27 research outputs found

    Big Data in the Cloud: A Survey

    Get PDF
    Big Data has become a hot topic across several business areas requiring the storage and processing of huge volumes of data. Cloud computing leverages Big Data by providing high storage and processing capabilities and enables corporations to consume resources in a pay-as-you-go model making clouds the optimal environment for storing and processing huge quantities of data. By using virtualized resources, Cloud can scale very easily, be highly available and provide massive storage capacity and processing power. This paper surveys existing databases models to store and process Big Data within a Cloud environment. Particularly, we detail the following traditional NoSQL databases: BigTable, Cassandra, DynamoDB, HBase, Hypertable, and MongoDB. The MapReduce framework and its developments Apache Spark, HaLoop, Twister, and other alternatives such as Apache Giraph, GraphLab, Pregel and MapD - a novel platform that uses GPU processing to accelerate Big Data processing - are also analyzed. Finally, we present two case studies that demonstrate the successful use of Big Data within Cloud environments and the challenges that must be addressed in the future

    Prospectus, April 8, 2015

    Get PDF
    Connect, Create and Innovate. PEN providing resources for students in business, Internships beneficial to students over summer break, Racism a lingering problem among collegiate millennials(AP), Senator Brady wants to push university privatization discussion(AP), \u27Content with Nothing\u27(AP), WWI graffiti sheds light on soldiers’ experience(AP), Indiana faces long road to restore image(AP), Report: Rolling Stone rape article ‘journalistic failure’(AP), Wascher named NJCAA Division II Player of the Year(Athletic Director), Softball schedule 2015, ‘Furious 7’ races past expectations with $143.6 million(AP)https://spark.parkland.edu/prospectus_2015/1008/thumbnail.jp

    WSU Research News, Spring/Summer 2014

    Get PDF
    A seventeen page newsletter of the WSU Research News. The WSU Research News was published monthly beginning in June of 1968 and issued by the Office of Research Development. This newsletter was created to provide information to the WSU faculty about the availability of outside funds for research and educational programs, new developments that may affect availability of funds, and general information on research and educational activities at Wright State University.https://corescholar.libraries.wright.edu/wsu_research_news/1209/thumbnail.jp

    2016 Projects Day Booklet

    Get PDF
    https://scholarworks.seattleu.edu/projects-day/1031/thumbnail.jp

    Case Analyses in Financial Accounting

    Get PDF
    The following thesis explores topics in the profession of public accounting, a diverse and ever-evolving field. As the global business environment and economy develop, so must accounting standards and ideas in order to protect the interests of the masses who invest and take part in the larger economy. The following cases expound on important concepts in the field of accountancy and provide careful consideration of standards utilized and debated worldwide. Each case is explored within the context of a different company or situation, allowing for a diverse palette of research topics from which to view the business world through an accounting lens. The case studies were completed under the direction of Victoria Dickinson in fulfillment of requirements for the University of Mississippi’s Sally McDonnell Barksdale Honors College and Patterson School of Accountancy ACCY 420 course in the 2017-2018 academic year

    vol.85, issue 6, October 26, 2017

    Get PDF

    Novel high performance techniques for high definition computer aided tomography

    Get PDF
    Mención Internacional en el título de doctorMedical image processing is an interdisciplinary field in which multiple research areas are involved: image acquisition, scanner design, image reconstruction algorithms, visualization, etc. X-Ray Computed Tomography (CT) is a medical imaging modality based on the attenuation suffered by the X-rays as they pass through the body. Intrinsic differences in attenuation properties of bone, air, and soft tissue result in high-contrast images of anatomical structures. The main objective of CT is to obtain tomographic images from radiographs acquired using X-Ray scanners. The process of building a 3D image or volume from the 2D radiographs is known as reconstruction. One of the latest trends in CT is the reduction of the radiation dose delivered to patients through the decrease of the amount of acquired data. This reduction results in artefacts in the final images if conventional reconstruction methods are used, making it advisable to employ iterative reconstruction algorithms. There are numerous reconstruction algorithms available, from which we can highlight two specific types: traditional algorithms, which are fast but do not enable the obtaining of high quality images in situations of limited data; and iterative algorithms, slower but more reliable when traditional methods do not reach the quality standard requirements. One of the priorities of reconstruction is the obtaining of the final images in near real time, in order to reduce the time spent in diagnosis. To accomplish this objective, new high performance techniques and methods for accelerating these types of algorithms are needed. This thesis addresses the challenges of both traditional and iterative reconstruction algorithms, regarding acceleration and image quality. One common approach for accelerating these algorithms is the usage of shared-memory and heterogeneous architectures. In this thesis, we propose a novel simulation/reconstruction framework, namely FUX-Sim. This framework follows the hypothesis that the development of new flexible X-ray systems can benefit from computer simulations, which may also enable performance to be checked before expensive real systems are implemented. Its modular design abstracts the complexities of programming for accelerated devices to facilitate the development and evaluation of the different configurations and geometries available. In order to obtain near real execution times, low-level optimizations for the main components of the framework are provided for Graphics Processing Unit (GPU) architectures. Other alternative tackled in this thesis is the acceleration of iterative reconstruction algorithms by using distributed memory architectures. We present a novel architecture that unifies the two most important computing paradigms for scientific computing nowadays: High Performance Computing (HPC). The proposed architecture combines Big Data frameworks with the advantages of accelerated computing. The proposed methods presented in this thesis provide more flexible scanner configurations as they offer an accelerated solution. Regarding performance, our approach is as competitive as the solutions found in the literature. Additionally, we demonstrate that our solution scales with the size of the problem, enabling the reconstruction of high resolution images.El procesamiento de imágenes médicas es un campo interdisciplinario en el que participan múltiples áreas de investigación como la adquisición de imágenes, diseño de escáneres, algoritmos de reconstrucción de imágenes, visualización, etc. La tomografía computarizada (TC) de rayos X es una modalidad de imágen médica basada en el cálculo de la atenuación sufrida por los rayos X a medida que pasan por el cuerpo a escanear. Las diferencias intrínsecas en la atenuación de hueso, aire y tejido blando dan como resultado imágenes de alto contraste de estas estructuras anatómicas. El objetivo principal de la TC es obtener imágenes tomográficas a partir estas radiografías obtenidas mediante escáneres de rayos X. El proceso de construir una imagen o volumen en 3D a partir de las radiografías 2D se conoce como reconstrucción. Una de las últimas tendencias en la tomografía computarizada es la reducción de la dosis de radiación administrada a los pacientes a través de la reducción de la cantidad de datos adquiridos. Esta reducción da como resultado artefactos en las imágenes finales si se utilizan métodos de reconstrucción convencionales, por lo que es aconsejable emplear algoritmos de reconstrucción iterativos. Existen numerosos algoritmos de reconstrucción disponibles a partir de los cuales podemos destacar dos categorías: algoritmos tradicionales, rápidos pero no permiten obtener imágenes de alta calidad en situaciones en las que los datos son limitados; y algoritmos iterativos, más lentos pero más estables en situaciones donde los métodos tradicionales no alcanzan los requisitos en cuanto a la calidad de la imagen. Una de las prioridades de la reconstrucción es la obtención de las imágenes finales en tiempo casi real, con el fin de reducir el tiempo de diagnóstico. Para lograr este objetivo, se necesitan nuevas técnicas y métodos de alto rendimiento para acelerar estos algoritmos. Esta tesis aborda los desafíos de los algoritmos de reconstrucción tradicionales e iterativos, con respecto a la aceleración y la calidad de imagen. Un enfoque común para acelerar estos algoritmos es el uso de arquitecturas de memoria compartida y heterogéneas. En esta tesis, proponemos un nuevo sistema de simulación/reconstrucción, llamado FUX-Sim. Este sistema se construye alrededor de la hipótesis de que el desarrollo de nuevos sistemas de rayos X flexibles puede beneficiarse de las simulaciones por computador, en los que también se puede realizar un control del rendimiento de los nuevos sistemas a desarrollar antes de su implementación física. Su diseño modular abstrae las complejidades de la programación para aceleradores con el objetivo de facilitar el desarrollo y la evaluación de las diferentes configuraciones y geometrías disponibles. Para obtener ejecuciones en casi tiempo real, se proporcionan optimizaciones de bajo nivel para los componentes principales del sistema en las arquitecturas GPU. Otra alternativa abordada en esta tesis es la aceleración de los algoritmos de reconstrucción iterativa mediante el uso de arquitecturas de memoria distribuidas. Presentamos una arquitectura novedosa que unifica los dos paradigmas informáticos más importantes en la actualidad: computación de alto rendimiento (HPC) y Big Data. La arquitectura propuesta combina sistemas Big Data con las ventajas de los dispositivos aceleradores. Los métodos propuestos presentados en esta tesis proporcionan configuraciones de escáner más flexibles y ofrecen una solución acelerada. En cuanto al rendimiento, nuestro enfoque es tan competitivo como las soluciones encontradas en la literatura. Además, demostramos que nuestra solución escala con el tamaño del problema, lo que permite la reconstrucción de imágenes de alta resolución.This work has been mainly funded thanks to a FPU fellowship (FPU14/03875) from the Spanish Ministry of Education. It has also been partially supported by other grants: • DPI2016-79075-R. “Nuevos escenarios de tomografía por rayos X”, from the Spanish Ministry of Economy and Competitiveness. • TIN2016-79637-P Towards unification of HPC and Big Data Paradigms from the Spanish Ministry of Economy and Competitiveness. • Short-term scientific missions (STSM) grant from NESUS COST Action IC1305. • TIN2013-41350-P, Scalable Data Management Techniques for High-End Computing Systems from the Spanish Ministry of Economy and Competitiveness. • RTC-2014-3028-1 NECRA Nuevos escenarios clinicos con radiología avanzada from the Spanish Ministry of Economy and Competitiveness.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: José Daniel García Sánchez.- Secretario: Katzlin Olcoz Herrero.- Vocal: Domenico Tali

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms
    corecore