [47] introduced compact certificate schemes which
can be seen as the stake-based version of ATMS. Compared to our primitive, they
also lack the concept of eligibility. As a result, depending on the stakeholder
distribution, a significant percentage of the user base needs to produce and
transmit their individual signatures in order for the protocol to succeed. They
do utilize sampling during aggregation however, something that enables them
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to only reveal a small number of signatures as proof of a certificate’s validity.
Interestingly, in terms of efficiency, this adaptive sampling enables the use of
a more aggressive quorum parameter, producing certificates that are 2-3 times
smaller than our concatenation-based instantiation, with similar asymptotics.
On the other hand, as expected, our construction compares very favourably in
terms of scalability of the communication costs and aggregation effort as only
a small subset of users is involved in signature production. We also implement
STMs using bulletproofs for the proof system, something that squashes the proof
length (at the cost of higher computation). We note that the construction of [47]
could possibly similarly be augmented with a more compact proof system but
this is not explored in [47].

We provide a comparison with concrete numbers between the schemes in
Table 1 showcasing the scalability of STM against a naive base scheme that
concatenates signatures, the ATMS of [29] and the compact certificates of [47].

System logN = 10 logN = 13 logN = 20 logN = 30
comms size comms size comms size comms size

Baseline - Participation 64 42 512 335 64 · 210 42 · 210 64 · 220 42 · 220
ATMS [29] 48 .05 384 .05 48 · 210 .05 48 · 220 .05
CCCK [47] 64 34 512 49 64 · 210 84 64 · 220 134
PSC [Sec 4.3] 31 101 31 140 31 230 31 359
PSC CH [Sec 4.3, 5.1] 78 68 78 91 78 146 78 224
PSB [Sec 4.2] 36 4.5 36 4.7 36 5.1 36 5.6
PSB CH [Sec 4.2, 5.1] 89 4.3 89 4.4 89 4.6 89 4.9
Baseline - Abstention 43 42 341 335 43 · 210 42 · 210 43 · 220 42 · 220
ATMS [29] 32 64 256 512 32 · 210 64 · 210 32 · 1020 64 · 220
CCCK [47] 43 46 341 70 43 · 210 126 43 · 220 206
PSC [Sec 4.3] 45 101 45 140 45 230 45 359
PSC CH [Sec 4.3, 5.1] 54 182 54 262 54 449 54 717
PSB [Sec 4.2] 52 4.5 52 4.7 52 5.1 52 5.6
PSB CH [Sec 4.2, 5.1] 62 5.5 62 5.9 62 6.6 62 7.6

Table 1. Comparison to previous work for N users with sizes in KiB. We assume a
flat (uniform) stake distribution, 1

3
adversarial stake and full adversarial abstention

(bottom) or participation (top). This leads to numreveals = 128/80 for CCCK when
the adversary is abstaining/participating. We use k = 414 for PSB ,PSC . Elements and
hash bit lengths are 256/256, 384/256, 384/256 and 446/446 for CCCK, ATMS, PSC
and PSB respectively. In all cases aggregation must be performed by a full node, see
Table 3. CH indicates a concurrent hybrid of k = (250, 856),m = (1523, 7407), see
Section 5.1. For PSB we have included the cost to avoid complexity leveraging (Sect.
??). For an abstaining adversary, we calculate the expected communication cost wrt
retries. The naive baseline system polls all users and produces a certificate by only fully
revealing enough signatures to overtake the presumed adversarial stake, as described
in [47]. For all systems, we optimize Merkle tree proofs as in Section 5.2.

The importance of forward security in the context of blockchain protocols
has already been highlighted in earlier work in consensus protocols including
[17], [19] and [23]. Forward-security is not essential for all STM applications
hence we do not incorporate it as a fundamental property of the primitive -
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we examine the implications of dynamic corruption and forward security type
mitigations in Section 4.5.

Blockchains and Proof of stake. In terms of client bootstrapping, proof of work
blockchains admit simple solutions like SPV, where bootstrapping can be per-
formed by verifying only the headers of the chain [48]. Further optimizations
such as Non-interactive proofs of proof-of-work (NIPoPoWs) [38] and flyclient
[14] drastically reduce the number of headers required by attaching additional
significance to blocks with a specific, rare property. This critically hinges on the
ability to verify headers without the need to establish a stakeholder distribution.

Turning to PoS blockchains, the works of [2, 28] are orthogonal to our work:
they describe how a single user can prove eligibility while maintaining privacy,
whilst we describe how to efficiently demonstrate eligibility over multiple users.
However, the technical toolset is similar as is the main hurdle: efficiently proving
correct evaluation of a verifiable random function. A significant obstacle in that
is the use of random oracles in such functions: a proof system based on circuits
needs to instantiate the oracle to define the verification circuit, which implies
the complete construction no longer operates in the random oracle model.

A verifiable random function (VRF) [46, 21] allows one to evaluate a random
function f on a specific point x and prove the correctness of that evaluation,
without allowing others to evaluate the same function at other points. Security
requires that without knowledge of the private evaluation key, or a proof of
correctness, y = f(x) is indistinguishable from random. The weaker notion of
a unique signature, or equivalently a verifiable unpredictable function (VUF)
[42, 22], requires that adversaries are unable to guess y (but may be able to
distinguish it from random). We use a public mapping M to apply a regular dis-
tribution to signatures i.e., for a given message x and verification key vk, it holds
that y = f(x)

def
= M(σ, x),where σ is a valid signature on x , is pseudorandom

without knowledge of vk. Allowing knowledge of vk defeats pseudorandomness,
but y remains well-distributed. We then expand M to accept an additional eval-
uation parameter t such that f(x, t′) may be determined from f(x, t) but f(x′, t)
remains unpredictable for all x′ ̸= x, t. This relation between evaluations over
the same x is crucial for the efficiency of our construction that relies on a batch
verification step.

Similar to [19], we rely on Elligator to “convert” a random group element
on an elliptic curve to a random field element. Due to our setting [34], we are
unable to directly use the base version and rely on Elligator squared [53] with
the additional contributions of Wahby and Boneh [54].

Vault [40] uses a construction similar to ours as a component in an effi-
cient bootstrapping and storage solution for Algorand. Their construction does
not utilize multisignatures, as multisignatures alone do eliminate the linear size
dependency on committee size: the VRF and Merkle tree checks need to be ag-
gregated as well. We opt to use a dense mapping, a notion similar to a VUF to
make aggregation possible, which gives us greater flexibility by means of size-
time tradeoffs in choosing the appropriate proof system.
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Plumo [26] uses a two layer solution tailored to blockchain bootstrapping,
where one layer proves epoch transitions and the other aggregates over multiple
epochs. Their system is highly efficient, but requires stronger setup assumptions
than ours.

2 Preliminaries

2.1 Notation

We use λ as the security parameter. When S is a set, the assignment operator
x←S stands for x being sampled from the set S uniformly at random. We use
bold characters to denote vectors of variables i.e b := (b1, . . . , bn).

2.2 Group Setting

We require a pairing-friendly elliptic curve E on Fp, forming groups G1,G2 of
order q, with pairing function e : G1 × G2 → GT . We use g1, g2 to refer to
generators of G1,G2 respectively. We optionally require a group GH of order
p so that E can be embedded in GH , and additionally that the structure of
E is compatible with the Elligator [8] or Elligator squared [53] representation
functions.

We require E to be pairing-friendly due to our choice of signature scheme.
Compatibility with Elligator depends on our choice of dense mapping.

Definition 1 (The Discrete log Problem). For a group G = ⟨g⟩ of order q,
and an adversary A we define AdvdlG as:

Pr [a← Zq;h← ga : a← A(h)]

Definition 2 (The Discrete log Assumption). We assume AdvdlG is negligi-
ble for all PPT A on GH , G1, G2.

Definition 3 (The co-Computational Diffie-Hellman Problem). For two
groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ of order q, and an adversaryA we define Advco−CDHG1,G2

as:
Pr

[
a, b← Zq2;h← ga1 ; t1 ← gb1; t2 ← gb2 : gab1 ← A(h, t1, t2)

]
Definition 4 (The co-CDH Assumption). We assume Advco−CDHG1,G2

is neg-
ligible for all PPT A on G1,G2.

We can further strengthen the above assumption, by allowing A to run in
super-polynomial, but still sub-exponential time. This can allow for higher effi-
ciency in our construction, through the use of a complexity leveraging argument,
but is not necessary to prove security.

Definition 5 (The leveraged co-CDH Assumption). We assume Advco−CDHG1,G2

is negligible on G1,G2 for all adversaries A running in time O(λlog λ).
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Common setup. We use Setup(1λ) to refer to the group generator function
which generates a group setting with the above requirements.

Setup(1λ) generates groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ of order q, as well as e :
G1 × G2 → GT , and GH of order p and returns system parameters Param =
(G1,G2, g1, g2, q, e,GT ,GH , gh, p).

2.3 Hash functions

We need hash functions HG1
: {0, 1}∗ → G1, Hq : {0, 1}∗ → Zq modeled as

random oracles, producing group elements in the corresponding groups for use
with our unique signature scheme and mapping. We note that HG1

,Hq are not
evaluated inside the proof of knowledge, allowing us to study the security of both
constructions under the random oracle model [5] with no hindrance to the proof.
This is relevant, as Baldimtsi et al. [2] point out: once the hash function has been
instantiated and concretely represented (e.g. as a circuit) in order to construct
the appropriate statement proof system, we can no longer invoke the random
oracle model in the security analysis. For batching, we also use a truncated
version of Hq, Hλ : {0, 1}∗ → Z2λ .

We also require a collision resistant hash functionHp on Fp to produce Merkle
trees. Depending on our choice of a proof system (see Sect. 4.1), we can opt to
use an arithmetic friendly hash that is believed to be collision resistant, such
as Poseidon [33] to instantiate Hp when using an arithmetic proof system that
internally evaluates Hp. If the proof system evaluates Hp only natively, we can
opt to use any collision resistant hash.

Merkle trees A Merkle tree is a well-used data structure based on hash func-
tions that allows one to represent N items3 of arbitrary size by one hash value.
Beyond that, it is efficient to verify that a value v exists within a Merkle Tree T ,
by providing a path p which consists of the position i of N in the tree, as well
as the hashes of the siblings of i and the siblings of its parents.

MT.Create(v): Parse v as a vector vi of length N . Create an empty binary tree
with N leaves. Label each leaf li with the hash of the corresponding value
Hp(vi). For each level of the tree, label each node z with the hash Hp(x, y)
of the labels of its children x, y. Return the label T of the root.

MT.Check(T,N, v, i,p): Parse p as a vector pj of length log2(N). Let ik be the
k-th least significant digit of i in binary. Let h0 ← Hp(vi). for k = 1 to
log2(N), let hk ← Hp(hk−1, pk−1) if ik is 0 and hk ← Hp(pk−1, hk−1) if it is
1. Return 1 if hlog2(N) = T and 0 otherwise.

For simplicity, we write that v ∈ T , for a fixed value of N if there exists an
index i and path p such that MT.Check(T,N, v, i,p) is 1. In this work we will
rely on the fact that Merkle trees are binding in the following sense:
3 For ease of exposition, we assume N to be a power of 2.
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Lemma 1. If for a Merkle tree T,N there exist i, v ̸= v′, and p, p′ such that
MT.Check(T,N, v, i,p) = MT.Check(T,N, v′, i,p′) = 1, we can extract a collision
for Hp.

Proof. Following the calculation of MT.Check, we have h0 ̸= h′0 unless v, v′ are
a collision. Furthermore, we know that hlog2(N) = h′log2(N). Thus, there must
exist a minimal k such that hk ̸= h′k but hk+1 = h′k+1. Thus, we find that
(hk, pk), (h

′
k, p

′
k) is a collision when ik is 0, and (pk, hk), (p

′
k, h

′
k) when it is not.

2.4 Unique Signature Scheme

Unique signature schemes [42, 22, 32] guarantee that for any given message m, a
user with verification key vk is only able to produce exactly one valid signature
σ. This will be used in predicating eligibility via evaluating our dense mapping
on signatures.

We use a variant of MSP-PoP, a multisignature based on BLS with proofs
of possession as described in [10, 50]. Multisignature schemes [10] are a natu-
ral extension to the concept of a digital signature, by introducing the concept
of aggregation for keys as well as signatures. In this work we will be verifying
signatures individually, but the multisignature design of MSP-PoP is neverthe-
less useful as it implies efficient batch verification. We can also directly utilize
aggregation in applications such as the split signatures described in Section 7.

We further extend the proof of possession with an additional element as our
security context is slightly different: standard security definitions of multisigna-
ture unforgeability require that the challenger provides a signing oracle only for
one designated honest user, and in addition, it needs to be able to calculate
signatures for every other user on a pre-selected point. In the proof of lemma 8
we will additionally need to be able to calculate arbitrary signatures on behalf
of potentially malicious users on any message. This can be solved by either re-
quiring an isomorphism from G2 to G1 as in [50], or in our case by adding the
equivalent image to the proof of possession.

– MSP.Gen(Param): sk ← Zq;mvk ← gx2 ;
κ1 ← HG1(“PoP”∥mvk)x;κ2 ← gx1 . Return secret key sk, verification key
mvk and proof or possession κ = (κ1, κ2)

– MSP.Check(mvk,κ): If e(κ1, g2) = e(HG1(“PoP”∥mvk),mvk) and e(g1,mvk) =
e(κ2, g2) are both true, return 1, otherwise return 0.

– MSP.Sig(sk,msg): Return σ ← HG1(“M”∥msg)x.
– MSP.Ver(msg,mvk, σ): Return 1 if e(σ, g2) = e(HG1(“M”∥msg),mvk). Oth-

erwise return 0.
– MSP.AKey(mvk): Takes a vector mvk of (previously checked) verification

keys and returns an intermediate aggregate public key ivk =
∏
mvki.

– MSP.Aggr(msg,σ): Takes as input a vector of signatures σ and returns µ←∏d
1 σi.

– MSP.AVer(msg, ivk, µ): Returns MSP.Ver(msg, ivk, µ).
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– MSP.BKey(mvk, eσ): Takes a vector mvk of (previously checked) verifica-
tion keys and weighting seed eσ, and returns an intermediate aggregate
public key ivk =

∏
mvkeii , where ei ← Hλ(i, eσ).

– MSP.BSig(σ): Takes as input a vector of signatures σ and returns (µ, eσ)
where µ←

∏
σeii , where ei ← Hλ(i, eσ) and eσ ← Hp(σ).

– MSP.BVer(msg, ivk, µ): Returns MSP.Ver(msg, ivk, µ).

The MSP scheme has been shown to be complete and unforgeable in [50]. The
signing and verification operations are deterministic. Additionally, the signature
scheme is also unique in that is impossible for any msg,mvk to have σ ̸= σ′ so
that MSP.Ver(msg,mvk, σ) = MSP.Ver(msg,mvk, σ′) = 1.

The MSP.BKey and MSP.BSig aggregation functions enforce more stringent
checking than that of standard multisignatures by utilizing the short random ex-
ponent batching of Bellare et al. [4]. The difference from standard multisignature
aggregation, is that the randomized check will fail with overwhelming probabil-
ity if any of the individual signatures is invalid, whereas the simpler aggregation
allows for erroneous individual signatures if the aggregate is correct.

2.5 Dense Mappings for Unique Signatures

The works of [53, 8] show how one can map a point on an elliptic curve to a string
indistinguishable from uniformly random. Given such a mapping we would be
able to use a signature scheme with unique signatures as a regularly distributed
verifiable unpredictable function (VUF).

Definition 6. A deterministic function M : G1 → Zp∪{⊥} is a dense mapping
if, for some negligible ϵ, it holds that for any y ∈ Zp, |Pr[M(x) = y|M(x) ̸= ⊥]−
1/p| ≤ ϵ and Pr[M(x) ̸= ⊥] is non-negligible, where x is uniformly distributed
over G1.

Given a family Mmsg,index of dense mappings indexed by index, we can add a
new operation to a unique signature scheme as follows.

– MSP.Eval(msg, index, σ) Return ev ←Mmsg,index(σ).

Being able to deterministically attach a regularly-sampled value to signatures
enables us to flag a small subset of signatures as eligible by requiring their values
under the mapping for a sequence of indexes to be under a given threshold.

In Section 6 we show how to construct a dense mapping ME
msg,index(σ) based

on Elligator Squared, which avoids oracle calls on user-specific data i.e. we ex-
plicitly avoid hashing σ to sidestep soundness issues in circuit-based proofs.

For the concatenation proof system PSC in Section 2.7 we are able to use a
random oracle H : {0, 1}∗ → Zp to implement the mapping as: MR

msg,index(σ) :=
H(“map”∥msg∥index∥σ).
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2.6 Weighting Function

Looking forward, we will use the concept of weights to randomly assign eligibility
to participants. In this way, a small number of participants can be considered to
be a random (and therefore somewhat representative) sample of a large group.
A straightforward approach would be to use weights directly, potentially with a
scaling factor to the required level of participation.

However, this introduces pitfalls in the resulting distribution: basic probabil-
ity indicates that winning a coin toss (pc = 1

2 ) is not equivalent to guessing a
die roll in 3 tries (each with pd = 1

6 , for a success probability of 1− (5/6)3 ). The
same problem was faced in [19], and we follow their solution in this work:

We will use the function ϕ(w) = 1− (1− f)w to assign success probabilities
to weights w ∈ [0, 1]. The value f = ϕ(1) is a tuning parameter, representing the
success probability assigned to the maximum weight.

The end result is to make the probability of success for a given party irrespec-
tive of the exact distribution in virtual identities: i.e. an adversary controlling
weight w has the same chance of success if she keeps the weight under a single
identity or splits it in various ways. The same property is also useful in regards
to honest parties, where behaviour may be more unpredictable.

2.7 Noninteractive Proof Systems

In our construction, we use a proof system to allow a prover to prove statement
x is true by demonstrating she knows a witness w such that R(x,w) is true.

Bulletproofs Bulletproofs [13] are an efficient proof system with transparent
setup where a relation is represented as an arithmetic circuit. For a fixed relation
R, and system parameters Param, we refer to the reference string setup, prover
and verifier algorithms as PSB .RS← PSB .S(Param) πC ← PSB .P(PSB .RS, x, w),
0/1← PSB .V(PSB .RS, x, πC), where x,w refer to the statement and witness re-
spectively. Bulletproofs are complete andknowledge sound via witness-extended
emulation.

A concatenation based proof system The concatenation-based proof system
PSC consists of releasing the witness w and letting the verifier check if R(x,w) =
1. Looking forward, w will be a concatenation of individual signatures, hence the
name. Concretely, we have:

PSC .S(1λ): Return PSC .RS := ⊥
PSC .P(PSC .RS, x, w): Return w

PSC .V(PSC .RS, x, π): Return R(x,w)
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3 Ideal Functionality for Stake Based Threshold
Multisignatures

We will now describe a stake based threshold multisignature functionality similar
to the PoS Anonymous Selection of [2].

The functionality maintains a list L of signatures produced by itself, and a
list E storing the eligibility of the various parties. The functionality operates on a
fixed player list P = (Pi, stakei), where |P| = n, a scaling function ϕ(w), security
parameter m ≥ log2λ and quorum parameter k = m ·ϕ( 12 +a). The functionality
operates on a static corruption model where the adversary is allowed to corrupt
up to 1

2 − a of the total stake.
The functionality operates by sampling eligibility over m indices. Users are

made eligible in proportion to their stake and independently of each other. Pro-
ducing an aggregate signature requires individual signatures over k different
indices. The functionality operates in two phases. It starts in the initialisation
phase which we present in Figure 1. The decision to move to the operation phase,
presented in Figure 2 is left to the adversary.

A trivial realization using concatenation. It is simple to see that if we assume
uniform stake distribution, we can realise the above using only signature schemes.
We set k = N = m, and fix the eligibility function to assign E(msg, Pi, index) = 1
iff i == index and 0 otherwise. CreateSig is implemented by signing, whereas
verification only accepts signatures for index i from user Pi.

Aggregate is implemented by concatenating signatures and signer identities.
VerifyAggregate then consists of parsing, and counting the number of valid sig-
natures.

While simple, the above protocol produces aggregate signature with size lin-
ear in the number of users which is cost-prohibitive in practice. Assuming uni-
form stake is also problematic in general. One could argue that a user holding s
units of stake could be simulated by s users each holding 1 unit, but this only
exacerbates the size issue. In the next Section we will expand our treatment to
cover the more general case, and use dense mappings as a form of lottery so that
only a limited number of stakeholders need to participate at any one time.

4 A Stake Based Threshold Multisignature scheme

We present a protocol Π.STM realizing FϕSTM(P,m, k) in the FRS(P),Fψ0

Kr (P)-
hybrid model. As with the functionality, the protocol operates in two phases.
The initialisation phase is presented in Fig. 5 and the operation phase in Fig. 6.
The functionality operates on a fixed player list P = (Pi, stakei), where |P| = n,
a scaling function ϕ(w), security parameter m ≥ log2 λ and quorum parameter
k = m · ϕ( 12 + a), where ψ0(mvk,κ) := MSP.Check(mvk,κ).
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The STM functionality FϕSTM(P,m, k). Initialisation phase

FψKr(P) initializes the variable Allow to 1, and table K to be empty and proceeds as
follows:

• Upon receiving (Register, sid) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, or K(Pi) is already defined, ignore the request.
2. Otherwise, set K(Pi) = 1 send (Registered, sid, Pi) to A and output

(Registered, sid) to Pi.
• Upon receiving (Start, sid) from the adversary A:

1. Set Allow to 0.

Fig. 1. The Stake Based Threshold Multisignature functionality FϕSTM(P,m, k) in the
Initialisation phase interacting with the adversary A.

Our scheme requires two main components: a unique scheme equipped with a
dense mapping, and a proof system to produce proofs of multiple signatures with
specific mapping constraints, i.e each signature must map to a value smaller than
the target value implied by the signer’s stake. The simplest option would be to
construct aggregate proofs by simply concatenating individual signatures. This
allows for simple and efficient choices in the other parameters but produces a
large aggregate proof. On the other hand, we can use a circuit-based proof system
such as Bulletproofs, which will produce much smaller proofs. However, this
choice requires careful selection of the other primitives, as we need to e.g avoid
evaluating random oracles in the circuit. We will further explore the instantiation
options in Sections 4.2 and 4.3, and compare their efficiency in Section 5.

We note that both of the hybrid functionalities we use are practical to realise
in common applications. For FRS, the group choice can be realistically hardcoded,
leaving only the proof system reference string. In the options we explore in this
section, the reference string is either empty or unstructured. For an unstructured
reference string, we can use HG1

, and a random seed, as we only require random
elements in G1. The key registration functionality, FRS can be realized by means
of a broadcast channel which can be implemented via a blockchain.

4.1 The relation Ravk

Our proof systems operate on language Lavk, i.e we prove knowledge of a witness
w such that statement x holds, i.e. Ravk(x,w) = 1. Concretely, our statement
is of the form x = (AVK, ivk, µ, eσ,msg) and our witness is of the form w =
(mvki, stakei,pi, evi, σi, indexi) for i = 1 . . . k. The relation Ravk is parametrized
on N,m, k, ϕ(), which are public information. Ravk(x,w) = 1 if and only if the
following hold:

– ivk = MSP.BKey(mvk, eσ).
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The STM functionality FϕSTM(P,m, k), operation phase.

• Upon receiving (EligibilityCheck, sid,msg, index) from a party Pi:
1. If K(Pi) is undefined, or Pi /∈ P ignore the request.
2. If flag(msg) is undefined, send (EligibilityCheck, sid,msg,P) to A. Else, goto 5.
3. On receiving (Eligible, sid,msg,B, t) parse B as a n × m bit matrix and let
E(msg, Pi, index)← B(i, index), and let flag(msg)← 1.

4. If B assigns eligibility to corrupted users on k or more indices, abort.
5. Output (EligibilityCheck, sid, E(msg, Pi, index)) to Pi.

• Upon receiving (CreateSig, sid,msg, index) from a party Pi:
1. If K(Pi) is undefined, ignore the request.
2. If flag(msg) is undefined, send (Declined, sid,msg) to Pi. Otherwise, check
E(msg, Pi, index). If it is 0, send (Declined, sid,msg) to Pi. Otherwise if it is
1, send (Prove, sid, Pi,msg, index) to A.

3. When receiving (Done, sid, Pi, π,msg, index) from A, store (Pi, π,msg, index) in
L. Send (Proof, sid, π,msg, index) to Pi.

• Upon receiving (Verify, sid, Pi, π,msg, index) from a party P ′:
1. If K(Pi) is undefined, ignore the request.
2. If (Pi, π,msg, index) ∈ L, output (Verified, sid, (Pi, π,msg, index), 1) to P ′.
3. Else, if E(msg, Pi, index) is 0 or Pi is honest, send

(Verified, sid, (Pi, π,msg, index), 0) to P ′.
4. Else, send (Verify, sid, (Pi, π,msg)) to A, and wait for (Verified, sid, (π,msg), v)

from A. If v is 1 store (Pi, π,msg, index) in L and reply
(Verified, sid, (Pi, π,msg, index), 1) to P ′.

5. Else, send (Verified, sid, (Pi, π,msg, index), 0) to P ′.
• Upon receiving (Aggregate, sid,P ,π, index,msg) from a party P ′ :

1. Parse P ,π, index as vectors of length k containing Pi, πi, indexi.
2. If K(Pi) is undefined for any i, ignore the request.

Run (Verify, sid, Pi, πi,msg, indexi) for each i.
3. If any produce 0, or if indexi = indexj for i ̸= j, reply

(Aggregation, sid, (P ,π,msg), 0).
4. Otherwise, send (Aggr, sid,P ,π, index,msg) to A.
5. When (AggrDone, sid,P ,π, index, ρ,msg) is received from A, let τ = ρ, store

(m, τ,msg) in L.
6. Send (Aggr, τ,P ,π,msg) to P ′.

• Upon receiving (VerifyAggregate, sid, τ ,msg) from a party P ′ :

1. If (τ,msg) exists in L, then send (Verified, sid,m, τ,msg), 1) to P ′.
2. Else, send (AVerify, sid, (τ,msg)) to A, and wait for (Verified, sid, (τ,msg), v)

from A.
3. If v = 1, count the number of indexes with either (1) a previously produced

signature for msg in L or (2) a corrupted player eligible to sign. If the total is
k or more, store (τ,msg) in L and output (Verified, sid, (m, τ,msg), 1) to P ′.

4. Else, send (Verified, sid, (m, τ,msg), 0) to P ′.

Fig. 2. The Stake Based Threshold Multisignature functionality on the operation phase
FϕSTM(P,m, k) interacting with the adversary A.
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– (µ, eσ) = MSP.BSig(σ).
– ∀i : indexi ≤ m.
– ∀i ̸= j : indexi ̸= indexj .
– For i = 1..k: (mvki, stakei) lies in Merkle tree AVK, N following path pi.
– For i = 1..k: MSP.Eval(msg, indexi, σi) = evi
– For i = 1..k: evi ≤ ϕ(stakei)

We will propose two constructions: one based on bulletproofs which may also
be used as a template for other circuit-based systems, and a simpler system
based on releasing the witness. In the first case we let PS = PSB and M =ME ,
and in the second, PS = PSC and M =MR.

Extended Statements It is simple to extend the Ravk so that it also checks a
message-independent aggregation of signing keys. This key can be used to verify
ordinary multisignatures corresponding to the signers contained in ivk without
the need to re-weight them with the ei exponents.

For the extended languageR+
avk statements are x = (AVK, ivk, ivkaux, µ, eσ,msg)

and witnesses are of the form w = (mvki, stakei,pi, evi, σi, indexi) for i = 1 . . . k.
The relation Ravk is parametrized on N,m, k, ϕ(), which are public information.
Ravk(x,w) = 1 if and only if the following hold:

– ivk = MSP.BKey(mvk, eσ).
– ivkaux = MSP.AKey(mvk).
– (µ, eσ) = MSP.BSig(σ).
– ∀i : indexi ≤ m.
– ∀i ̸= j : indexi ̸= indexj .
– For i = 1..k: (mvki, stakei) lies in Merkle tree AVK, N following path pi.
– For i = 1..k: MSP.Eval(msg, indexi, σi) = evi
– For i = 1..k: evi ≤ ϕ(stakei)

4.2 An instantiation based on Bulletproofs

This construction performs most of the checks in the circuit, leaving only the final
pairing check, as well as random oracle calls to be performed in the open. This
requires a “parent” group with order p so that we can design circuits performing
arithmetic modulo p in order to efficiently perform group operations in G1,G2.
At the same time, we need to use a mapping that only calls the random oracle
on pre-determined points while achieving a near-uniform distribution. For this,
we use M =ME , described in Section 6 .

Avoiding random oracle calls in the circuit. We need to represent the
relation we will be proving, Ravk as a circuit, which can be problematic as we
model Hq,HG1

as random oracles and therefore we cannot encode them in a
circuit. Fortunately, this is simple to overcome, by having the verifier perform
the calls. As msg is part of the statement, and the maximum index m is a public
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The Key Registration functionality FψKr(P).

FψKr(P) initializes the variable Allow to 1 and proceeds as follows:

• Upon receiving (Register, sid, vk) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, K(Pi) is already defined, or vk ∈ K, ignore the request.
2. If ψ(vk) = 1, let K(Pi)← vk, and output (RegKey, sid, 1) to Pi.

• Upon receiving (Retrieve, sid, Pi) on behalf of party Pj :
1. Pj /∈ P, or K(Pi) is not defined, output (Retrieve, sid, Pi,⊥) to Pj .
2. Otherwise, output (Retrieve, sid, P1,K(Pi)) to Pj

• Upon receiving (CloseRegistration, sid) on behalf of the adversary A:
1. Set Allow to 0.
2. For each Pi ∈ P, send (RetrieveAll, sid,K) to Pi.

Fig. 3. The Key Registration functionality FψKr(P), with key checking function ψ, in-
teracting with the adversary A.

The Reference String functionality FRS(P).

• Upon Initialization, let Param← Setup(1λ);PS.RS← PS.S(Param);
Set RS := (Param,PS.RS), and send (GetRS, sid,RS) to A.

• Upon receiving (GetRS, sid) on behalf of party Pi:
1. If P1 ∈ P Output (GetRS, sid,RS) to Pi.

Fig. 4. The Reference String functionality FRS(P) interacting with the adversary A.

parameter, it is simple to precalculate the Hq values used inside the mapping ME

as well as those used in the representation function. This enables relation Ravk
to be compiled as a circuit without preventing HG1 or Hq from being modelled
as a random oracle: HG1

and Hq are never evaluated inside the circuit.

Addressing rewinding. Bulletproofs are complete, zero knowledge and have
the witness-extended emulation property, a generalization of knowledge sound-
ness. Recent works [31, 1] demonstrate how to leverage the extractability pro-
vided by witness-extended emulation in the non-interactive setting. In the case
of [31], a single rewinding suffices in the Algebraic group model. However, Uni-
versal Composability does not allow rewinding the environment at all, so the
simulator is unable to invoke witness extraction in the UC security proofs.

At the same time, invoking standard soundness is potentially vacuous as the
possibility of collisions in the Merkle tree implies that it is hard to determine if
any particular statement x is false (i.e there exists no witness w for it). Consider
a trivial tree AVK, containing the public keys and stake (mvk0, stake0) of only
a single user P0, who is not eligible to sign message m. It is likely, that there
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exists a different set of public keys (mvk0, stake′) so that (1) they hash to the
same value and (2) the second keyset is eligible for m –with multiple users there
also exists a degree of freedom in mvk.

To overcome this, we will instead rely on an intermediate security notion,
where we will “disallow” proofs of a particular set of statements. Informally,
we say that a statement is contradictory, if a potential witness for it would
contradict our existing knowledge. Proving this property does invoke rewinding
to perform extraction, but said rewinding is performed on the entire ensemble
of UC simulator and environment. I.e., if there exists an environment such that
proofs of contradictory statements are produced with non-negligible probability,
we are able to produce collisions for Hp. This external leveraging of rewinding
is similar to that of Canetti et. al. [15] who perform rewinding outside the UC
proof to assert an indistinguishability property inside it.

The key observation behind this technique is that for both their protocol
and ours, the UC proof does not actually require a witness to be extracted, we
only need to show that a certain class of statements is infeasible to efficiently
construct proofs for. Because of that we can avoid the costlier alternative of
requiring a straight-line extractable proof system such as Fischlin’s [25].

Consider a predicate Q(y, z) and a function G(·). We are interested in the
language L = {x|∃y, z : x = G(y) and Q(y, z) = 1} The reason we are interested
in this language for instance is because G(y) can be much shorter than y.

In general, a statement x is contradictory with respect to information y in
G−1(x), if for all z : Q(y, z) = 0. We can then easily show the following lemma:

Lemma 2. Consider x ∈ L, and y is in G−1(x). Then either the statement x is
not contradictory w.r.t. y or there exists some y′ ̸= y, such that G(y′) = G(y).

To apply the above in our setting, the witnesses to our relation are of the
form w = (y, z), where y is a stakeholder distribution and G is any function that
creates a Merkle tree root out of it and aggregates a subset of those keys that
satisfy the lottery winning property for a given message.

Then, the z component of the witness contains Merkle tree witnesses, signa-
tures and evaluations that establish that there is a set of lottery winning keys.
The predicate Q verifies those properties, w.r.t. y.

Now, if we get a valid bulletproof for x ∈ L, this means that either x is not
contradictory w.r.t. y, or that there is another stakeholder distribution y′ ̸= y
with G(y′) = G(y). In this latter case, any extracted witness would be of the
form w = (y′, z), y′ ̸= y and we would get a collision against the MT.Create(v)
construction. Assuming collisions are computationally infeasible thus implies
that valid proofs on contradictory statements are computationally infeasible too.

Contradictions for Ravk For Ravk, given N,m, k, ϕ(), we say that statement
x = (AVK, ivk, µ, eσ,msg) is contradictory w.r.t. information (mvki, stakei) for
i = 1 . . . N and (evi,k, σi), if (1) AVK = MT.Create(mvki, stakei) for i = 1 . . . N ,
(2) evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m , and (3) there exist
no indexes pj , tj for j = 0 . . . k − 1 such that:
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– ivk = MSP.BKey(mvkpj ,σpj ).
– ∀i ̸= j : si ̸= sj .
– For i = 1..k: evpj ,tj ≤ ϕ(stakepj )

Using the witness extractors from [31, 1], we can prove that:
Lemma 3 (Contradiction Soundness for PSB). For any N,m, k, ϕ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we
have that for any contradictory statement x, the following probability is negligible.

Pr[σ ← PSB .RS(1λ),AVK← MT.Create(mvki, stakei),
(ivk∗, µ∗,msg∗, π∗)← P∗(σ,AVK) :
PSB .V(σ, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗)]

Proof (Sketch). If P∗ succeeds with non-negligible probability, we can use the
witness extractor to obtain a witness w with good probability in expected poly-
nomial time. Given our information (mvki, stakei), (evi,k, σi) and witness w, we
obtain a collision for Hp.

4.3 An instantiation via Concatenation proofs
As an alternative, we can opt to directly transmit the witness. While less space
efficient, this approach allows for a simpler group setting, a random-oracle based
mapping and minimizes computational costs for the prover and verifier. Contra-
diction soundness is trivial for PSC , as a witness is present without rewinding.

At the same time, we only require that our group structure is pairing friendly,
as that is required by the BLS based (multi-)signature scheme. BLS aggrega-
tion is somewhat underutilized as we require individual signatures to verify the
mapping. However, we are able to batch verify efficiently using short random
exponents.
Lemma 4 (Contradiction Soundness for PSC). For any N,m, k, ϕ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we
have that for any contradictory statement x, the following probability is negligible:

Pr[AVK← MT.Create(mvki, stakei), (ivk∗, µ∗,msg∗, π)∗ ← P∗(σ,AVK) :
PSC .V(⊥, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗), ]

Utilizing Oracle calls As PSB relies on partly representing Ravk inside a circuit,
care must be taken to avoid oracle calls inside the circuit itself. In the PSC
instantiation however, there is no such restriction. As such, we are free to use
MR as the dense mapping in MSP.Eval.
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Protocol Π.STM. Initialisation phase

• Setup: Users start in the initialisation phase. Each user locally sets Reg ← ∅, and
sends (GetRS, sid) to FRS(P). Upon receiving (GetRS, sid,RS), store RS.

• Register: Each user Pi gets their keys by running (mski,mvki,κi) ←
MSP.Gen(Param). They set (vki, ski) := ((mvki,κi),mski, ). A user then sends
(Register, sid, vki) to Fψ0

Kr (P).
• Startup: When a user receives (RetrieveAll, sid,K), from Fψ0

Kr (P) it sets Reg :=
(K(Pi), stakei) for Pi ∈ P, and Reg is padded to length N , using null entries of
stake 0. Let AVK← MT.Create(Reg). The user moves to the operation phase.

Fig. 5. The Stake Based Threshold Multisignature ProtocolΠ.STM in the Initialisation
Phase.

Protocol Π.STM. Operation Phase

• EligibilityCheck: On input (msg, index), user Pi runs: Let msg ← AVK||msg, σ ←
MSP.Sig(msk,msg); ev ← MSP.Eval(msg, index, σ). Return 1 if ev < ϕ(stake), else
return 0.

• CreateSig: On input (msg, index): If EligibilityCheck(msg, index) is 1, then let msg ←
AVK||msg;σ ← MSP.Sig(msk,msg) and produce an individual signature π =
(σ, regi, i,pi), where pi is the user’s path inside the Merkle tree AVK and regi
is (mvki, stakei).

• Verify: On input a party Pi, a signature π, index index, and message msg, parse
π = (σ, regi, i,pi). Parse regi as (mvki, stakei). Check that regi corresponds to party
Pi, let msg ← AVK||msg; ev ← MSP.Eval(msg, index, σ) check that ev < ϕ(stakei)
and check MT.Check(AVK, N, (vki, stakei), i,pi) = 1. If parsing or checking fails,
return 0. Otherwise, return MSP.Ver(msg,mvki, σ).

• Aggregate: On input vectors P ,π, index and message msg, parse P ,π and
index as a vectors Pj , πj , indexj of size k, let msg ← AVK||msg and run
Verify(Pj , indexj ,m, πj).
If parsing or checking fails, return ⊥. If any indexj = indexi for j ̸= i return 0.
Otherwise, parse πj = (σj , regj , ij ,pj) and regj as (mvkj , stakej).
Let ivk ← MSP.BKey(mvk,σ), µ ← MSP.BSig(σ), set x = (AVK, ivk, µ, eσ,msg)
and w = (mvkj , stakej ,pj , evj , σj , indexj) for j = 1 . . . k. Then, πavk ←
PS.P(PS.RS, x,w). Return τ = (ivk, µ, eσπavk).

• VerifyAggregate: On input (τ,msg), parse τ = (ivk, µ, eσ, πavk), check that
PS.V(PS.RS, (AVK, ivk, µ, eσ,msg), πavk) is true. If parsing and checking is success-
ful, let msg ← AVK||msg and return MSP.BVer(msg, ivk, µ).

Fig. 6. The Stake Based Threshold Multisignature Protocol Π.STM in the Operation
Phase.
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4.4 Security

Theorem 1. The protocol Π.STM of Sect. 4 realizes FϕSTM(P,m, k) in the
FRS(P),Fψ0

Kr (P)-hybrid model, under the leveraged co-CDH assumption, if Hp is
collision resistant and HG1{0,1}∗→G1

, Hq : {0, 1}∗ → Zq are modeled as random
oracles.

Proof. We first describe the operation of the simulator:

– Oracle Calls: The Simulator will always program the random oracle HG1

with uniformly sampled group elements gr1 with a known discrete logarithm
r ← Zq and stores their discrete log. This enables the simulator to produce
a signature on behalf of any user-message pair by utilizing κ1 = gxr1 for
a known r from the proof of possession of the user and the log r′ of the
messages hash hG1

(“M”∥msg) = gr
′ , by setting σ = k

(1/r)r′

1 .
– Register: The simulator runs the key generator MSP.Gen(Param) normally,

returns the verification key vki and stores the private key ski.
– RegKey: The simulator runs the key verification algorithm MSP.Check and

returns the output.
– EligibilityCheck: The simulator can evaluate eligibility for all participants,

by signing on behalf of each user and then sets ideal functionality accord-
ingly. This distribution is the same as in real world, apart from potentially
causing the functionality to abort, but that only occurs with only negligible
probability.

– CreateSig: For honest users the simulator creates signatures normally. For
malicious ones, it uses random oracle programmability and the submitted
proof of possession to create signatures that areindistinguishable from stan-
dard ones. In both cases, the simulator keeps an internal list L of produced
signatures.

– Aggregate: Aggregation uses no private information, so the simulator can
simply evaluate it using only public information. Any signatures produced
this way are added to L

– Verify: The simulator checks if the submitted signature exists in L, and ac-
cepts if it is. Else, it verifies the signature and adds it to L. If a signature
belonging to an honest user is valid but was not in L, the simulator aborts
with output “MSP forgery”. If a signature verifies but the corresponding
user is not eligible, the simulator fails with output “individual signature ver-
ification failure” (this happens with negligible probability due to collision
resistance).

– VerifyAggregate: On VerifyAggregate queries, the simulator checks if the sub-
mitted aggregate signature exists in L, and accepts if it is. Else, it runs the
verification algorithm on the aggregate signature. If verification succeeds, it
counts the number of slots with either (1) previously produced single proofs
for (msg in L or (2) a corrupted player eligible to sign. If the total is k or
more, it accepts, otherwise it outputs “aggregate proof verification failure”.
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Next, we will give a series of hybrid games between the interaction of the en-
vironment with the real protocol and between the environment and the simulator
interacting with the ideal functionality.

The first game, H0 represents the real protocol. We define H1 to be identical
to H0, but with calls to the random oracle HG1 being answered with elements
with known discrete logs. I.e on query x, the simulator checks if there exists an
entry (x, a, r) in table R. If so, it returns a. If not, it sets r ← Zq; a ← gr1. It
then stores (x, a, r) in table R. Game H1 is perfectly indistinguishable to H0, as
g1 is a generator.

We define H2 similar to H1, but with Eligibility requests answered by the
simulator. This is performed by the simulator evaluating the eligibility predicate
across all users in P and indexes index. This is possible for all users, because the
simulator can derive signatures via the proofs of possession. It is clear that H1

and H2 are also perfectly indistinguishable.
In H3, whenever Eligibility is queried for a message, the simulator calculates

eligibility for each user and index to produce B with which it initializes the
ideal functionality. If the Ideal Functionality aborts, the simulator also aborts.
Clearly, H3 only differs from H2 if the ideal functionality aborts. However, that
only happens with negligible probability (lemma 5). Thus, H2 and H3 are also
statistically indistinguishable.

In H4 the ideal functionality and simulator are used for CreateSig and Verify.
The simulator is able to produce signatures for any user by programming the
random oracle calls used for proofs of possession. Games H3 and H4 are indistin-
guishable unless the simulator outputs “MSP forgery” or “individual signature
verification failure”. In lemma 7 we show that “MSP forgery” reduces to the co-
CDH problem and in lemma 6 we show that “individual signature verification
failure” reduces to unique provability and collision resistance. Thus, either event
only happens with negligible probability.

In H5 the simulator now answers calls to both Aggregate and VerifyAggregate.
The simulation fails when the simulator outputs “aggregate proof verification fail-
ure” but is otherwise identical to the previous execution. The output “aggregate
proof verification failure” happens with negligible probability due to lemma 8.
At this point, it suffices to point out that H5 is identical to the environment
interacting with the simulator and the ideal functionality.

Lemma 5. [Sampling Property] When f ≤ 1
4 , a ≤

√
1− f , the eligibility matrix

sampled by the simulator causes the functionality to abort with probability negli-
gible in m. Furthermore, for m = −(2 + a)/(a2 · ϕ( 12 − a)) ln(ς), the probability
of failure is at most ς.

Proof. Let ϕ( 12 ) = p. Then k = mp
First, we point out that for f ≤ 1

4 and a ≤
√
1− f , it holds that for p′ =

ϕ( 12 − a) we have p
p′ =

ϕ(1/2)
ϕ(1/2−a) ≥ 1 + a.

Each of the m columns of the matrix represents an independent trial in which
with the adversary has a probability p′ of being eligible via at least one corrupted

23



user. Thus, the expected number of successes is the mean, i.e. p′m ≤ k
1+a . The

functionality will thus abort only if the actual number of successes, X is greater
than 1 + a times the mean.

By Chernoff bounds, the probability of aborting is: Pr[X > k] ≤ Pr[X >

p′m · (1 + a)] ≤ e
−a2·p′m

2+a . As p′ ̸= 0 by the definition of the ϕ function, the
chance of aborting is negligible in m.

For the second part, rewriting m as m = −(2+a)/(a2 ·ϕ( 12−a)) ln(ς), directly
produces the required bound.

As a corollary, for m ≥ log2 λ, the above probability is negligible in λ.

Lemma 6. The simulator outputs “individual signature verification failure” with
negligible probability.

Proof. The simulator only outputs the above message if an adversarial signature
π = (σ∗, reg∗i , i,pi) where reg∗i as (mvk∗i , stake∗i ) is valid but belongs to a user
who is not eligible. The user being non-eligible implies that an honest signature
over the user’s registered keyset regi = (mvki, stakei) evaluates to a non-eligible
value. As both signing and evaluating is deterministic, it must be that reg∗i ̸=
regi This directly produces a collision for MT.Create and thus for Hp.

Lemma 7. The simulator outputs “MSP forgery” with negligible probability.

Proof. We will show that we can adapt the simulation so that if “MSP forgery”
occurs with non-negligible probability, the simulator is able to solve a co-CDH
instance.

We carry out the reduction as follows. We assume the environment issues a
maximum of qmsg non-PoP queries to the oracle HG1

. We select q∗ randomly
between 1 and qmsg. The simulator receives a co-CDH instance ga1 , gb1, gb2. We
select one honest user P ∗ to “trap” at random. We set the verification key of
that user to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle

so that HG1
(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we

reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1 , if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

sx
1 ) we lookup

“M”∥msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

(1/s) = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

If the simulator is about to output “MSP forgery”, then the signature σ∗

must be such that e(σ, g2) = e(ga1 , g
b
2) i.e. a solution to the coCDH problem.
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Lemma 8. The simulator outputs “Aggregate proof verification failure” with
only negligible probability.
Proof. We distinguish between two cases:

– The statement x = (AVK, ivk, µ, eσ,msg) is contradictory w.r.t the infor-
mation the simulator holds. I.e ivk is not a eσ-weighted product of eligible
users’ verification keys. This only happens with negligible probability due to
lemma 3.

– The ivk contained in the statement is ivk =
∏k
i=1 vk

ei
i where each vki be-

longs to a user eligible for index indexi, and indexi ̸= indexj when i ̸= j,
and ei ← Hλ(i, eσ). In this case, the environment has produced a signature
forgery, so we can reduce to co-CDH, similar to “MSP forgery”.
In the latter case, we carry out the reduction as follows.
First, the simulator determines the user keys used to construct ivk. This

can be done by performing an exhaustive search on the set of eligible users at
a cost of

(
m·ϕ(1)
k

)
≈

(
m
m/2

)
= O(2m). For m ≈ log2 λ, 2m is O(λlog λ) which is

super-polynomial, but not exponential in λ.
We assume the environment issues a maximum of qmsg non-PoP queries

to the oracle HG1
. We select q∗ randomly between 1 and qmsg. The simulator

receives a co-CDH instance ga1 , gb1, gb2. We select one honest user P ∗ to “trap” at
random, in proportion to their stake. We set the verification key of that user
to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle so

that HG1
(“PoP”∥gb2) = gr1. For all queries “PoP”∥vk to the random oracle, we

reply with gas1 for s ← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”∥msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”∥msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

s
1x) we lookup

“M”∥(msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and
output σ = π2

1/s = g
(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

Before the simulator outputs “aggregate proof verification failure”, on a cor-
rectly formed ivk, it checks to see if P ∗ is included in it. If it is, it is able to
isolate σ∗ from the aggregate signature by calculating the signature of every
other user included in the key, as well as the ei cofactors using σ. The signature
σ∗ must be such that e(σ, g2) = e(ga1 , g

b
2) i.e. a solution to the co-CDH problem.

This contradicts assumption 5 which states that there is no O(λlog λ) time
solver for co-CDH.

Avoiding Complexity Leveraging. It is also possible to obtain the above result
without using complexity leveraging. We can simply modify the proof system
so that the user identities i are part of the statement instead of the witness.
As such, they are immediately available to the simulator without an exhaustive
search. This comes at a cost of k · logN extra bits in τ .
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4.5 Dynamic Adversaries and Forward Security

We have modeled our functionality and scheme in a model with static corruptions.
In most proof of stake applications the possibility for dynamic corruption greatly
enhances the power of the adversary: the adversary waits to see which users
are eligible to perform a particular action (e.g. the ability to produce the next
block) and then selectively corrupts them. This allows the adversary to have a
disproportionate amount of influence in comparison to the stake they hold. In
our functionality, this is made weaker: eligibility is predicated on the message,
and is independently distributed across different messages. That is, user P1 being
eligible for message msg1 is independent of user P1 being eligible for message
msg2. Nevertheless, in the ideal world, the adversary is able to set eligibility
before performing corruptions, and would thus be able to assign eligibility to
users before corrupting them.

In the real world, it is hard for the adversary to determine a user’s ev values
for any message the user has not signed due to the unforgeability of the signature
scheme and regularity of the mapping. If a user signs a particular message for a
single index index0, then the adversary can determine that user’s evaluation for
every other index, but it is reasonable to assume that in most applications users
will elect to either sign over all indices they are able to, or not at all.

What a real-world adversary might do however is calculate the eligibility
predicate over some indices without calculating ev (or equivalently,the CDH
term σ). A line of research [11, 9, 24, 51] on the bit-security of CDH supports the
assumption that guessing even partial information about the CDH term is hard.
With this assumption in place, dynamic corruptions only allow the adversary to
take hold of a user who is known to be able to sign message msg, after she has
already signed it.

Forward Security A different issue, that exists beyond our modeling is that the
stake distribution used by the functionality might lose relevance with time: that
may be due to inflation or users selling their stake after the functionality has
started. This implies that after a long period of time, the adversary might be
able to acquire more than 1

2 − a of the stake. This of course directly violates our
model’s assumptions, but it is an important real-world issue. As such, honest
users should be assumed to delete their keys after a set of conditions has taken
place (e.g an aggregate message has successfully been produced, containing an up-
dated stake distribution or X amount of time has passed). Alternatively, generic
constructions [43] can be used to add forward security while also maintaining
the uniqueness property for a fixed point in time.

5 Efficiency

5.1 Quorum parameters

In the proof of lemma 5 we saw that the probability of an adversarial minority
achieving a quorum is negligible. In Table 2, we determine concrete values re-
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quired for settings where the adversarial stake is 2/5 or 1/3, and the quorum per-
centage k

m is set to approximately ϕ(.55), ϕ(.60), ϕ( 23 ), ϕ(.75), ϕ(.80). Increased
values for the quorum percentage decrease the probability of an adversarial quo-
rum, but also decrease the probability of an honest one.

A core insight of the calculations is that the required parameters for liveness
differ greatly between and adversary who is participating (until such time as
they opt to attack the system) and one who is attempting to halt the protocol by
abstaining. Ideally, we would like to be able to use the more compact parameters
until such time as liveness is at risk.

This can be handled in a number of ways: First, if the probability of an
honest quorum remains significant it can be boosted by allowing retries (e.g by
attaching a short counter to the message). Second, if an incentive structure is in
place, rational adversaries who cannot directly subvert the protocol will choose
to participate in signing honest messages. This could allow one to choose e.g.
ϕ(.65) as the bound, with a 40% adversarial stake at the cost of requiring a
rational adversary for liveness (since in the Byzantine setting only safety will
follow but not liveness).

Concurrent Hybrids Furthermore, the design of our protocol is amenable to
running with multiple (k,m) parametrizations concurrently with minimal impact
to the adversary‘s chance of success. All other protocol parameters and data
are shared. In this way, individual signatures are produced according to the
maximal pair of (k,m) values, while aggregation opportunistically chooses a
lower one if possible. Such an approach will increase communication costs by
transmitting potentially unneeded individual signatures, but at the same time
reduce or eliminate retries, while choosing the smallest feasible quorum size.

For ease of presentation, we present our findings for ϕ(1) = 1
5 . Decreasing

this value slightly reduces k while increasing m.

Adversarial Stake
40% 33%

k
m

k m L-Abs L-Par k m L-Abs L-Par
ϕ(.55) 2422 20973 99.999 % ≈ 1 856 7407 1− 2−30 ≈ 1

ϕ(.60) 1445 11531 49.24 % ≈ 1 605 4824 99.667 % ≈ 1

ϕ(.67) 857 6172 LL ≈ 1 414 2980 48.31 % 1−2·10−18

ϕ(.75) 554 3597 LL 1−7·10−13 296 1921 LL 1−2 ·10−7

ϕ(.80) 445 2728 LL 1−5 ·10−7 250 1523 LL 99.98%

Table 2. Required values of k, n so that an adversarial quorum is formed with P ≤
2−128. L-Abs and L-Par represent probability to form quorum (before retries) when the
adversarial stake abstains or participates respectively. LL describes probabilities < 1%.
The parameters can be meaningfully used in conjunction with an incentive scheme or
as an auxiliary opportunistic parametrization where a less aggressive parametrization
is used as a fallback. Values of ≈ 1 indicate a chance of failure < 10−30.
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5.2 Proof Efficiency

Here, we investigate the costs of producing, transmitting and verifying individual
as well as aggregate signatures.

Proof Assymptotic k=414 k=604 k=855
Single PSB G1 +G2 + logN ·H +M 3.3KB 3.3KB 3.3KB
Single PSB (FN) G1 +M 78 B 78 B 78 B
Single PSC G1 +G2 + logN + 1 ·H +M 1.1KB 1.1KB 1.1KB
Single PSC (FN) G1 +M 70 B 70 B 70 B
Aggregate PSB G1 +G2 +O(log (k log q)) ·GH 4KB 4.5 KB 4.5 KB
Aggregate PSC k(G1 +G2 +M + S) + (logN −

log k + 3) ·H
359 KB 510 KB 716 KB

Table 3. Proof sizes for the PSB and PSC proof systems. Gi represent Gi elements,
H are hash outputs and S represents stake and M path & index metadata. Concrete
values are based on the parameters on the text: N = 30, 446 bit base elements and
hashes for the PSB setting, 384 and 256 bits for elements and hashes in the PSC setting,
128 bit stake and 48 bit metadata. Single PSB are over an arity-8 tree. The k values
were derived from Table 2. The indication (FN) is the setting where the verifier is a
full node and hence certain metadata can be eliminated from the signature.

Individual signatures For producing an individual signature, a user needs to
produce: (σ, regi, i,pi). Producing pi, requires logN evaluations of Hp which can
be amortised over multiple signatures on the same AVK. The signature itself, con-
sists of one evaluation of HG1

and one exponentiation. The cost of the mapping
evaluation is the dominant factor, as a user needs to evaluate the representation
function over all m possible indexes. The total cost is thus one exponentiation
plus m representation evaluations. The length of individual signatures consists
of is 2 group elements (one in G2), 3 bitstings for the stake, path, & index , and
logN hashes, and is thus dominated by the hashes in pi. For concreteness, we
assume that the 3 bit strings can be packed in 176 bits: path needs log k bits,
index needs logm and stake can be limited to 128 bit precision. When communi-
cating between users who have the contents of AVK in memory, signatures can
be reduced to 1 element for σ plus logN bits for i and logm for index, as ev can
be computed from σ, index,msg.

The costs of the verifier are logN evaluations of Hp, a pairing check and
one verification of the mapping function. We note that a verifier who holds the
(public) contents of AVK in memory can replace the hash evaluations with a
lookup.

The final step is the mapping evaluation. In the case of MR this consists
of a single hash evaluation. Verifying the elligator-based mapping ME is more
involved. We point out that the function selects one of many possible pre-images
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Proof Operations
Single PSB log8NHp+2Hs+400F+2P

Single PSC (logN + 1)Hs + 2P

Aggregate PSB O(k log q)E + 2P

Aggregate PSC k · (M1 +M2) + 2P

Table 4. Verification complexity comparison for the dominant operations and terms.
Mx represent Gx multiplications, F field operations, P represent pairings and E repre-
sent GH multi exponentiations. Hs and Hp represent symmetric and Poseidon hashes
respectively.

based on the index, which implies that the entire set f−1(Q) of pre-images needs
to be verified. Fortunately, in the analysis of Section 6, the pre-image set has a
size4 of either 4 or 2, depending on the quadratic character of an intermediate
value. A square can be verified by providing its “root” as a witness, while a non-
square can be verified by multiplying with a fixed, pre-determined non-square
and providing a root for the product. This way, we can allow for exactly 4
pre-images r1, r2, r3, r4 where r2 < r3, with the additional condition that either
r1 < r2, r3 < r4 or r1 = r2, r3 = r4 depending on the characteristic. The checking
of characteristics, verification of roots and isogeny evaluation can be performed
very efficient as verifying the value of a characteristic is much cheaper than
calculating it: i.e for any y and a known non-square d, it is enough to produce a
“root” r and a bit χ such that: r · r = y · χ+ y · d · (1− χ). Enforcing uniqueness
and correct ordering of the roots is the most expensive operation, requiring 3
range checks as we verify that ri+1 − ri is positive in the integers. Given that,
the cost of verifying a ME evaluation is dominated by the range checks enforcing
the correct ordering of pre-images.

PSB aggregate signatures. For aggregate signatures in this settingthe domi-
nating factor is the bulletproof. The circuit needs to verify the following opera-
tions:

– k(logN + 3) Hp evaluations for Merkle Tree lookups.
– k Hash evaluations for eσ.
– k short exponentiations in G2 to produce ivk.
– k short exponentiations in G1 to produce µ.
– 2k range checks with bound m (for index bounds, and index uniqueness).
– k Comparisons between ev and ϕ(stake).
– k Mapping evaluations for ev.
– k ϕ evaluations.

We note that most of the above checks can be performed efficiently as they
involve group operations in G1,G2 or field operations in GH for which our proof
4 The case of size 0 is also possible, but we will never be called to verify it.
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system is more efficient. The main outlier is the evaluation of ϕ. Fortunately,
we don’t actually need to evaluate ϕ in the proof: we can replace stake in the
tree with ϕ(stake) and proceed with the comparison directly. This gives us a
circuit size of O(k log q), and verifier complexity of O

(
k log4 q

log (k log q)

)
as verification

is dominated by a multiexponentiation based on the circuit size.

Estimate for constraints We now give an estimation on the number of constraints
required for our scheme, with a k value of 414, m = 2980, and log p = log q = 446
and N = 230. We assume G1 operations to require 12 constraints, G2 operations
4 times as much, range checks from 0 to 2b−1: b constraints, Merkle tree lookups
approximately cost 7290 constraints, but can be brought down to 4050 by chang-
ing the arity of the tree to 8:1. This estimates the cost of performing the lookups
individually. Given that we are doing multiple lookups, we can perform an addi-
tional optimization. The top layers of the tree are evaluated once for each user
which is redundant: the root hash is checked k = 414 times whereas it should be
checked only once. The lower levels are more dense, but still provide benefits: the
second level can be exhaustively checked with only 8 evaluations and the third
with 64. This implies that the amortized cost per lookup is ca 3009 constraints.
Hp evaluations for the leave contents can be performed at 4 : 1 compression at
a cost of 300 constraints. Comparisons between values cost 2b, 3b constraints,
amortized to 2b when values are used twice. Mapping representations involve 60
constraints plus 3 range checks.

In total we have:

– k · (3009 + 300) constraints for Merkle Tree lookups.
– k · 100 constraints for eσ.
– (k + 1) · 48 · 100 constraints for multiplications in G2 for ivk.
– (k + 1) · 12 · 100 constraints for multiplications in G1 for µ.
– 4k · logm for range checks and comparisons with bound m.
– 3k log q + 60k for representation function evaluations.

In total, we obtain 3k log q+4k logm+9329k ≈ 222 constraints. Extrapolating
from [13, 33, 34], for k=414 this gives us a proof size of under 4KB with a batched
verification time of ca. 100sec. Due to the incremental nature of signature and
public key aggregation it is simple to split it into a constant number of steps and
use a recursive proof system like Halo [12] to obtain a constant-time improvement
in verification speed as well as a (small) improvement to proof size. As we only
perform a constant number of recursion steps we are able to sidestep potential
soundness issues with regard to extraction efficiency.

PSC aggregate signatures. Concatenation based aggregate signatures are
simpler to check: The verifier can simply check every index separately at a cost
of k single verifications. This can be further optimized by checking the signatures
themselves in aggregate. This replaces k pairing checks with k−1 multiplications
in G1 and G2 and a single pairing check for the products. We point out that this
is significantly faster than randomized checking with small exponents.
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The size of the proofs is 2k group elements (k in G2), ca 176k bits for the
stake, path & index , and k logN hashes. For k = 414, logN = 30, 446 bits per
element and 256 bits per hash, this produces a proof size of ca. 454 KB.

It is however possible to do better. We can reuse the previous observation
about Merkle tree proofs over multiple leaves: for k = 414 leaves, revealing
the entirety of the 8th level of the tree can be accomplished by publishing 256
hashes. In turn, this reduces the length for each individual inclusion proof by
7 “steps”: rather than giving a path to the root, inclusion proofs can terminate
7 levels early. This brings down the cost to the equivalent of 3k G1 elements
and k(logN − 6.38) hashes.Furthermore, as we don’t need an embedded curve
setting, we can opt for a 384 bit curve following [3], and use a symmetric 256 bit
hash functions for the Merkle tree and the mapping. This produces a proof size
of ca. 359 KB.

5.3 Further PS Options

There exists a number of alternative circuit-based proof systems. SNARKs, such
as Plonk [27] and Sonic [44] offer constant prover complexity with the main
drawback of a trusted setup string.

Our approximation of the circuit complexity should be representative of per-
formance with such systems, though further optimizations may be possible, e.g
with custom Plonk gates for Poseidon. STARKs, such as Redshift [36] and Aurora
[6] offer similar verifier performance at the cost of large proofs. As zero knowl-
edge is not a requirement, the size required makes them less attractive. Finally,
recursive proof systems such as Halo [12] or Plonky2 [49] can also be explored:
constant depth recursion can reduce proof sizes and verifier load. Unbounded
recursion may also be possible depending on the application, though technical
complexities with oracle calls and extraction depth make such an adaption less
than straightforward.

6 A Dense Mapping from Elligator Squared

In this Section we propose a dense mappings based on Elligator Squared with a
representation function compatible with the Pluto/Eris [34] BN curves. While
constructions based on Elligator squared can be used with a very broad family
of elliptic curves, efficiency can be lacking if the mapping used inside the rep-
resentation function cannot be evaluated and inverted efficiently. Tailoring the
representation function to a specific curve or curve family is thus necessary to
arrive at meaningful efficiency estimates. The Ouroboros Crypsinous MUPRF
[37] uses a similar technique, but the additional requirements on group structure
do not provide us with curves compatible with the original Elligator [8] construc-
tion. Elligator squared [53] uses a general technique that is compatible with a
greater range of curves, but provides an efficient encoding function only for a
subset of curves.
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Boneh and Wahby [54] show how one can bridge this gap by using isoge-
nies to tranfer points to a curve that is more efficient to represent. Their work
focuses on the task of hashing into a curve as opposed to representing points
as random-looking bitstrings, but the isogeny can be evaluated in reverse at a
similar computational cost. A final obstacle is that Elligator squared uses ran-
domness in the calculation of the representation which can be problematic to
reason about inside a zero knowledge proof. We overcome this by pre-setting
this randomness via a random oracle, and accepting a significant probability of
evaluation failure. This is not a problem for our application, as we can account
for the probability of failure by adjusting the weighting function.

The representation function R : G1 × {0, 1}l → {0, 1}l is specified below,
adjusted from [53]. We modify it so that it always terminates after a single iter-
ration with the caveat that it can fail (i.e produce ⊥ as output) with significant
probability. R is parametrised by the curve modulus p, and a a d-well bounded
encoding f for d = 4.

Algorithm 1 Elligator Squared Representation
procedure Function R(y,x,t)

Q← y − hG1(x||t)
n← #f−1(Q)
j ← Hq(x||t) mod 4
if n < j then return ⊥
end if
{z0, . . . , zn} ← f−1(Q)
return Return zx, where zj = (zx, zy)

end procedure

The encoding f , is adapted from [54]. It is parametrized by a curve EI ,
isogenous to E, where G1 ∈ E, with an isogeny µ : E → EI of degree 3 [34].

To evaluate f(Q), we let Q2 ← µ(Q), and then evaluate the simplified SWU
encoding on Q2 ∈ EI . To calculate the inverse, we raise to the inverse of 3
mod q, apply the dual of µ, and calculate the inverse encoding in EI as in [53].
A key observation from the investigation of [53, 54] into this calculation is that
f−1(Q) consists of the roots of a bicubic equation and is thus efficient to both
calculate as well as prove.

To calculate the success probability of Algorithm 1 we invoke Lemma 5 of
[53], which we restate for the reader’s convenience. Let P (y) = Pr[R(y, x, t) ̸= ⊥]
and N(y) = 1

P (y) .

Lemma 9 (Lemma 5,[53]). For all y, let ϵT (y) = N(y)/d− 1, where d is the
bound of the encoding function f . Then, for all points y except possibly a fraction
of ≤ p−1/2 of them, we have:

ϵT (y) ≤ O(p−1/4)
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Corollary 1. Algorithm 1 terminates with an output other than ⊥ with proba-
bility at least 1

5 .

Proof. From lemma 9, and for d = 4 we know that for all but a fraction of
≤ p−1/2 y, N(y) ≤ 4 + O(p−1/4), thus P (y) ≥ 1

4+O(p−1/4)
. Thus, for all y, we

have P (y) ≥ 1
5 .

The regularity of the output is a direct consequence of applying Elligator
Squared to a uniformly random point Q. The only difference is that we choose
to abort early, and allow for a significant probability of returning ⊥.

Theorem 2 ([53]). The non-⊥ outputs of Algorithm 1 are ϵ-close to uniform
for ϵ = O(p−1/2).

We are now ready to show the main result of this Section. Let R(·) be the
representation function described in Algorithm 1. We can prove the following
lemma as an immediate outcome of Corollary 1 and Theorem 2.

Lemma 10. For all msg ∈ {0, 1}∗, and all index ∈ Z, the function ME
msg,index(y)

= R(msg, yHq(msg,index), index) is a dense mapping with Pr[M(y) ̸= ⊥] < 1
5 .

7 Applications

In this Section we delve with some more detail to some applications of mithril
(STM) signatures in the blockchain setting. In general, STMs could be applied
in any setting where we can associate an amount of stake to a set of public-keys.
Given such arrangement, stakeholders can produce certificates for any given
message msg of interest. Before we proceed, we remark that some care needs to
be applied to ensure the integrity of STM sampling based on our security model,
namely that user public-keys are fixed prior to messages being proposed for
signing. Even though grinding attacks have a negligible probability to produce
a forgery, cf. Lemma 5, an attacker who knows msg prior to the keys being
finalized, can attempt to grind the probability of signing msg by trying multiple
keys. In this way the attacker will boost somewhat the number of lottery tickets
it wins, something undesirable in practice (since e.g., we would need to take this
opportunity into account when selecting the number of lotteries m).

In a blockchain setting, this attack can be averted by storing the public-
keys on chain and then including an unpredictable fresh nonce drawn from the
blockchain itself as part of the message while also verifying that such nonce is
indeed fresh during the verification step. In practice, it will be sufficient to verify
that any msg considered for certification is unpredictable during the pubic-key
generation stage (in the blockchain setting, this can be done by e.g., including
an unpredictable fresh nonce drawn from the blockchain itself as part of the
message). For simplicity, we can assume this is implemented by default.
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As an alternative option, we can also modify the signature scheme by slightly
modifying the message and signature space. Instead of signing single messages
msg, we can explicitly split messages into two parts msg, aux. The first part,
msg is signed normally and eligibility is entirely derived from it. The second
part, aux is signed on the condition that the signer was eligible to sign msg. The
benefit of this approach is that we can explicitly restrict the grinding potential
for adversarial signers by enforcing a strict templating on msg and pushing
user-defined data to aux.

Split Signatures We point out that the signature aux on aux requires minimal
additional data: the path and registration info can be recovered from the first
signature, and the index is not relevant. We sketch out the modified construction
in Figure 7, using the extended language from Section 4.1 . The computational
overhead is also minimal: eligibility checking is not impacted, and aux is only
ever signed when msg eligibility has been established. For aggregation, the over-
heads are even smaller as we only need one additional element to store the
multisignature on aux.

Bitcoin Referendums. We first consider using mithril in the context of a
proof-of-work cryptocurrency such as Bitcoin as a decision-making tool. Using
STM it is possible to probe the population of Bitcoin holders (as opposed to,
say, the miners) regarding a particular topic or action. The idea is to express the
action in a message msg, agree on a stake threshold, (e.g., over 1/2 of all Bitcoin
supply) and then have them use STM to sign msg. If the threshold is exceeded
then it is possible to aggregate all individual signatures into a final signature
certification that assures the topic has been accepted by over 1/2 of the Bitcoin
supply. Below we provide an overview of how STM can be incorporated without
requiring any hard or soft fork of the Bitcoin codebase.

In Bitcoin, balances are sent to a ScriptPubKey and are spendable by re-
vealing a corresponding ScriptSig. The ScriptPubKey value can be either
of the form pay to public-key (p2pk) or pay-to-script-hash (p2sh). Payments
of the latter form are made to ScriptPubKey = OP_HASH160 <scripthash>
OP_EQUAL where <scripthash> is the hash of a “redeem script” that needs to be
provided when the UTXO is spent. Using p2sh it is possible to receive payments
and associate the resulting UTXO with an STM public-key. Specifically we can
use the following redeem script: OP_HASH160 <STMpkhash> OP_EQUALVERIFY
OP_HASH160 <pkhash> OP_EQUALVERIFY OP_CHECKSIG which contains the hashes
of the STM public-key and of an additional ECDSA key controlling the balance;
spending requires opening both keys and a signature for the ECDSA key.

Such a p2sh can be spent with the following ScriptSig <Sig> <pk> <STMpk>
<RedeemScript>. Evaluating this script by itself, will verify <STMpkhash>, <pk>
and the ECDSA signature. Subsequently it is also verified that <RedeemScript>
verifies correctly with regard to <scripthash>.

We observe that the above mechanism achieves the following objectives: the
STMpk value is hashed into ScriptPubKey as well as <RedeemScript>. Reveal-
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Protocol Π.STM. Operation Phase

• EligibilityCheck: On input (msg, aux, index), user Pi runs: Let msg ← AVK||msg,
σ ← MSP.Sig(msk,msg); ev ← MSP.Eval(msg, index, σ). Return 1 if ev < ϕ(stake),
else return 0.

• CreateSig: On input (msg, aux, index): If EligibilityCheck(msg, index) is 1, then let
msg ← AVK||msg;σ ← MSP.Sig(msk,msg);σaux ← MSP.Sig(msk, aux) and pro-
duce an individual signature π = (σ, σaux, regi, i,pi), where pi is the user’s path
inside the Merkle tree AVK and regi is (mvki, stakei).

• Verify: On input a party Pi, a signature π, index index, and message (msg, aux),
parse π = (σ, σaux, regi, i,pi). Parse regi as (mvki, stakei). Check that regi
corresponds to party Pi, let msg ← AVK||msg; ev ← MSP.Eval(msg, index, σ)
check that ev < ϕ(stakei) and check MT.Check(AVK, N, (vki, stakei), i,pi) = 1.
If parsing or checking fails, return 0. Otherwise, return MSP.Ver(msg,mvki, σ) ∧
MSP.Ver(aux,mvki, σaux).

• Aggregate: On input vectors P ,π, index and message (msg, aux), parse P ,π
and index as a vectors Pj , πj , indexj of size k, let msg ← AVK||msg and run
Verify(Pj , indexj ,msg, aux, πj).
If parsing or checking fails, return ⊥. If any indexj = indexi for j ̸= i re-
turn 0. Otherwise, parse πj = (σj , σaux,j , regj , ij ,pj) and regj as (mvkj , stakej).
Let ivk ← MSP.BKey(mvk,σ),,ivkaux ← MSP.AKey(mvk), µ ← MSP.ASig(σ),
µaux ← MSP.Aggr(aux,σaux), set x = (AVK, ivk, µ, eσ,msg) and w =
(mvkj , stakej ,pj , evj , σj , indexj) for j = 1 . . . k. Then, πavk ← PS.P+(PS.RS, x,w).
Return τ = (ivk, µ, eσ, ivkaux, µaux, πavk).

• VerifyAggregate: On input (τ,msg), parse τ → (ivk, µ, eσ, ivkaux, µaux, πavk),
check that PS.V+(PS.RS, (AVK, ivk, µ, eσ,msg), πavk) is true. If parsing and check-
ing is successful, let msg ← AVK||msg and return MSP.AVer(msg, ivk, µ) ∧
MSP.AVer(aux, ivkaux, µaux).

Fig. 7. STM Protocol with split signatures Π.STM_Split in the Operation Phase.
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ing the latter, enables anyone offchain to verify, but not spend, the stake of STMpk
–spending would also require the ECDSA signature <Sig>. Thus, individual STM
signatures can be verified and matched to the stake they correspond to.

Based on the above it is straightforward to use our STM construction as a
decision-making tool for Bitcoin holders. A proposal msg will be announced to-
gether with a threshold. Interested bitcoin owners reveal their <RedeemScript>
values and issue an individual signature on msg. The entirety of the above pro-
cess can happen off-chain as a layer 2 type of coordination. When a sufficient
number of those individual signatures are collected on msg, they can be aggre-
gated to issue an aggregate signature on behalf of Bitcoin holders collectively.

Fast bootstrapping in PoS Blockchains. In this scenario we want to facil-
itate the expedient synchronization of a client for a proof of stake blockchain.
The problem is similar to the problem of simplified payment verification (SPV)
as in [48], with the challenge that in a PoS blockchain, e.g., [39], there is no
way to verify blocks just by looking at the headers (as in the case of a PoW-
based blockchain); some transactional information is essential to establish the
stakeholder distribution that is eligible to issue blocks.

In order to facilitate the use of mithril in this setting first we have to expand
the blockchain accounting model so that each account is also associated with an
STM key —in addition to any other cryptographic keys necessary for spending
the balance or other operations such as delegating stake to other accounts. We
assume a synchronous system operation and divide time into periods; the length
of each period is sufficient to allow ledger settlement. Let SDi be a stakeholder
distribution that has become settled in the ledger (and hence all honest parties
are in agreement of) during period i. SD0 is then the stakeholder distribution
embedded in the genesis block; we assume that all parties are in agreement
regarding SD0.

When the distribution SDi is derived from the blockchain, the messagemsgi =
(i, Ci) is formed where Ci is a Merkle tree commitment to SDi. Subsequently the
stakeholders in SDi−1 attempt to issue an STM on msgi. Whenever a stakeholder
is eligible, they release the individual signature over the peer-2-peer network.
If sufficient individual signatures are collected with respect to the given stake
threshold (e.g., 1/2 or 2/3 as desired), the resulting signature, denoted by chpi
can be computed and disseminated. The triple (i, Ci, chpi) is considered the i-th
checkpoint of the blockchain.

In this way, the system continuously issues checkpoints. When a new client
joins for the first time with only knowledge of the genesis block, it queries and
verifies the sequence of checkpoints starting from the genesis block and arriving
up to the most recent one SDn. Subsequently individual blocks can be verified
with respect to SDn.

We observe that the above mechanism can be made to be, asymptotically,
of the same complexity as the SPV verification mechanism in PoW blockchains.
In particular, for a blockchain of length N , SPV requires clients to perform
work O(N log q) work (this is because of the linear in log q cryptographic op-
erations that need to be performed per block to verify the headers). To match
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this, in our application of STM, we can set the period frequency to be every
δ = k log3 q/ log(k log q) blocks, so that the verifier complexity will be propor-
tional to N/δ ·O(k log4 q/ log(k log q)) = O(N log q).
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