240 research outputs found

    Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

    Get PDF
    Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to- gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification

    Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder

    Get PDF
    Quantum-dot cellular automata (QCA) nanotechnology has the potential for revolutionizing the way computers are used. QCA computing has numerous advantages of ultra-low energy dissipation, improved performance and high device density. An adder is the most elementary component in arithmetic units of processors. Lot of work has been in progress to design and implement efficient adder circuits in QCA nanotechnology. This paper presents design and performance analysis of a new efficient coplanar adder in QCA nanotechnology. The proposed adder design uses 20% less QCA cells as compared to previous similar design due to better arrangement of QCA cells in the layout and has a delay of 1 clock cycle with an area of 0.04 µm2. The proposed adder has 19% less average leakage energy dissipation, 28% less average switching energy dissipation, and 25% less average energy dissipation than the best reported previous coplanar adder design. The cost function of proposed efficient adder is equal to best reported previous coplanar adder

    Design and analysis of efficient QCA reversible adders

    Get PDF
    Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architecture

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    Design of 4-Bit 4-Tap FIR Filter Based on Quantum-Dot Cellular Automata (QCA) Technology with a Realistic Clocking Scheme

    Get PDF
    The increasing demand for efficient signal processors necessitates the design of digital finite duration impulse response FIR filter which occupies less area and consumes less power. FIR filters have simple, regular and scalable structures. This paper represents designing and implementation of a low-power 4-tap FIR filter based on quantum-dot cellular automata (QCA) by using a realistic clocking scheme. The QCADesigner software, as widely used in QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation result has been computed for the proposed circuit using accurate QCADesigner-E software. The proposed QCA FIR achieves about 97.74% reduction in power compared to previous existing designs. The outcome of this work can clearly open up a new window of opportunity for low-power signal processing system

    Efficient and Robust Delay-Insensitive QCA (Quantum-Dot Cellular Automata) Design

    Get PDF
    The concept of clocking for QCA, referred to as the four-phase clocking, is widely used. However, inherited characteristics of QCA, such as the way to hold state, the way to synchronize data flows, and the way to power QCA cells, make the design of QCA circuits quite different from VLSI and introduce a variety of new design challenges. The most severe challenges are due to the fact that the overall timing of a QCA circuit is mainly dependent upon its layout. This issue is commonly referred to as the layout =timing problem. To circumvent the problem, a novel self-timed circuit design technique referred to as the locally synchronous, globally asynchronous design for QCA has been recently proposed. The proposed technique can significantly reduce the layout-timing dependency from the global network of QCA devices in a circuit; therefore, considerably flexible QCA circuit design is be possible. Also, the proposed technique is more scalable in designing large-scale systems. Since a less number of cells is used, the overall area is smaller and the manufacturability is better. In this paper, numerous multi-bit adder designs are considered to demonstrate the layout efficiency and robustness of the proposed globally asynchronous QCA design techniqu
    • …
    corecore