

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

1

Big Data in the Cloud: A Survey

Pedro Caldeira Neves A,B, Jorge Bernardino A,C

A Polytechnic of Coimbra, Rua Pedro Nunes - Quinta da Nora, Coimbra, Portugal, pedrofilipeneves@gmail.com

B Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA

C CISUC - Centre for Informatics and Systems of the University of Coimbra, DEI – Pólo II,

Coimbra, Portugal, jorge@isec.pt

ABSTRACT

Big Data has become a hot topic across several business areas requiring the storage and processing of huge

volumes of data. Cloud computing leverages Big Data by providing high storage and processing capabilities and

enables corporations to consume resources in a pay-as-you-go model making clouds the optimal environment

for storing and processing huge quantities of data. By using virtualized resources, Cloud can scale very easily,

be highly available and provide massive storage capacity and processing power. This paper surveys existing

databases models to store and process Big Data within a Cloud environment. Particularly, we detail the

following traditional NoSQL databases: BigTable, Cassandra, DynamoDB, HBase, Hypertable, and MongoDB.

The MapReduce framework and its developments Apache Spark, HaLoop, Twister, and other alternatives such

as Apache Giraph, GraphLab, Pregel and MapD – a novel platform that uses GPU processing to accelerate Big

Data processing – are also analyzed. Finally, we present two case studies that demonstrate the successful use of

Big Data within Cloud environments and the challenges that must be addressed in the future.

TYPE OF PAPER AND KEYWORDS

Research review: Big Data, Cloud Computing, NoSQL, MapReduce, Graph based DBMS

1 INTRODUCTION

Society is becoming deeply immersed in the use of

electronic devices that generate Petabytes of data, a

gold mine for knowledge extraction, with different

volume, velocity, and variety. Value and veracity are

also two important properties that specify the need of

valuable and truthfulness data. These five properties

are known as the 5 V´s model that supports the Big

Data concept [10].

Big Data became a hot topic among computer

researchers and business areas [60], providing

organizations with a powerful tool to analyze large

structured and unstructured data and make useful

decisions through it. Knowledge extraction frequently

requires sophisticated analytic solutions that mine

structured and unstructured data helping organizations

gaining insights over the information within their

private and public data.

Cloud computing is currently one of the most

discussed and promising topic in the information

technology field and it was listed in Gartner’s top ten

technologies list for the last four consecutive years [9].

Cloud computing became a trend for researchers and

organizations [21], allowing virtualizing resources and

offering theoretically unlimited processing power and

storage. In practice, cloud can easily scale up with two

types of scaling: vertical scaling, which offers the

possibility to upgrade servers; and horizontal scaling

that allows adding new servers to a cluster [9].

 Open Access

Open Journal of Big Data (OJBD)

Volume 1, Issue 2, 2015

www.ronpub.com/ojbd

ISSN 2365-029X

© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

2

Organizations that require a dynamic information

technology infrastructure are moving to cloud due its

scalability and effective pricing models. Cloud features

allow startups (and others), that usually do not possess

a large budget for IT investment, to hire computer

resources in a pay-as-you-go model. From the Big Data

perspective, cloud is an interesting environment, since

it virtualizes distributed resources provide large storage

capacities and high processing power (therefore, it can

host and process big volumes of data).

In this paper we present Big Data in the cloud.

Particularly we describe NoSQL databases;

MapReduce and other variants such as: HaLoop,

Twister and Apache Spark that address MapReduce’s

lack of interactivity; Pregel, GraphLab and Apache

Giraph, that were designed to work with graphs,

instead of data files; and MapD, which is a novel

approach to accelerate Big Data processing by means

of GPU processing power. As these systems run over

distributed architectures they perfectly fit in the cloud

paradigm and are often offered as Big Data as a service

or used by several online applications. The paper

presents two case studies showing how Big Data and

Cloud computing match, the issues on moving big

loads of data to the cloud and the existent solutions,

disaster recovery plans, and existing Big Data

challenges.

The remainder of this paper is structured as follows.

Section 2 introduces Big Data and Cloud Computing.

Section 3 presents NoSQL, MapReduce, Graph

databases and GPU processing. Section 4 discusses the

case studies and existent problems and solutions when

moving Big Data to the cloud. Section 5 discusses

disaster recovery, and Section 6 presents Big Data

challenges, new trends and future directions. Finally,

Section 7 concludes the paper.

2 BIG DATA AND CLOUD COMPUTING

The Big Data concept has been strongly leveraged and

became a major force of innovation across academics,

governments and corporates. The paradigm is regarded

as an effort to understand and get information from

data (Big Data Analytics), providing insights and

information over huge datasets. Therefore, it is seen by

governments as a way to improve cities (smart cities

[56], [11]) and get proper insights over their people.

Corporates regard this technology as a way to better

know and understand their clients, to get closer to them

and gain competitive advantage over their competitors.

At last, Big Data is viewed by scientists as a mean to

store and process huge amounts of data such as those

yielded by CERN’s Large Hadron Collider (LHC) in

Switzerland [4].

 Table 1. Examples of Big Data sizes [58]

Data Set/Domain Description

Social Media
12+ Terabytes (1012) of tweets

every day and growing.

British Library UK

Website Crawler

~110 Terabytes (1012) per

domain crawl to be delivered

LHC - Large

Hadron Collider

(CERN)

13-15 Petabytes (1015) in 2010

Internet

Communications

(Cisco)

667 Exabytes (1018) in 2013

Digital Universe 7.9 Zettabytes (1021) (2015)

Big Data not only concerns the ability to storage

huge amounts of data but also ways to process and

extract knowledge from it [35]. Table 1 presents some

examples of Big Data sizes in different domains. In

practice, a big data database can contain structured and

unstructured data that may come at different velocities,

be varied and have different volumes. These are known

by the three “V’s” of big data [60]. Two other “V’s” –

veracity and value – are also important to explain that

quantity is good but valuable and trustful data are also

important (see Figure 1). The following paragraphs

briefly describe the 5 V’s model:

Volume concerns the huge loads that typically Big

Data has to deal with. Processing and storing big

volumes of data is rather difficult, since it concerns

(among others): scalability (vertical, horizontal or both)

in order to facilitate the storage and processing power

growth; availability, which guarantees access to data

and ways to perform operations over them; and

bandwidth and performance, that guarantee the access

to data at the right-time.

Variety concerns the different types of data from

various sources that Big Data frameworks have to deal

with (typically, different sources output different kinds

of data). Big Data is a way to overcome these

differences and unify data. Internet of Things (IoT)

[43] is a Big Data related topic that studies data from

individual objects of everyday life that can be very

varied: Internet traffic, smartphones, wearable

technology, and others. In order to process various

types of data, Big Data must provide data-type

abstraction frameworks.

Velocity concerns the different rates from each data

source. For instance, an Enterprise Data Warehouse

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

3

(EDW) is typically updated once every day, whilst

information from wireless sensor systems is constantly

being updated. In order to aggregate data from several

data sources, Big Data must be able to deal which data

arriving at different velocities.

Value concerns the true value of data (i.e., the potential

value of the data regarding the information they

contain). Huge amounts of data are useless if they do

not provide value for who is exploring it.

Veracity refers to the trustfulness of the data (i.e., it

addresses the confidentiality, integrity, and availability

of the data). Data are meaningless if their source is

unreliable. Therefore, organizations need to ensure that

the data is correct as well as the analyses performed on

the data are correct.

The five V’s of Big Data complement each other in

order to provide solutions that are able to store and

process data more efficiently.

Cloud computing is another modern movement that

offers theoretically unlimited on-demand services to its

users. Cloud’s ability to virtualize resources allows

abstracting from hardware, requiring little interaction

with cloud providers and smoothly enabling users to

access terabytes of storage, high processing power and

high availability as a pay-as-you-go model [36].

Moreover cloud computing transfers all costs and

responsibilities from the user to the cloud provider,

leveraging companies in their early days.

Normally, it is a great endeavor for a startup

company to start its business within IT market because

they typically do not have the resources to buy their

own data servers or machines. In addition to the

hardware expenses, a company must consider several

other costs such as software licenses, hardware, IT

personnel and the maintenance of the infrastructure.

Cloud computing provides an easy way to get resources

on a pay-as-you-go basis, offering scalability and

availability, which means that companies can easily

negotiate resources with the cloud provider in order to

operate their business.

Cloud providers usually offer three different basic

services: Infrastructure as a Service (IaaS); Platform as

a Service (PaaS); and Software as a Service (SaaS):

IaaS delivers storage, processing power, virtual

machines, and so on. From the point of view of cost

reduction, it makes sense to hire computer power as

virtual machines. All that is needed is a couple of low-

cost computers to serve as front-end to access the

virtual machines stored in the cloud. The cloud

provider satisfies the needs of the client by virtualizing

resources according to the service level agreements

(SLAs). Some examples of IaaS are Amazon EC21 and

Google Compute Engine2.

PaaS is built on top of IaaS. The service allows the

user to deploy cloud applications created using the

programming and runtime environments supported by

the provider. Once more, by contracting this service,

one is released from server maintenance and software

updates, transferring those concerns to the cloud

provider. Examples of PaaS are Google App Engine3

and Microsoft Azure4.

SaaS is one of the most known cloud models. It

consists of applications running directly in the cloud

provider. Some of the most used SaaS applications are

Google Docs and Dropbox.

As shown in Figure 2, these three basic services are

closely related: SaaS is developed over PaaS and

ultimately PaaS is built on top of IaaS. Also, from

these basic services several others emerged, including

Database as a Service (DBaaS) [61] and BigData as a

Service (BDaaS) [27]. DBaaS (DataBase as a Service),

as well as BDaaS (Big Data as a Service), usually

consist in a SaaS that allows users to hire database

services. AaaS [17] (Analytics as a Service) is another

service that allows users to hire analytics tools to

perform calculations over data.

Since cloud virtualizes resources that are often

distributed in clusters or datacenters, it is the most

suitable framework for Big Data processing. By

virtualizing thousands of machines we can create the

high processing power and high storage levels to store

and process big amounts of data.

Figure 1: 5 V’s model of Big Data

1 http://aws.amazon.com/ec2/
2 https://cloud.google.com/compute/
3 https://cloud.google.com/appengine/
4 https://azure.microsoft.com/en-us/

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

4

Figure 2: Relationship of cloud basic services

3 BIG DATA DBMS

Big Data and traditional entity-relation DBMS

(Relational DBMS) are two incompatible concepts

[10]. Firstly because the amount of data is too big to be

managed by an entity-relational model; and secondly

because traditional models tend to not work well (or be

very expensive) on distributed systems, thus,

availability and scalability are compromised.

Commercial DBMSs tend to work better than open

source but when processing big loads of data, they

must run under complex hardware, which becomes

expensive when scaling to clusters of machines.

Regarding scalability, Relational DBMS features

make them less flexible – especially concerning scaling

out. As such, several projects like MySQLCluster [8],

VoltDB [67] and others were designed in order to

provide scalability while still using basic MySQL

properties. By using a sharded, (which is a mechanism

that splits large datasets into smaller ones) and shared

nothing architecture (a system where each node is

independent) these projects accomplished to

successfully scale-out SQL, separating tables over

various servers. Nevertheless, as they use traditional

MySQL, there are still some limitations:

 Use of small-scope operations: operations that

spans many nodes – such as joins – do not scale

well with sharding.

 Use of small-scope transactions: transactions that

span many nodes are very inefficient.

Not Only SQL (NoSQL) DBMS bypass these

problems by avoiding performing large operations,

large transactions and join operations. NoSQL DBMS

were developed as highly scalable databases that allow

easy data distribution over a number of servers. Next,

we provide an overview of NoSQL and

Hadoop/MapReduce systems and several interactive

alternatives. Additionally, we specify the

characteristics of graph databases and MapD, which

uses GPU processing for accelerate Big Data

processing.

3.1 NoSQL

NoSQL (Not Only SQL) technology does not rely on

entity-relation models; instead, information is stored as

‘key-value’ pairs, documents, columns or graphs,

which supports an easy scale out process (horizontal

scaling – the process of adding new machines to a

cluster). These systems were developed to run over

distributed and fault-tolerant architectures in which

data resides in several redundant servers so that the

system can be easily scalable. However, NoSQL

systems offer little more than an efficient way to store

and replicate data, providing only retrieval and

appending operations. In the following paragraphs we

overview the characteristics of some of the most used

NoSQL systems: BigTable [28], DynamoDB [31], and

the open source Cassandra [1], HBase [43], Hypertable

[32], and MongoDB [47].

BigTable: was developed by Google in 2004 and is

now used in more than 60 Google applications such as

Google Earth, Web Indexing, Google Financing,

Google Analytics and Personalized search. The system,

which was developed to be a distributed, high efficient,

proprietary system to manage structured data, was built

upon the Google file system. It organizes tables as

different groups of columns with variable dimensions

and consisting in a sparse, distributed, persistent,

multidimensional sorted map [28] in which the map is

indexed by a row, a column key and a timestamp and

each value in the map is an uninterpreted array of

bytes.

Data in Big Table is organized in tablets that are

assigned to a root table that contains the location of all

tablets. When a write operation arrives at a tablet

server, the server checks if it is well-formed and if the

user has authorization to perform writing operations. If

that is the case, the operation is written to a commit

log. After the write has been committed, its contents

are written to the memTable – Table stored in memory.

When a read operation arrives to the tablet server, it is

also checked if it is well-formed and if the user has

proper authorization to get that data. Only then, the

operation is executed.

Concerning the API, the system allows client

applications to create and delete tables and column

families, changing clusters (exploring locality), tables,

and column family metadata [28].

Cassandra [25], [53] is one of the most known engines

for NoSQL. The system provides “automatic data

distribution across all nodes that participate in a

“ring” or database cluster” [24]. Cassandra [54]

supplies high performance at massive scale and high

availability which, instead of using a legacy master-

slave or a manual and difficult-to-maintain shared

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

5

design, uses a peer-to-peer (P2P) distributed

architecture that is much more elegant, easy to set up

and maintain and has no single point-of-failure.

Cassandra’s built-for-scale architecture allows it to

handle petabytes of information and thousands of

concurrent users/operations per second (across multiple

data centers) as easily as it can manage much smaller

amounts of data and user traffic [24]. Similarly to

BigTable, Cassandra implements a hierarchical

architecture based on columns (name, value and

timestamp) grouped by families that map the columns

in each line. Cassandra’s first dimension is a keyspace

that contains the column families.

When a read or write operation arrives, the system

identifies the nodes that own the specified key and

route the requests to those nodes, waiting for a reply. If

the reply does not come within a configured timeout,

the request is considered to have failed. Updates are

cached in memory and then written back to the disk.

DynamoDB [31], [30] was developed by Amazon to

support its applications. The system was built to meet

high reliability and availability requirements, applying

techniques like data partitioning and replication using

consistent hashing. DynamoDB provides consistency

through object versioning: during updates, the

consistency is maintained by a “quorum-like technique

and a decentralized replica synchronization protocol”

[31]. Query operations consist in read/write operations

to data items that are uniquely identified by a key.

States are stored as binary objects (blobs) identified by

unique keys. The system allows distributing the load

across multiple storage hosts and the possibility for the

administrator to configure how many copies of the data

items are created for fault tolerance purposes.

DynamoDB can execute two operations: get() and

put(). A node that handles a read() or a put() is named

coordinator and is typically the first node of a ranked

preference list. Read and write operations involve the

first healthy nodes of the preference list, skipping over

those that are down or inaccessible. Upon receiving a

put() request for a key, the coordinator generates a

vector clock and stores it locally. The coordinator then

sends it to the N highest-ranked reachable nodes. When

receiving a read() request, the coordinator requests all

existing versions of data for that key from the N

highest-ranked reachable nodes in the list for that key.

If the coordinator receives multiple versions of the

same data, it returns all the unrelated versions.

DynamoDB provides fault detection and allows nodes

to be added and removed without any manual

partitioning or redistribution.

HBase [43], [13] is an open-source, scalable, fault-

tolerant, widely used system, built on top of Apache

Hadoop and modeled around BigTable. HBase is used

in many different systems and by many enterprises and

entities such as Facebook, Twitter, and Mendeley. This

system is a sparse, multidimensional, sorted map in

which each cell is uniquely identified by row id,

column id and timestamp set. Its architecture relies on

Hadoop (HDFS) to store files and MapReduce to

single-row or multi-row operations. Processing data

requires mapping data into Hadoop nodes, shuffle data

and reduce the outputs (MapReduce is detailed in

section 3.2).

HBase is scalable and fault-tolerant and performs

atomic row operations with row level-locking,

featuring compression and in-memory operations.

Partitioning and distribution methods are transparent as

there is a multiple master support, to avoid a single

point-of-failure.

Hypertable [10], [39] is an open source scalable

database modeled from BigTable as a distributed

system that allows parallelization and represents data

as a multidimensional table. Hypertable is designed to

use a highly available and scalable file system such as

Hadoop (although it can run on top of any file system).

This system follows a master slave architecture where

the master does not handle data; instead, it coordinates

slave nodes (range servers), which handle write/read

operations.

When a write operation arrives, Hypertable inserts

it in the Commit Log, before changing the in-memory

CellCache. The system then sends an acknowledgment

to the application that requested the write operation.

When a read request arrives, Hypertable routes the

request to the proper range server in order to get the

data. This system provides a low-level API and has its

own query language (Hypertable Query Language –

HQL) that allows creating, modifying and querying the

multidimensional table.

MongoDB [47], [59] is an open source, scalable cross-

platform, document oriented database engine that aims

at providing high performance, availability and easy

scalability. A MongoDB deployment hosts a number of

databases that consist in sets of collections that hold a

set of documents. A document is a set of key-value

pairs with a dynamic schema, which means that

documents in the same collection do not need to have

the same set of fields or structure. A document may

hold very different and complex types of data, storing

complex data types and large binary data files like

videos and images.

A MongoDB cluster is made of one or two nodes

and read/write operations are routed to the appropriate

nodes. Concerning scalability, auto sharding [51]

allows to scale clusters linearly by adding more

machines, being possible to increase capacity without

any downtime. MongoDB’s replication is mostly used

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

6

for failover and not for scalability. The system supports

master-slave replication with automatic failover and

recovery, and replication (and recovery) is done at the

level of shards.

These six DBMS share the goal of addressing

RDBMS inefficiencies, although they present several

differences. In a nutshell, they differ on the type of data

stored. While BigTable, DynamoDB and HBase can

only store structured data, Cassandra and MongoDB

can contain structured, semi-structured and

unstructured data and Hypertable, structured and

unstructured data. Also, they address data differently –

Cassandra, BigTable and Hypertable are column

oriented DBMS whereas DynamoDB and HBase use

key-value pairs and MongoDB is JSON document

oriented.

Concerning schema, BigTable, Hypertable and

HBase are schema-oriented, while DynamoDB is

schema-free. Cassandra is schema-optional, which

means that it may, or may not use schema, while

MongoDB provides document dynamic schemas. In

MongoDB users can easily add or remove fields from a

document. Regarding the architecture, all systems

follow a master-slave approach with the exception of

Cassandra, which follows a P2P architecture.

Concerning the API, BigTable provides functions

to change cluster, HBase and Cassandra provide in-

memory capabilities and Hypertable has Hadoop

compatibility. Table 2 presents a summary of each the

features of each system. “Main type” stands for the

type of architecture used. Here, the three types of data

models are Column family, Document and Key-value.

The types of data supported refer to the data that each

DBMS can handle. Schema refers to the possibility of a

DBMS to be schema-less or schemafull. Being a

schemafull DBMS means that the DB must obey to a

predefined schema to be able to manage data whereas

schema-less means the opposite. Dynamic schema

means that the schema can change very easily.

Architecture stands for the type of architecture (models

of communication) used in the design of the DBMS

and consistency ensures that any transaction will bring

the database from one valid state to another.

3.2 MapReduce

MapReduce (best known by its open source

implementation: Hadoop) has become a de facto

standard used by several commercial and non-

commercial solutions in the context of Big Data. The

system consists in an abstraction layer that handles

hardware complexity and creates an interface between

the programmer and the data management.

MapReduce was developed as a shared-memory

system following a master/slave architecture and uses

HDFS [40], which creates and replicates clusters (fault-

tolerance), splitting and replicating datasets to nodes

where they are more likely to be consumed by

mappers. Exploring locality is a feature that improves

MapReduce performance [21] (i.e., the performance is

better if the distance between tasks and needed data is

smaller).

The abstraction provided by this framework

requires programming only two functions: “Map”,

which is used for per-record computation; and

“Reduce” that aggregates the output from the “Map”

functions and gathers the final results. Typically, the

programmer specifies both functions within a single

job. The job then automatically divides the input

dataset into several independent subsets that are then

processed by the “Map” tasks in slave nodes. At last,

MapReduce sorts (shuffle) the “Map” results,

aggregating them through the “Reduce” function (job

performed by a Master node).

The MapReduce framework has been scored as one

of the best frameworks regarding Big Data. This is due

to several features, namely: fault-tolerance, parallelism,

locality exploration, throughput, and abstraction.

However, the purpose of storing such amounts of data

is to analyze and retrieve meaningful information from

it. In this topic, MapReduce lacks essential features

[66]: first, its performance is better than the traditional

DMBSs only when it concerns high volumes of data

and second, custom code has to be written even for the

most common operations.

Many programmers are unfamiliar with the

MapReduce framework. Thus, they rather prefer to use

SQL or a similar language as a high-level declarative

language to program tasks, leaving details to the

backend engine. In this direction, several languages

were developed to simplify the task of programming

for MapReduce:

Hive [15] is a platform that uses an SQL-similar

language (declarative) – HiveQL – to query

MapReduce, translating queries into acyclic graphs of

MapReduce jobs and submitting them to Hadoop for

execution. It becomes a user-friendly SQL-like easy to

use tool that serves as intermediate between

MapReduce and the user, skipping the difficulties of

programming directly MapReduce tasks. Hive was

developed by Facebook and adds some other features

to traditional SQL queries. Particularly, it introduces

subqueries in the “from” clause, various types of

“joins”, “group-by”, aggregations and “create table as

select”.

Jaql [42] is a general-purpose dataflow language

designed by IBM upon the JSON data model. It

manipulates semi-structured data in the form of

abstract JSON values, providing SQL-like operators as

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

7

Table 2. Features of NoSQL systems
M

o
n

g
o

D
B

D
o

cu
m

en
t

st
ru

ct
u

re
d

,
se

m
i-

st
ru

ct
u

re
d

,
an

d

u
n

st
ru

ct
u

re
d
 d

at
a

D
y

n
am

ic
 s

ch
em

a

M
as

te
r-

S
la

v
e

Y
es

Y
es

S
y

n
ch

ro
n

o
u

s

O
p

en
-s

o
u

rc
e

S
ec

o
n

d
ar

y
 i

n
d

ex
es

,

d
y

n
am

ic
 q

u
er

ie
s,

so
rt

in
g

,
ri

ch
 u

p
d

at
es

,

u
p

se
rt

s
(u

p
d

at
e

if

d
o

cu
m

en
t

ex
is

ts
,

in
se

rt
 i

f
it

 d
o

es
n

’t
),

an
d

 a
g
g

re
g

at
io

n

H
yp

er
ta

b
le

C
o

lu
m

n

S
tr

u
ct

u
re

d
 a

n
d

u
n

st
ru

ct
u

re
d

d
at

a

U
se

s
sc

h
em

a

M
as

te
r-

sl
av

e

Y
es

Y
es

S
y

n
ch

ro
n

o
u

s

O
p

en
-s

o
u

rc
e

R
u

n
s

at
o

p
 o

f

A
p

ac
h

e
H

D
F

S
,

G
lu

st
er

F
S

 o
r

th
e

K
o

sm
o

s
F

il
e

S
y

st
em

 (
K

F
S

).

H
ad

o
o

p

C
o

m
p

at
ib

il
it

y
.

F
u

ll
 D

B

m
an

ag
em

en
t

H
b

a
se

K
ey

-v
al

u
e

S
tr

u
ct

u
re

d

U
se

s
sc

h
em

a

M
as

te
r-

S
la

v
e

Y
es

Y
es

A
sy

n
ch

ro
n
o

u
s

O
p

en
-s

o
u

rc
e

In
-m

em
o

ry

o
p

er
at

io
n

s,
 H

ad
o

o
p

in
te

g
ra

ti
o

n
,

C
re

at
e,

d
el

et
e,

 a
p

p
en

d
 t

ab
le

s

D
yn

a
m

o
D

B

K
ey

-v
al

u
e

S
tr

u
ct

u
re

d

S
ch

em
a-

fr
ee

M
as

te
r-

S
la

v
e

Y
es

Y
es

A
sy

n
ch

ro
n
o

u
s

P
ro

p
ri

et
ar

y

C
re

at
e,

 u
p

d
at

e

an
d

 d
el

et
e

o
f

ta
b

le
s

an
d

d
at

a
it

em
s

C
a

ss
a

n
d

ra

C
o

lu
m

n

st
ru

ct
u

re
d

,
se

m
i-

st
ru

ct
u

re
d

,
an

d

u
n

st
ru

ct
u

re
d
 d

at
a

S
ch

em
a-

o
p

ti
o

n
al

P
2

P

Y
es

Y
es

A
sy

n
ch

ro
n
o

u
s

O
p

en
-s

o
u

rc
e

In
-m

em
o

ry

o
p

er
at

io
n

s
as

 w
el

l

as
 D

B

m
an

ag
em

en
t

B
ig

T
a

b
le

C
o

lu
m

n

S
tr

u
ct

u
re

d

U
se

s
sc

h
em

a

M
as

te
r-

sl
av

e

Y
es

Y
es

S
y

n
ch

ro
n

o
u

s
an

d

A
sy

n
ch

ro
n
o

u
s

P
ro

p
ri

et
ar

y

A
ll

o
w

s
u

se
rs

 t
o

 c
re

at
e

an
d

 d
el

et
e

ta
b

le
s

an
d

co
lu

m
n

 f
am

il
ie

s,

ch
an

g
in

g
 c

lu
st

er
s,

ta
b

le
 a

n
d

 c
o

lu
m

n

fa
m

il
y

 m
et

ad
at

a

D
a

ta
b

a
se

 s
y

st
e
m

M
a

in
 t

y
p

e

T
y

p
es

 o
f

d
a

ta

su
p

p
o

rt
ed

S
ch

em
a

A
rc

h
it

ec
tu

re

C
o

n
si

st
en

cy

S
h

a
rd

in
g

R
ep

li
ca

ti
o

n

T
y

p
e

o
f

li
ce

n
se

F
ea

tu
re

s

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

8

Table 3: Programming Languages for MapReduce

Language Name of the

language

Developed by Type of

language

Types of Data

structures

Schema

optional

Jaql Jaql IBM Data Flow JSON Yes

Hive HiveQL Facebook Declarative Complex No

Pig Pig Latin Yahoo! Data Flow Complex, Nested Yes

well as Hive and Pig. Moreover, it offers a rich set of

built-in functions for processing unstructured or semi-

structured data.

Pig [12] was developed by Yahoo and uses Pig-Latin

language, a data flow scripting language to process

data in Hadoop systems. It combines SQL with

MapReduce, providing a way to express common SQL

operations such as “select”, “join” and so on. A Pig

script is a query execution plan or a dataflow graph that

is compiled and optimized by MapReduce. Pig has a

flexible data model that supports complex types such as

set or map and also provides code debugging.

Concerning the programmer’s point of view, the

frameworks above improve the use of MapReduce by

offering rich easy-to-use APIs as either declarative or

data-flow languages. Declarative languages are those

that specify what one wants to do rather than how to do

it, and do not allow procedural programming. On the

contrary, data-flow languages allow instruction and

procedural programming.

These frameworks abstract the programmer from

the whole system, making her/him comfortable within

the MapReduce distributed programming model.

Table 3 presents a comparison between these three

programming languages developed for MapReduce.

Note that, although these languages were developed to

improve MapReduce jobs programming, they are very

different in nature. Concerning the type of language,

Pig and Jaql are Data Flow languages while Hive is

declarative. Pig operates over nested complex data

while Jaql operates over JSON. Complex data

structures stands for arrays, collections, scalars and

hashes [3], while nested data structure simply means

that a collection can contain objects of its own data

type. JSON data structures refers to documents as a

way to store values. Finally, Pig and Jaql are schema

optional while Hive is not [7].

3.3 Enhancements to MapReduce

Concerning analytics’ algorithms, MapReduce lacks

built-in support for iterative process, which is a crucial

feature in many applications. Thus, several alternatives

to MapReduce were developed, such as HaLoop,

Twister, and Apache Spark:

Apache Spark [48] is a MapReduce based

implementation that allows data reuse across multiple

iterations. It offers MapReduce native scalability and

fault-tolerance, adding support for in-memory

processes. Spark introduces the concept of Resilient

Distributed Datasets (RDDs), which are fault-tolerant

distributed collection items that allow users to control

partitioning and preserve intermediate results in

memory, optimizing data location and data

manipulation, using a rich set of operators. RDDs can

be cached in memory or in permanent storage, which

overcomes the handicaps of Twister that only keeps

intermediate data in memory. However, Apache Spark

does not support group Reduce functions, gathering all

results through only one reduce function.

HaLoop [68], [69] is a highly available, fault-tolerant

and scalable framework that provides support for

iterative algorithms by scheduling tasks across

iterations and using several caching mechanisms. The

system reuses mappers and reducers assigned to the

same MapReduce job. Moreover, it attributes tasks to

the same nodes in a loop-like way. By caching loop

invariants it employs few resources, reloading repeated

information several times. There is also a local

“Reducer” that tests the loop condition. HaLoop

distributed programming system maintains fault

tolerance from MapReduce.

Twister [37], [18] is an in-memory MapReduce,

scalable and fault-tolerant framework. Therefore, it

performs loops in MapReduce normal execution,

triggering another MapReduce iteration. The system is

optimized at runtime for iterative computations and

was developed to retain in memory (if possible)

intermediate data to reduce computation overhead.

Moreover, Twister allows configuring static data in

both Map and Reduce tasks; uses a higher granularity

for the Map tasks; offers a new operation (Combine),

which is another reduction level; and allows the

implementation of a set of programming extensions to

MapReduce. However, when comparing to Hadoop,

this system is weak fault-tolerance.

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

9

3.4 Graph Databases

Several alternatives to MapReduce are based in

different computation models. Apache Giraph,

GraphLab and Pregel, are graph parallel computation

models that appeared to solve graph based problems:

Apache Giraph [38] is an open source, master/slave

architecture, graph parallel computation model that

loads and splits graphs across workers by using

MapReduce’s Map function. The master decides when

workers shall start computing consecutive supersteps.

Apache Giraph’s computation starts by assigning

vertices to the workers. The computation is then

performed by each worker and stops when all vertices

are inactive. Synchronization is maintained during

operations. Since it implements a MapReduce‘s Map

function, it is able to run on an Hadoop infrastructure

while providing Pregel’s API and middleware. The

system is fault-tolerant, provides high-availability and

allows in-memory processing, being able to compute

iterative algorithms.

GraphLab [70] is an asynchronous peer-to-peer system

developed at Carnegie Mellon University as a highly

scalable and fault-tolerant graph processing system. It

runs efficiently in both shared and distributed-memory

systems and provides MapReduce-similar functions:

Update and Sync. The Update function reads and

modifies overlapping sets of data, whereas the Sync

function performs reductions in the background while

other computation is being performed. Also, by using

scheduling primitives, GraphLab controls the order in

which update functions are executed.

The GraphLab execution model follows a single

loop semantics. A computation consists of a set of

vertices V, set of edges E, and user-defined data D,

defined in a Graph G = (V, E, D), an update function

and an initial set of vertices V to be executed. The

system keeps adding and removing vertices to the set

of vertices V and ends when there are no vertices in V.

The resulting values are returned when the algorithm

ends. This framework also includes toolkits for graph

analytics, clustering, collaborative filtering, graphical

models and so on.

Pregel [33], [23] is a highly available, scalable, and

fault-tolerant synchronous system developed by

Google to address many practical computational

problems such as Web mining or social network graph.

The system provides support for iterative algorithms,

since it preserves the state (and the graph structure) of

each vertex between the iterations. The input to a

Pregel computation is a direct graph in which a vertex

is uniquely identified by a vertex identifier.

Additionally, each vertex is associated with a

modifiable, user value. The edges are associated with

their sources vertices and each edge consists of a

modifiable, user defined value and a target vertex

identifier. In a Pregel computation, the first operation

performed is graph initialization. Then, a chain of

supersteps allows vertices to be executed in parallel,

executing the same user-defined function that expresses

the logic for a given algorithm. A vertex can modify its

state or the state of its outgoing edges. The algorithm

ends, when all vertices are inactive.

3.5 GPU Processing

While hardware has been evolving through the years,

data analytics tools have not kept up. The need for

better algorithms has been an issue and their

performance have been relying entirely on the

capabilities of DBMSs for scaling-out. Recently, [41]

and [22] presented new approaches for storing Big

Data by means of GPU processing. MapD [49] is

perhaps one of the most successful approaches that

brings GPUs into the Big Data ecosystem.

This framework pairs “off-the-shelf video game

GPU cards with a new design for parallel databases”

[49]. It is packed in both Server and Desktop versions:

MapD Server allows analyzing multibillion-row

datasets by multiple simultaneous users. It is designed

to run in headless server environments supporting up to

16 GPUs per server – eight GPU cards with 192GB

total GPU memory can be installed in a single server,

allowing data to be queried at rates approaching three

terabytes per second by almost 40,000 cores; and

MapD Desktop, which allows on-site analysis of

hundreds of millions of rows of data at great speeds.

Both versions are packaged with a web-based

frontend that enables easy-to-use, interactive visual

analytics. However, it also provides SQL and user

defined functions (UDF) so that complex analytics

such as regression and deep learning can be performed

directly on GPU query results.

3.6 Discussion

All discussed systems present options to provide

availability, fault-tolerance and scalability. MapReduce

and its alternatives, MapReduce, HaLoop, Twister and

Apache Spark, are key/value systems and all support

in-memory iterative algorithms (with exception of

MapRedue) but all are data oriented. Pregel, GraphLab

and Apache Giraph are Graph oriented systems. Table

4 presents an overview of the main features of these

systems. MapD is not mentioned in the comparison

because it is still in its early day and little information

is available.

Comparing all systems studied within the scope of

this paper, we can see that all provide fault-tolerance,

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

10

availability and scalability, which are three major

characteristics regarding Big Data needs. Concerning

iterative Analytics, only HaLoop, Twister, Apache

Spark, Pregel, GraphLab and Apache Giraph are

eligible. Table 5 presents a comparison overview

concerning fault-tolerance, availability, scalability,

replication, and in-memory operations for all systems.

Furthermore, it also presents some of the Big Data

vendors that sell these systems as services in the cloud.

4 BIG DATA IN THE CLOUD

Storing and processing big loads of data requires

scalability, easiness-to-growth, fault tolerance and

availability. Cloud computing is able to deliver all

these characteristics through hardware virtualization.

As such, Big Data and Cloud computing are two

compatible concepts: Cloud can make Big Data

available, scalable and fault tolerant.

With the rapid increase of data and the demand for

new ways to store, process and analyze data, a new

business area has emerged. Companies started to view

Cloud and, more recently, Big Data as a valuable

business opportunity. Several new companies such as

Cloudera5, Hortonworks6, and Teradata7 and many

others, are now focused in deliver Big Data as a

Service (BDaaS) or DataBase as a Service (DBaaS).

Companies such as Google, IBM, Amazon and

Microsoft also provide ways for costumers to consume

Big Data on demand. Next, we present two case

studies, Nokia and RedBus, which discuss the

successful use of Big Data within Cloud environments.

4.1 Case Studies

Nokia8, was one of the first companies to understood

the value of Big Data and Cloud computing

technologies together [20]. Several years ago, the

company used individual DBMS to accommodate each

application requirement. Although, realizing, the

advantages of integrating all data into one application,

Nokia decided to migrate to Hadoop based systems,

integrating data within the same domain to get proper

insights on how its clients interact with their

applications. As Hadoop uses commodity hardware, the

cost per terabyte of storage is cheaper than a traditional

RDBMS. Moreover, it allows both structured and

unstructured data [20]:

“The benefits of Hadoop were clear – it offers

reliable, cost-effective data storage and high

5http://www.cloudera.com/
6 http://hortonworks.com/
7 http://www.teradata.com/
8 http://www.nokia.com/

performance parallel processing of multi-

structured data at petabyte scale”.

As Cloudera Distributed Hadoop (CDH)9 bundles

the most popular open source projects in the Apache

Hadoop stack into a single, integrated package, with

stable and reliable releases, it represents a great

opportunity for implementing Hadoop infrastructures,

transferring all specialized processes, IT

preoccupations and technical concerns onto the

vendors’ specialized teams. Nokia regarded BDaaS as

an advantage and trusted Cloudera's expertise to deploy

a Hadoop environment that cope with its requirements

in a short time frame.

Hadoop, and in particular Cloudera’s Distributed

Hadoop, strongly helped Nokia to fulfill their needs

[20]:

“Hadoop was absolutely mission critical for

Nokia…” which can now “…understand how

people interact with the apps on their phones to

view usage patterns across applications… and

we wouldn’t have gotten our Big Data platform

to where it is today without Cloudera’s platform,

expertise and support”.

Nokia’s case study shows that Big Data can be

advantageous and how partnering with Big Data

vendors can leverage an easy deployment of a Big Data

solution.

RedBus10 is India's largest online bus ticket and hotel

booking company. They wanted to implement a

powerful data analysis to gain insights over its bus

booking service [34]. RedBus datasets could reach up 2

terabytes in size and the application would have to be

able to analyze booking and inventory data across

hundreds of bus operators serving more than 10.000

routes. Furthermore, the company wanted to avoid

setting up and maintaining a complex in-house

infrastructure.

At first, the company considered using clusters of

Hadoop servers to process the data, although they

realized it would take too much time to set up and

would require specialized personal in order to maintain

such infrastructure in-house.

The company considers Google BigQuery as the

perfect match for their needs: “We explored several

data analytics solutions. Nothing comes remotely close

to the sheer power of Google BigQuery - It made large-

scale data collection and crunching possible with little

effort…” [34].

9 http://www.cloudera.com/
10 https://www.redbus.in/

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

11

Table 4: Map Reduce, enhancements and alternatives

P
re

g
el

G
ra

p
h

U
n

st
ru

ct
u

re
d

an
d

 S
tr

u
ct

u
re

d

S
u

p
p

o
rt

ed

G
ra

p
h

s

M
as

te
r-

S
la

v
e

B
u

lk
-

sy
n

ch
ro

n
o

u
s

P
ro

p
ri

et
ar

y

P
ro

v
id

es
 J

av
a

A
P

I
to

 d
ev

el
o

p

d
is

tr
ib

u
te

d

co
m

p
u

ti
n
g

so
lu

ti
o

n
s

to

g
ra

p
h

 p
ro

b
le

m
s.

It
 a

ls
o

 e
x

p
lo

re
s

lo
ca

li
ty

G
ra

p
h

L
a

b

G
ra

p
h

U
n

st
ru

ct
u

re
d

an
d

 S
tr

u
ct

u
re

d

S
u

p
p

o
rt

ed

G
ra

p
h

s

P
2

P

A
sy

n
ch

ro
n
o

u
s

N
o

t
fu

ll
y

 o
p

en

so
u

rc
e

R
u

n
s

o
n

H
ad

o
o

p
.

S
u

p
p

o
rt

s

an
al

y
ti

cs
 o

v
er

G
ra

p
h

s

A
p

a
ch

e
G

ir
a

p
h

G
ra

p
h

U
n

st
ru

ct
u

re
d

an
d

 S
tr

u
ct

u
re

d

S
u

p
p

o
rt

ed

G
ra

p
h

s

M
as

te
r-

S
la

v
e

B
u

lk
-

sy
n

ch
ro

n
o

u
s

O
p

en
 s

o
u

rc
e

H
ig

h
 s

ca
la

b
il

it
y

,

co
m

p
u

ta
ti

o
n
,

sh
ar

d
ed

ag
g

re
g

at
o
rs

,

ed
g

e-
o
ri

en
te

d

in
p

u
t,

 o
u

t-
o

f-

co
re

co
m

p
u

ta
ti

o
n
,

an
d

 m
o
re

T
w

is
te

r

k
ey

/v
al

u
e

S
tr

u
ct

u
re

d
,

U
n

st
ru

ct
u

re
d

an
d

 s
em

i-

st
ru

ct
u

re
d

 d
at

a

S
u

p
p

o
rt

ed

D
at

a
F

il
es

M
as

te
r-

S
la

v
e

S
y

n
ch

ro
n

o
u

s

P
ro

p
ri

et
ar

y

A
ll

o
w

s
to

co
n

fi
g

u
re

 s
ta

ti
c

d
at

a
in

 b
o

th

M
ap

 a
n

d

R
ed

u
ce

 t
as

k
s;

W
ea

k
ly

 f
au

lt
-

to
le

ra
n

t;

E
x

p
lo

re
s

lo
ca

li
ty

H
a

L
o

o
p

k
ey

/v
al

u
e

S
tr

u
ct

u
re

d
,

U
n

st
ru

ct
u

re
d

an
d

 s
em

i-

st
ru

ct
u

re
d

 d
at

a

S
u

p
p

o
rt

ed

D
at

a
F

il
es

M
as

te
r-

S
la

v
e

S
y

n
ch

ro
n

o
u

s

O
p

en
 s

o
u

rc
e

C
ac

h
in

g
 o

p
ti

o
n

s

fo
r

lo
o
p

-

in
v

ar
ia

n
t

d
at

a

ac
ce

ss
.

A
ll

o
w

s
th

e

re
u

se
 o

f
H

ad
o

o
p

im
p

le
m

en
ta

ti
o

n
s

co
n

ce
rn

in
g

fa
u

lt
-t

o
le

ra
n

ce

m
ec

h
an

is
m

s.

E
x

p
lo

re
s

lo
ca

li
ty

A
p

a
ch

e
S

p
a

rk

k
ey

/v
al

u
e

U
n

st
ru

ct
u

re
d

an
d

 S
tr

u
ct

u
re

d

d
at

a
(S

p
ar

k

S
Q

L
[1

0
])

S
u

p
p

o
rt

ed

D
at

a
F

il
es

M
as

te
r-

S
la

v
e

S
y

n
ch

ro
n

o
u

s

an
d

A
sy

n
ch

ro
n
o

u
s

O
p

en
 s

o
u

rc
e

A
ll

o
w

s
o

n

H
ad

o
o

p
,

st
an

d
al

o
n

e
o

r

in
 t

h
e

cl
o

u
d

.

A
ll

o
w

s

st
re

am
in

g
.

M
a

p
R

ed
u

ce

k
ey

/v
al

u
e

S
tr

u
ct

u
re

d
,

U
n

st
ru

ct
u

re

d
 a

n
d

 s
em

i-

st
ru

ct
u

re
d

d
at

a

N
o

t

su
p

p
o

rt
ed

D
at

a
F

il
es

M
as

te
r-

S
la

v
e

S
y

n
ch

ro
n

o
u

s O
p

en
 s

o
u

rc
e

E
x

p
lo

re
s

lo
ca

li
ty

.

M
ap

 a
n

d

R
ed

u
ce

fu
n

ct
io

n
s.

D
a

ta
b

a
se

 s
y

st
em

M
a

in
 t

y
p

e

D
a

ta
 T

y
p

es

su
p

p
o

rt
ed

S
u

p
p

o
rt

 f
o

r

it
er

a
ti

v
e

a
lg

o
ri

th
m

s

T
y

p
e

o
f

D
B

A
rc

h
it

ec
tu

re

C
o

m
p

u
ta

ti
o

n

m
o

d
el

T
y

p
e

o
f

so
ft

w
a

re

F
ea

tu
re

s

../MEOCloud/Modificações/Melhorias%20paper.xlsx#RANGE!C14
../MEOCloud/Modificações/Melhorias%20paper.xlsx#RANGE!C14
../MEOCloud/Modificações/Melhorias%20paper.xlsx#RANGE!C14
../MEOCloud/Modificações/Melhorias%20paper.xlsx#RANGE!C14

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

12

Table 5: Comparison of Big Data systems

System /

Features

Fault-

tolerance
Availability Scalability Replication

Available as a

service by a

cloud vendor

In-memory

operations

BigTable

Synchronous

and

Asynchronous

Google

X

Cassandra
Asynchronous Google and

others
X

DynamoDB Asynchronous Amazon X

Hbase
Asynchronous Microsoft Azure

HDInsights
X

HyperTable Synchronous X X

MongoDB Synchronous MongoDirector X

MapReduce

(Hadoop)

Synchronous Cloudera,

Hortonworks

and others

X

Apache

Spark

Synchronous

and

Asynchronous

IBM, Microsoft

Azure

HDInsights

 (allows

streamming)

HaLoop Synchronous X

Twister Synchronous X

Apache

Giraph

Bulk-

synchronous

Microsoft Azure

HDInsights

(allows

installation)

GraphLab Asynchronous Dato

Pregel
Bulk-

synchronous
X

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

13

Using BigQuery, allows RedBus to [34]:

 Know how many times costumers tried to find an

available seat but were unable to do it due bus

overload;

 Examine decreases in bookings;

 Identify server problems by quickly analyzing data

related to server activity;

Useless to say that moving towards Big Data

brought RedBus business advantage. Google BigQuery

provides RedBus with real-time data analysis

capabilities at 20% of the cost of maintaining a

complex Hadoop infrastructure. As affirmed in [34]:

“The fast insights gained through BigQuery are also

making RedBus a stronger company. By minimizing the

time it takes staff members to solve technical

problems…”.

As supported by the use cases of Nokia and

RedBus, and also other examples described in [2] and

[6], switching towards Big Data enables organizations

to gain competitive advantage. Moreover, Big Data as a

Service (BDaaS), provided by Big Data vendors allows

companies to leave the technical details for Big Data

vendors and focus on their core business needs. Table 5

presents Big Data vendors that provide the discussed

systems. Hadoop open-source is used mainly by

Cloudera and Hortonworks, although several other

implementations are used by other vendors such as

Microsoft. BigTable and DynamoDB are proprietary

and are provided by Google and Amazon. MongoDB is

provided by MongoDirector, while the remaining

systems are implemented on-demand by Microsoft

Azure, a Microsoft’s platform that sells Big Data and

Analytics as a Service.

4.2 Moving Big Data to the Cloud

Although this technology enables the deployment of

Big Data DBMS, moving Big Data to the Cloud

presents issues that are not easy to resolve. Security

and privacy are issues that typically concern Big Data

clients. The major problem resides in the transfer of big

loads of data through the Web. Uploading a 2 terabyte

dataset through the Web is not a fast task and can be

insecure without proper security configurations.

Regarding bandwidth bottleneck the most pragmatic

solution is to physically send the hard drives to the data

center so that data can be uploaded onto the Cloud.

However, this can be hard to accomplish without any

loss of data. There are always the possibility of traffic

accident and HDD damage during the trip. Plus, the

cost of transfer would be enormous.

A better solution resides in improve bandwidth or

create new algorithms and protocols for better data

transfer. As bandwidth improvement passes through

improved hardware from source to destination, a

dedicated connection can be set up. However, this is

not feasible in all cases, as the client would lose

flexibility, since data cannot be uploaded from

wherever s/he wants.

Software improvement consists in the best solution

for work around this issue. Regarding software

development for improving data paths, [44] presents

the implementation of two algorithms that optimize at

any given time the choice of the data center for data

aggregation and processing, as well as the routes for

transmitting data there. The first is an online lazy

migration (OLM) algorithm and the second is a

randomized fixed horizon control (RFHC) algorithm.

Another contribution comes from Aspera [16] that built

atop of its FASPTM transport technology, a proprietary

suit of on demand transfer products [16].

5 DISASTER RECOVERY

Data is extremely important for a corporation since it

provides information over the client’s needs and

through it, powers business and marketing teams to

keep up with current demands and predict new trends.

As data is very valuable, any loss of data results in the

loss of money and competitiveness. In case of

emergency or hazardous accidents such as floods, fires

and others, data loss needs to be minimal. Disaster

recovery techniques were developed to assure that data

are quickly available with minimal downtime and loss.

However, although this is a very important issue, the

number of research articles focusing this particular area

is relatively small [62], [64], [65].

 By its definition [14], Cloud provides a good way

to minimize data loss during emergencies. There are

two important coefficients that are imperative to

minimize: Recovery Point Objective, which refers the

acceptable amount of application data that is acceptable

to loose; and Recovery Time Objective, which refers to

the acceptable downtime of the system. The author of

[65] states that it is important to define a disaster

recovery plan that not only relies on backups to reset

data but also consists in a set of procedures that should

be tested at least twice each year. Works such as [45],

[64], [62] and [65] study this issue in depth from

several perspectives.

From a technical perspective, [65] presents a very

good methodology, proposing a “multi-purpose

approach, which allows data to be restored to multiple

sites with multiple methods”, ensuring a recovery

percentage of almost 100%. Furthermore, this study

states that usually, data recovery methods use what

they call “single-basket approach”, which means there

is only one destination from which to secure the

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

14

restored data. This area is of most importance and

further research need to be done to minimize loss of

data in case of accident.

6 BIG DATA CHALLENGES, NEW TRENDS AND

FUTURE DIRECTIONS

This section discusses Big Data challenges, trends and

future directions that must be taken into consideration

within the next years to keep up with the rapid growth

of data.

6.1 Challenges of Big Data

The current state of the art of Big Data, and Big Data

platforms in particular, presents several challenges that

must be addressed to keep up with the ever increasing

rate of data and business needs. Moving huge amounts

of data into a Cloud based Big Data platform, as

discussed previously, is not simple and corporations

often opt to physically send the hard drives to the data

centers so that data can be uploaded. However, because

this is neither the most practical solution nor the safest,

several algorithms have been developed through the

years ease data upload for cloud systems. This issue

consists in a severe bottleneck when using Big Data in

the cloud [44], [16].

Other problems such as, disaster recovery,

scalability, locality exploration and fault tolerance are

also big data challenges. Regarding scalability, there is

some concerning about Exaflop computing [5], [26],

[63]. Today’s supercomputers and clouds can deal with

Petaflop data sets, however, dealing with Exaflop size

data sets is still under study and it rises concerns, since

high performance and high bandwidth is required to

transfer and process such huge volumes of data over

the network. Cloud computing is slower than

supercomputers since it is limited by the existent

bandwidth and it is very expensive concerning complex

projects. High performance computers (HPC) are the

most promising solutions, however, the annual cost of

such a computer is tremendous. There are several

problems in designing Exaflop HPCs, especially

regarding efficiency in power consumption – here,

solutions tend to be more GPU based instead of CPU

based. There are also problems related with the high

degree of parallelism needed among hundred thousands

of CPUs.

Analyzing big data loads requires the improvement

of Big Data and analytics algorithms that are able to

correlate and extract information from unstructured and

structured data. Integration protocols and API

standards would enable users to easily manage data and

switch among solutions. Furthermore, the creation of

such standards would also enable big data users to

wisely choose a big data vendor solely based on cost

and performance services, since API standardization

reduces vendor lock-in algorithms.

With the rapid growth of real-time applications

such as traffic monitoring [52], weather monitoring

[44], CCTV monitoring like “Singapore Safe City

Pilot” [57], social networks monitoring such as

Google+ Ripples [29] and others, the development of

stream analysis and iterative algorithms that efficiently

manage processing power and memory consumption is

a major challenge for research teams.

Efficiently recognize and store essential

information (value) is very important since huge

amounts of data are worthless if they do not have any

value at all [46]. Human collaboration within the data

visualization field is also an important issue, since

there are patterns that humans can easily detect but that

computer algorithms can hardly find (e.g.: captchas).

Ideally, Big Data analytics would not be only

computational. Another challenge is cloud elasticity

capabilities, which allows cloud suppliers to

accommodate user needs when there are peaks of

information. This is a gap of cloud computing that is

currently under study [55].

6.2 New Trends of Big Data

Big Data is an emerging technology broadly discussed

both in business and academics areas. As a hot topic it

enables corporations and governmental institutions to

gain deep insights over its clients/citizens, there is a

tremendous interest in a constant development of new

DBMS and algorithms that enable corporations to

predict more accurately their client’s behavior. This

technology has particular interest for marketing and

CRM (Customer Relationship Management) teams that

can target campaigns much more focused,

implementing a concept known as digital marketing

[50].

Big Data’s interest from corporations and

governmental institutions inevitably boosts research for

new frameworks to provide further insights in an

efficient and rapid way [50]. This necessity for new

technology and high skilled personal do not show any

signal of slowing down in the next three years. As

stated by McKinsey in [50], the demand for Big Data

expertise and specially data scientists will increase by

2018.

6.3 Future Research Directions

As data keeps constantly increasing and there is no

signal that this trend will stop, new frameworks that are

able to handle Exaflop computing in a fast and efficient

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

15

way should be taken into consideration. New ways to

transfer data on to the cloud and API standardization

through platforms are needed.

As future directions, we also point out: i) Big data

API standardization to prevent vendor lock-in

platforms; ii) improving iterative and streaming

algorithms; iii) improving fault-tolerance, locality

exploration, scalability and disaster recovery; iv)

develop better protocols for file transferring over the

WAN; and (v) develop cloud abilities to adapt load

peaks by providing elasticity to its consumers.

7 CONCLUSIONS

The volume of data generated by applications and

gadgets is being produced in an ever increasing rate.

Big Data is seen by industries as an efficient way to

store and explore data, whereas Cloud, due to its high

flexibility and scalability, is the appropriate framework

concerning the storage of Big Data solutions.

This study focused particularly on database engines

that are able to run over distributed systems. In other

words, systems that would fit cloud architectures.

Concerning Big Data, some of the most known

implementations are Cassandra, MongoDB and

DynamoDB. However, they do not perform well

comparing to MapReduce, which provides fault-

tolerance and high availability and performance while

abstracting programmers from the system details.

MapReduce, within its open source implementation

(Hadoop), is in fact the best known Big Data

framework. However it presents some problems: it is

very much static; it is difficult to program jobs; and it

does not support graph computing. To overcome these

problems several solutions like Twister, Spark, Pregel

and GraphLab arose. Pregel and GraphLab provides a

way to compute graph problems like web mining or

social network trending, whereas Twister and Spark try

to overcome the MapReduce’s lack of interactivity.

With this study we aim at providing a better

understand of Big Data, Cloud and how these two

concepts fit together. To conclude, we show that,

although Big Data and Cloud computing match very

well together, there are some issues that should be

addressed in a near future.

ACKNOWLEDGEMENTS

This work was hosted by Carnegie Mellon University

under the program CMU-Portugal undergraduate

internships and partially financed by iCIS – Intelligent

Computing in the Internet Services (CENTRO-07-

ST24 – FEDER – 002003), Portugal.

We would also like to thank Prof. Marco Vieira for

their insightful comments on the paper, as these

comments led us to an improvement of the work.We

would like to thanks Instituto Superior de Engenharia

de Coimbra (ISEC) from Polytechnic of Coimbra for

hosting this research. Furthermore, we would also like

to acknowledge Accenture for always encouraging our

work.

REFERENCES

[1] Apache Cassandra Project “Apache Cassandra

TM 1.2,” pp. 1–144, 2013.

http://cassandra.apache.org/.

[2] AWS, “AWS Case Studies: Big Data.” [Online].

Available:

https://aws.amazon.com/pt/solutions/case-

studies/big-data/. [Accessed: 13-Aug-2015].

[3] “Complex data structures.” [Online]. Available:

http://theory.uwinnipeg.ca/programming/node38.

html. [Accessed: 13-Aug-2015].

[4] “Computing | CERN.” [Online]. Available:

http://home.web.cern.ch/about/computing.

[Accessed: 13-Jun-2015], CERN, 2015

[5] “Exaflop Computing Will Save the World ... If

We Can Afford It - Industry Tap.” [Online].

Available: http://www.industrytap.com/exaflop-

computing-will-save-world-can-afford/15485.

[Accessed: 26-May-2015].

[6] “Hadoop & Big Data Case Studies | MapR.”

[Online]. Available:

https://www.mapr.com/resources/customer-case-

studies. [Accessed: 13-Aug-2015].

[7] “JSON Example.” [Online]. Available:

http://json.org/example. [Accessed: 13-Aug-

2015].

[8] “MySQL Cluster 7.2.1.” Copyright © 2015

Oracle and/or its affiliates

[9] “Top 10 Strategic Technology Trends | Gartner.”

[Online]. Available:

http://www.gartner.com/technology/research/top-

10-technology-trends/. [Accessed: 13-Jun-2015].

[10] A. Fernández, S. del Río, V. López, A. Bawakid,

M. J. del Jesus, J. M. Benítez, and F. Herrera,

“Big Data with Cloud Computing: an insight on

the computing environment, MapReduce, and

programming frameworks,” Wiley Interdiscip.

Rev. Data Min. Knowl. Discov., vol. 4, no.

October, pp. 380–409, 2014.

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

16

[11] A. Garzo, A. a. Benczur, C. I. Sidlo, D. Tahara,

and E. F. Wyatt, “Real-time streaming mobility

analytics,” Proc. - IEEE Int. Conf. Big Data, Big

Data, pp. 697–702, 2013.

[12] A. Gates, “Programming Pig”, Yahoo!, Inc. First

Edit. O’Reilly, 2011.

[13] A. Khetrapal, and V. Ganesh, “HBase and

Hypertable for large scale distributed storage

systems A Performance evaluation for Open

Source BigTable Implementations,” Evaluation,

p. 8, 2006.

[14] A. Srinivas, Y. S. Ramayya, and B. Venkatesh,

“A Study on Cloud Computing Disaster

Recovery,” pp. 1380–1389, 2013.

[15] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P.

Chakka, S. Anthony, H. Liu, P. Wyckoff, and R.

Murthy, “Hive,” Proc. VLDB Endow., vol. 2, pp.

1626–1629, 2009.

[16] Aspera Inc., “Taking Big Data to the Cloud.”

[17] B. D. Analytics, “EMC Accelerates Journey to

Big Data with Business Analytics-as-a-Service

an account of EMC IT’s transformation to

empower business and IT users with streamlined

access to Big Data Analytics,” no. January

2013, pp. 1–12. 01/13 EMC white Paper

H11259.

[18] B. Zhang, Y. Ruan, T. Wu, J. Qiu, A. Hughes,

and G. Fox, “Applying Twister to Scientific

Applications.” Indianapolis, pp. 25-32, 2010.

[19] C. C. Aggarwal, N. Ashish, and A. Sheth,

“Chapter 12 the Internet of Things : A Survey

from the Data-Centric,” Manag. Min. Sens. Data,

pp. 383–428, 2013.

[20] Cloudera, “Case Stundy Nokia: Using Big Data

to Bridge the Virtual & Physical Worlds,” 2012.

[21] D. A. Marcos, N. C. Rodrigo, B. Silvia, a. S. N.

Marco, and B. Rajkumar, “Big Data Computing

and Clouds: Challenges, Solutions, and Future

Directions,” pp. 1–44, 2013.

[22] D. Merrill, M. Garland, and A. Grimshaw,

“Scalable GPU graph traversal,” ACM

SIGPLAN Not., vol. 47, no. 8, p. 117, 2012.

[23] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y.

Bu, “Pregel Algorithms for Graph Connectivity

Problems with Performance Guarantees,” vol. 7,

no. 14, pp. 1821–1832, 2014.

[24] Datastax Corporation, “Introduction to Apache

Cassandra”, no. July, pp. 1–11, 2013.

[25] E. Dede, B. Sendir, P. Kuzlu, J. Hartog, and M.

Govindaraju, “An evaluation of cassandra for

hadoop,” IEEE Int. Conf. Cloud Comput.

CLOUD, pp. 494–501, 2013.

[26] E. Hpc, “The Challenge of Energy-Efficient

HPC,” SciDAC Rev., pp. 50–57, 2009.

[27] EMC Corporation, “Big Data-as-a-Service,” no.

July 2012, pp. 1–16, 2012.

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,

D. a. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber, “Bigtable: A distributed

storage system for structured data,” 7th Symp.

Oper. Syst. Des. Implement, November 6-8,

Seattle, WA, USA, pp. 205–218, 2006.

[29] F. Viégas and M. Wattenberg, “Google+ ripples:

A native visualization of information flow,”

Proc. 22nd Int. Conf. World Wide Web, pp.

1389–1398, 2013.

[30] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels,

“Dynamo : Amazon’s Highly Available Key-

value Store,” ACM SIGOPS Oper. Syst. Rev.,

vol. 41, pp. 205–220, 2007.

[31] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels,

“Dynamo,” ACM SIGOPS Oper. Syst. Rev., vol.

41, p. 205, 2007.

[32] G. M. Carstoiu Dorin, Lepadatu Elena, “Hbase -

non SQL Database, Performances Evaluation,”

Int. J. Adv. Comput. Technol., vol. 2, pp. 99–

110, 2010.

[33] G. Malewicz, M. Austern, and A. Bik, “Pregel: a

system for large-scale graph processing,” Proc.

2010 ACM SIGMOD Int. Conf. Manag. Data,

pp. 135–146, 2010.

[34] Google Cloud Platform, “Travel Agency Masters

Big Data with Google BigQuery,” 2006.

[35] I. A. T. Hashem, I. Yaqoob, N. Badrul Anuar, S.

Mokhtar, A. Gani, and S. Ullah Khan, “The rise

of ‘Big Data’ on cloud computing: Review and

open research issues,” Inf. Syst., vol. 47, pp. 98–

115, 2014.

[36] J. a. González-Martínez, M. L. Bote-Lorenzo, E.

Gómez-Sánchez, and R. Cano-Parra, “Cloud

computing and education: A state-of-the-art

survey,” Comput. Educ., vol. 80, pp. 132–151,

2015.

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey

17

[37] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.

Bae, J. Qiu, and G. Fox, “Twister : A Runtime

for Iterative MapReduce,” 19th ACM Int. Symp.

High Perform. Distrib. Comput., pp. 810–818,

2010.

[38] J. Gonzalez, Y. Low, and H. Gu, “Powergraph:

Distributed graph-parallel computation on

natural graphs,” 10th USENIX Conf. Oper. Syst.

Des. Implement., pp. 17–30, 2012.

[39] J. Han, E. Haihong, G. Le, and J. Du, “Survey on

NoSQL database,” 6th Int. Conf. Pervasive

Comput. Appl. ICPCA 2011, pp. 363–366, 2011.

[40] J. Shafer, S. Rixner, and A. L. Cox, “The

Hadoop distributed filesystem: Balancing

portability and performance,” IEEE Int. Symp.

Perform. Anal. Syst. Softw., pp. 122–133, 2010.

[41] J. Zhang, S. You, and L. Gruenwald, “Tiny GPU

Cluster for Big Spatial Data: A Preliminary

Performance Evaluation,” IEEE 35th Int. Conf.

Distrib. Comput. Syst. Work., pp. 142–147,

2015.

[42] K. Beyer, V. Ercegovac, and R. Gemulla, “Jaql:

A scripting language for large scale

semistructured data analysis,” VLDB, pp. 1272–

1283, 2011.

[43] L. George, HBase: The Definitive Guide. 2011.

[44] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F.

C. M. Lau, “Moving big data to the cloud,”

INFOCOM, pp. 405–409, 2013.

[45] J. S. P. Pokharel, “Disaster Recovery for System

Architecture Using Cloud Computing,” Appl.

Internet, 2010.

[46] M. D. Assunção, R. N. Calheiros, S. Bianchi, M.

a. S. Netto, and R. Buyya, “Big Data computing

and clouds: Trends and future directions,” J.

Parallel Distrib. Comput., vol. 79–80, pp. 3–15,

2014.

[47] “MongoDB Documentation,” pp. 1–687, 2013.

[48] M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, “Spark : Cluster

Computing with Working Sets,” 2nd USENIX

Conf. Hot Top. Cloud Computing, p. 10, 2010.

[49] MapD. Corporation, “MapD,” 2015.

[50] McKinsey & Company, “Big data: The next

frontier for innovation, competition, and

productivity,” McKinsey Glob. Inst., no. June, p.

156, 2011.

[51] MongoDB Documentation Project, “Sharding

and MongoDB”, pp. 1–80, 2015.

[52] N. J. Ferrier, S. M. Rowe, and a Blake, “Real-

Time Traffic Monitoring,” Workshop on

Applications of Computer Vision, Sarasota, FL,

USA, pp. 81-88, 1994.

[53] P. F. V. Abramova, J. Bernardino, “NoSQL

databases: MongoDB vs cassandra,” C3S2E,

Porto, Portugal, 2013.

[54] P. F. V. Abramova, J. Bernardino, “Testing

Cloud Benchmark Scalability with Cassandra,”

Services, Anchorage, AK, 2014.

[55] S. Das, “Scalable and Elastic Transactional Data

Stores for Cloud Computing Platforms,” no.

December, pp. 1–278, 2011.

[56] S. Hurst. G. Simon, “Just how smart are Smart

Cities? It’s Time for Digital”, Accenture, 2014.

[57] S. Industry and P. Office, “Singapore

Government : Safe City Test Bed,” 2014

Accenture, 2014.

[58] S. Kaisler, F. Armour, J. A. Espinosa, and W.

Money, “Big Data: Issues and Challenges

Moving Forward,” 46th Hawaii Int. Conf. Syst.

Sci., pp. 995–1004, 2013.

[59] S. Khan and P. V. Mane, “SQL Support over

MongoDB using Metadata,” vol. 3, no. 10, pp.

1–5, 2013.

[60] S. Sakr and M. M. Gaber, “Large Scale and Big

Data”, First Edit, 2014. Auerbach Publishers Inc.

[61] S. Sengupta, “Delivering Database as a Service

(DBaaS) using Oracle Enterprise Manager 12c,”

Oracle, 2013.

[62] S. Subashini and V. Kavitha, “A survey on

security issues in service delivery models of

cloud computing,” J. Netw. Comput. Appl., vol.

34, no. 1, pp. 1–11, 2011.

[63] T. Geller, “Supercomputing’s exaflop target,”

Commun. ACM, vol. 54, no. 8, p. 16, 2011.

[64] T. Wood, E. Cecchet, K. Ramakrishnan, P.

Shenoy, J. van der Merwe, and A.

Venkataramani, “Disaster recovery as a cloud

service: Economic benefits & deployment

challenges,” 2nd USENIX Work. Hot Top.

Cloud Computing, pp. 1–7, 2010.

[65] V. Chang, “Towards a Big Data system disaster

recovery in a Private Cloud,” Ad Hoc Networks,

pp. 1–18, 2015.

Open Journal of Big Data (OJBD), Volume 1, Issue 2, 2015

18

[66] V. Kalavri and V. Vlassov, “MapReduce:

Limitations, optimizations and open issues,”

Proc. - 12th IEEE Int. Conf. Trust. Secur. Priv.

Comput. Commun. Trust., pp. 1031–1038, 2013.

[67] VoltDB. Welcome to VoltDB: A Tutorial,

VoltDB, Inc., 2015.

[68] Y. Bu, B. Howe, and M. D. Ernst, “HaLoop :

Efficient Iterative Data Processing on Large

Clusters,” Proc. VLDB Endow., vol. 3, no. 1, pp.

285–296, 2010.

[69] Y. Bu, B. Howe, M. Balazinska, and M. D.

Ernst, “The HaLoop approach to large-scale

iterative data analysis,” VLDB J., vol. 21, no. 2,

pp. 169–190, 2012.

[70] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,

A. Kyrola, and J. M. Hellerstein, “Distributed

GraphLab: A framework for machine learning

and data mining in the cloud,” Proc. VLDB

Endow., vol. 5, pp. 716–727, 2012.

AUTHOR BIOGRAPHIES

Pedro Neves is affiliated with

Instituto Superior de Engenharia

de Coimbra (ISEC) - Polytechnic

of Coimbra and is currently a

visitor researcher at Carnegie

Mellon University. Pedro

received its bachelor degree in

Computer Science from ISEC in

2012 and also the MSc degree in

2015. During his MSc he worked as a researcher in

both in FCT and ISEC and afterwards, held the

position of Business Intelligence and data analytics

associate at Accenture Technology Solutions. His main

interests are Data Science, Big Data, distributed data

bases, Cloud computing and technics for scalability and

elasticity within cloud environments.

Dr. Jorge Bernardino

received the degree in

computer engineering in

1987, the master’s degree in

systems and information

technologies in 1994, and

the PhD degree in computer

science from the University

of Coimbra in 2002. He is a Coordinator Professor at

ISEC (Instituto Superior de Engenharia de Coimbra) of

the Polytechnic Institute of Coimbra, Portugal. His

main research fields are big data, data warehousing,

business intelligence, database knowledge

management, e-business and open source tools,

subjects in which he has authored or co-authored

dozens of papers in refereed conferences and journals.

He has served on program committees of many

conferences and acted as a referee for many

international conferences and journals in data

warehousing and databases. He was President of ISEC

from 2005 to 2010. During 2014 he was Visiting

Professor at CMU – Carnegie Mellon University.

