7 research outputs found

    Processing Analytical Queries in the AWESOME Polystore [Information Systems Architectures]

    Full text link
    Modern big data applications usually involve heterogeneous data sources and analytical functions, leading to increasing demand for polystore systems, especially analytical polystore systems. This paper presents AWESOME system along with a domain-specific language ADIL. ADIL is a powerful language which supports 1) native heterogeneous data models such as Corpus, Graph, and Relation; 2) a rich set of analytical functions; and 3) clear and rigorous semantics. AWESOME is an efficient tri-store middle-ware which 1) is built on the top of three heterogeneous DBMSs (Postgres, Solr, and Neo4j) and is easy to be extended to incorporate other systems; 2) supports the in-memory query engines and is equipped with analytical capability; 3) applies a cost model to efficiently execute workloads written in ADIL; 4) fully exploits machine resources to improve scalability. A set of experiments on real workloads demonstrate the capability, efficiency, and scalability of AWESOME

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1

    HADAD: A Lightweight Approach for Optimizing Hybrid Complex Analytics Queries

    Get PDF
    International audienceHybrid complex analytics workloads typically include (i) data management tasks (joins, filters, etc.), easily expressed using relational algebra (RA)-based languages, and (ii) complex analytics tasks (regressions, matrix decompositions, etc.), mostly expressed in linear algebra (LA) expressions. Such workloads are common in a number of areas, including scientific computing, web analytics, business recommendation, natural language processing, speech recognition. Existing solutions for evaluating hybrid complex analytics queriesranging from LA-oriented systems, to relational systems (extended to handle LA operations), to hybrid systems-fail to provide a unified optimization framework for such a hybrid setting. These systems either optimize data management and complex analytics tasks separately, or exploit RA properties only while leaving LA-specific optimization opportunities unexplored. Finally, they are not able to exploit precomputed (materialized) results to avoid computing again (part of) a given mixed (LA and RA) computation. We describe HADAD, an extensible lightweight approach for optimizing hybrid complex analytics queries, based on a common abstraction that facilitates unified reasoning: a relational model endowed with integrity constraints, which can be used to express the properties of the two computation formalisms. Our approach enables full exploration of LA properties and rewrites, as well as semantic query optimization. Importantly, our approach does not require modifying the internals of the existing systems. Our experimental evaluation shows significant performance gains on diverse workloads, from LA-centered ones to hybrid ones

    Federated Query Processing over Heterogeneous Data Sources in a Semantic Data Lake

    Get PDF
    Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for citizens. Big Data plays an important role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized nature of the Web, allowing for the availability of heterogeneous data generated and maintained by autonomous data providers. Consequently, the growing volume of data consumed by different applications raise the need for effective data integration approaches able to process a large volume of data that is represented in different format, schema and model, which may also include sensitive data, e.g., financial transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data sources in their original format, that reduce the overhead of materialized data integration. Query processing over Data Lakes require the semantic description of data collected from heterogeneous data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake. Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale semantic data integration, exploration, and discovery. Federated query processing techniques utilize source descriptions to find relevant data sources and find efficient execution plan that minimize the total execution time and maximize the completeness of answers. Existing federated query processing engines employ a coarse-grained description model where the semantics encoded in data sources are ignored. Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake. First, we tackle the challenge of knowledge representation and propose a novel source description model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities belonging to the same semantic concept. Then, we propose a technique for data source selection and query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario, that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and access control requirements imposed by data providers. We introduce a privacy-aware federated query technique, BOUNCER, able to enforce privacy and access control regulations during query processing over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source descriptions in order to express privacy and access control policies as well as their automatic enforcement during source selection, query decomposition, and planning. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over data sources that not only contain the relevant entities to answer a query, but also are regulated by policies that allow for accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and co-evolution of data sources. We present a novel approach for interest-based RDF update propagation that consistently maintains a full or partial replication of large datasets and deal with co-evolution
    corecore