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ABSTRACT 
 

Big Data has become a hot topic across several business areas requiring the storage and processing of huge 

volumes of data. Cloud computing leverages Big Data by providing high storage and processing capabilities and 

enables corporations to consume resources in a pay-as-you-go model making clouds the optimal environment 

for storing and processing huge quantities of data. By using virtualized resources, Cloud can scale very easily, 

be highly available and provide massive storage capacity and processing power. This paper surveys existing 

databases models to store and process Big Data within a Cloud environment. Particularly, we detail the 

following traditional NoSQL databases: BigTable, Cassandra, DynamoDB, HBase, Hypertable, and MongoDB. 

The MapReduce framework and its developments Apache Spark, HaLoop, Twister, and other alternatives such 

as Apache Giraph, GraphLab, Pregel and MapD – a novel platform that uses GPU processing to accelerate Big 

Data processing – are also analyzed. Finally, we present two case studies that demonstrate the successful use of 

Big Data within Cloud environments and the challenges that must be addressed in the future. 
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1 INTRODUCTION 

Society is becoming deeply immersed in the use of 

electronic devices that generate Petabytes of data, a 

gold mine for knowledge extraction, with different 

volume, velocity, and variety. Value and veracity are 

also two important properties that specify the need of 

valuable and truthfulness data. These five properties 

are known as the 5 V´s model that supports the Big 

Data concept [10]. 

Big Data became a hot topic among computer 

researchers and business areas [60], providing 

organizations with a powerful tool to analyze large 

structured and unstructured data and make useful 

decisions through it. Knowledge extraction frequently 

requires sophisticated analytic solutions that mine 

structured and unstructured data helping organizations 

gaining insights over the information within their 

private and public data.  

Cloud computing is currently one of the most 

discussed and promising topic in the information 

technology field and it was listed in Gartner’s top ten 

technologies list for the last four consecutive years [9]. 

Cloud computing became a trend for researchers and 

organizations [21], allowing virtualizing resources and 

offering theoretically unlimited processing power and 

storage. In practice, cloud can easily scale up with two 

types of scaling: vertical scaling, which offers the 

possibility to upgrade servers; and horizontal scaling 

that allows adding new servers to a cluster [9].  
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Organizations that require a dynamic information 

technology infrastructure are moving to cloud due its 

scalability and effective pricing models. Cloud features 

allow startups (and others), that usually do not possess 

a large budget for IT investment, to hire computer 

resources in a pay-as-you-go model. From the Big Data 

perspective, cloud is an interesting environment, since 

it virtualizes distributed resources provide large storage 

capacities and high processing power (therefore, it can 

host and process big volumes of data).  

In this paper we present Big Data in the cloud. 

Particularly we describe NoSQL databases; 

MapReduce and other variants such as: HaLoop, 

Twister and Apache Spark that address MapReduce’s 

lack of interactivity; Pregel, GraphLab and Apache 

Giraph, that were designed to work with graphs, 

instead of data files; and MapD, which is a novel 

approach to accelerate Big Data processing by means 

of GPU processing power. As these systems run over 

distributed architectures they perfectly fit in the cloud 

paradigm and are often offered as Big Data as a service 

or used by several online applications. The paper 

presents two case studies showing how Big Data and 

Cloud computing match, the issues on moving big 

loads of data to the cloud and the existent solutions, 

disaster recovery plans, and existing Big Data 

challenges. 

The remainder of this paper is structured as follows. 

Section 2 introduces Big Data and Cloud Computing. 

Section 3 presents NoSQL, MapReduce, Graph 

databases and GPU processing. Section 4 discusses the 

case studies and existent problems and solutions when 

moving Big Data to the cloud. Section 5 discusses 

disaster recovery, and Section 6 presents Big Data 

challenges, new trends and future directions. Finally, 

Section 7 concludes the paper. 

 
2 BIG DATA AND CLOUD COMPUTING 

 
The Big Data concept has been strongly leveraged and 

became a major force of innovation across academics, 

governments and corporates. The paradigm is regarded 

as an effort to understand and get information from 

data (Big Data Analytics), providing insights and 

information over huge datasets. Therefore, it is seen by 

governments as a way to improve cities (smart cities 

[56], [11]) and get proper insights over their people. 

Corporates regard this technology as a way to better 

know and understand their clients, to get closer to them 

and gain competitive advantage over their competitors. 

At last, Big Data is viewed by scientists as a mean to 

store and process huge amounts of data such as those 

yielded by CERN’s Large Hadron Collider (LHC) in 

Switzerland [4].  

 Table 1. Examples of Big Data sizes [58] 

Data Set/Domain Description 

Social Media 
12+ Terabytes (1012) of tweets 

every day and growing.  

British Library UK 

Website Crawler 

~110 Terabytes (1012) per 

domain crawl to be delivered 

LHC - Large 

Hadron Collider 

(CERN) 

13-15 Petabytes (1015) in 2010 

Internet 

Communications 

(Cisco) 

667 Exabytes (1018) in 2013 

Digital Universe 7.9 Zettabytes  (1021) (2015)  

 

Big Data not only concerns the ability to storage 

huge amounts of data but also ways to process and 

extract knowledge from it [35]. Table 1 presents some 

examples of Big Data sizes in different domains. In 

practice, a big data database can contain structured and 

unstructured data that may come at different velocities, 

be varied and have different volumes. These are known 

by the three “V’s” of big data [60]. Two other “V’s” – 

veracity and value – are also important to explain that 

quantity is good but valuable and trustful data are also 

important (see Figure 1). The following paragraphs 

briefly describe the 5 V’s model: 
 

Volume concerns the huge loads that typically Big 

Data has to deal with. Processing and storing big 

volumes of data  is rather difficult, since it concerns 

(among others): scalability (vertical, horizontal or both) 

in order to facilitate the storage and processing power 

growth; availability, which guarantees access to data 

and ways to perform operations over them; and 

bandwidth and performance, that guarantee the access 

to data at the right-time.  
 

Variety concerns the different types of data from 

various sources that Big Data frameworks have to deal 

with (typically, different sources output different kinds 

of data). Big Data is a way to overcome these 

differences and unify data. Internet of Things (IoT) 

[43] is a Big Data related topic that studies data from 

individual objects of everyday life that can be very 

varied: Internet traffic, smartphones, wearable 

technology, and others. In order to process various 

types of data, Big Data must provide data-type 

abstraction frameworks. 
 

Velocity concerns the different rates from each data 

source. For instance, an Enterprise Data Warehouse 



 

 
 

 

P. C. Neves, J. Bernardino: Big Data in the Cloud: A Survey   
 

 
3 

 

(EDW) is typically updated once every day, whilst 

information from wireless sensor systems is constantly 

being updated. In order to aggregate data from several 

data sources, Big Data must be able to deal which data 

arriving at different velocities. 
 

Value concerns the true value of data (i.e., the potential 

value of the data regarding the information they 

contain). Huge amounts of data are useless if they do 

not provide value for who is exploring it. 
 

Veracity refers to the trustfulness of the data (i.e., it 

addresses the confidentiality, integrity, and availability 

of the data). Data are meaningless if their source is 

unreliable. Therefore, organizations need to ensure that 

the data is correct as well as the analyses performed on 

the data are correct. 

The five V’s of Big Data complement each other in 

order to provide solutions that are able to store and 

process data more efficiently.  

Cloud computing is another modern movement that 

offers theoretically unlimited on-demand services to its 

users. Cloud’s ability to virtualize resources allows 

abstracting from hardware, requiring little interaction 

with cloud providers and smoothly enabling users to 

access terabytes of storage, high processing power and 

high availability as a pay-as-you-go model [36].  

Moreover cloud computing transfers all costs and 

responsibilities from the user to the cloud provider, 

leveraging companies in their early days.  

Normally, it is a great endeavor for a startup 

company to start its business within IT market because 

they typically do not have the resources to buy their 

own data servers or machines. In addition to the 

hardware expenses, a company must consider several 

other costs such as software licenses, hardware, IT 

personnel and the maintenance of the infrastructure. 

Cloud computing provides an easy way to get resources 

on a pay-as-you-go basis, offering scalability and 

availability, which means that companies can easily 

negotiate resources with the cloud provider in order to 

operate their business.  

Cloud providers usually offer three different basic 

services: Infrastructure as a Service (IaaS); Platform as 

a Service (PaaS); and Software as a Service (SaaS):  

IaaS delivers storage, processing power, virtual 

machines, and so on. From the point of view of cost 

reduction, it makes sense to hire computer power as 

virtual machines. All that is needed is a couple of low-

cost computers to serve as front-end to access the 

virtual machines stored in the cloud. The cloud 

provider satisfies the needs of the client by virtualizing 

resources according to the service level agreements 

(SLAs). Some examples of IaaS are Amazon EC21 and 

Google Compute Engine2. 

PaaS is built on top of IaaS. The service allows the 

user to deploy cloud applications created using the 

programming and runtime environments supported by 

the provider. Once more, by contracting this service, 

one is released from server maintenance and software 

updates, transferring those concerns to the cloud 

provider. Examples of PaaS are Google App Engine3 

and Microsoft Azure4. 

SaaS is one of the most known cloud models. It 

consists of applications running directly in the cloud 

provider. Some of the most used SaaS applications are 

Google Docs and Dropbox. 

As shown in Figure 2, these three basic services are 

closely related: SaaS is developed over PaaS and 

ultimately PaaS is built on top of IaaS. Also, from 

these basic services several others emerged, including 

Database as a Service (DBaaS) [61] and BigData as a 

Service (BDaaS) [27]. DBaaS (DataBase as a Service), 

as well as BDaaS (Big Data as a Service), usually 

consist in a SaaS that allows users to hire database 

services. AaaS [17] (Analytics as a Service) is another 

service that allows users to hire analytics tools to 

perform calculations over data. 

Since cloud virtualizes resources that are often 

distributed in clusters or datacenters, it is the most 

suitable framework for Big Data processing. By 

virtualizing thousands of machines we can create the 

high processing power and high storage levels to store 

and process big amounts of data.  

 

Figure 1: 5 V’s model of Big Data 

                                                           
1 http://aws.amazon.com/ec2/ 
2 https://cloud.google.com/compute/ 
3 https://cloud.google.com/appengine/ 
4 https://azure.microsoft.com/en-us/ 
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Figure 2: Relationship of cloud basic services 

3 BIG DATA DBMS 

Big Data and traditional entity-relation DBMS 

(Relational DBMS) are two incompatible concepts 

[10]. Firstly because the amount of data is too big to be 

managed by an entity-relational model; and secondly 

because traditional models tend to not work well (or be 

very expensive) on distributed systems, thus, 

availability and scalability are compromised. 

Commercial DBMSs tend to work better than open 

source but when processing big loads of data, they 

must run under complex hardware, which becomes 

expensive when scaling to clusters of machines.  

Regarding scalability, Relational DBMS features 

make them less flexible – especially concerning scaling 

out. As such, several projects like MySQLCluster [8], 

VoltDB [67] and others were designed in order to 

provide scalability while still using basic MySQL 

properties. By using a sharded, (which is a mechanism 

that splits large datasets into smaller ones) and shared 

nothing architecture (a system where each node is 

independent) these projects accomplished to 

successfully scale-out SQL, separating tables over 

various servers. Nevertheless, as they use traditional 

MySQL, there are still some limitations: 

 Use of small-scope operations: operations that 

spans many nodes – such as joins – do not scale 

well with sharding. 

 Use of small-scope transactions: transactions that 

span many nodes are very inefficient. 

Not Only SQL (NoSQL) DBMS bypass these 

problems by avoiding performing large operations, 

large transactions and join operations. NoSQL DBMS 

were developed as highly scalable databases that allow 

easy data distribution over a number of servers. Next, 

we provide an overview of NoSQL and 

Hadoop/MapReduce systems and several interactive 

alternatives. Additionally, we specify the 

characteristics of graph databases and MapD, which 

uses GPU processing for accelerate Big Data 

processing. 

3.1  NoSQL 

NoSQL (Not Only SQL) technology does not rely on 

entity-relation models; instead, information is stored as 

‘key-value’ pairs, documents, columns or graphs, 

which supports an easy scale out process (horizontal 

scaling – the process of adding new machines to a 

cluster). These systems were developed to run over 

distributed and fault-tolerant architectures in which 

data resides in several redundant servers so that the 

system can be easily scalable. However, NoSQL 

systems offer little more than an efficient way to store 

and replicate data, providing only retrieval and 

appending operations. In the following paragraphs we 

overview the characteristics of some of the most used 

NoSQL systems: BigTable [28], DynamoDB [31], and 

the open source Cassandra [1], HBase [43], Hypertable 

[32], and MongoDB [47]. 

BigTable: was developed by Google in 2004 and is 

now used in more than 60 Google applications such as 

Google Earth, Web Indexing, Google Financing, 

Google Analytics and Personalized search. The system, 

which was developed to be a distributed, high efficient, 

proprietary system to manage structured data, was built 

upon the Google file system. It organizes tables as 

different groups of columns with variable dimensions 

and consisting in a sparse, distributed, persistent, 

multidimensional sorted map [28] in which the map is 

indexed by a row, a column key and a timestamp and 

each value in the map is an uninterpreted array of 

bytes.  

Data in Big Table is organized in tablets that are 

assigned to a root table that contains the location of all 

tablets. When a write operation arrives at a tablet 

server, the server checks if it is well-formed and if the 

user has authorization to perform writing operations. If 

that is the case, the operation is written to a commit 

log. After the write has been committed, its contents 

are written to the memTable – Table stored in memory. 

When a read operation arrives to the tablet server, it is 

also checked if it is well-formed and if the user has 

proper authorization to get that data. Only then, the 

operation is executed. 

Concerning the API, the system allows client 

applications to create and delete tables and column 

families, changing clusters (exploring locality), tables, 

and column family metadata [28]. 

Cassandra [25], [53] is one of the most known engines 

for NoSQL. The system provides “automatic data 

distribution across all nodes that participate in a 

“ring” or database cluster” [24]. Cassandra [54] 

supplies high performance at massive scale and high 

availability which, instead of using a legacy master-

slave or a manual and difficult-to-maintain shared 
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design, uses a peer-to-peer (P2P) distributed 

architecture that is much more elegant, easy to set up 

and maintain and has no single point-of-failure.  

Cassandra’s built-for-scale architecture allows it to 

handle petabytes of information and thousands of 

concurrent users/operations per second (across multiple 

data centers) as easily as it can manage much smaller 

amounts of data and user traffic [24]. Similarly to 

BigTable, Cassandra implements a hierarchical 

architecture based on columns (name, value and 

timestamp) grouped by families that map the columns 

in each line. Cassandra’s first dimension is a keyspace 

that contains the column families. 

When a read or write operation arrives, the system 

identifies the nodes that own the specified key and 

route the requests to those nodes, waiting for a reply. If 

the reply does not come within a configured timeout, 

the request is considered to have failed. Updates are 

cached in memory and then written back to the disk. 

DynamoDB [31], [30] was developed by Amazon to 

support its applications. The system was built to meet 

high reliability and availability requirements, applying 

techniques like data partitioning and replication using 

consistent hashing. DynamoDB provides consistency 

through object versioning: during updates, the 

consistency is maintained by a “quorum-like technique 

and a decentralized replica synchronization protocol” 

[31]. Query operations consist in read/write operations 

to data items that are uniquely identified by a key. 

States are stored as binary objects (blobs) identified by 

unique keys. The system allows distributing the load 

across multiple storage hosts and the possibility for the 

administrator to configure how many copies of the data 

items are created for fault tolerance purposes. 

DynamoDB can execute two operations: get() and 

put(). A node that handles a read() or a put() is named 

coordinator and is typically the first node of a ranked 

preference list. Read and write operations involve the 

first healthy nodes of the preference list, skipping over 

those that are down or inaccessible. Upon receiving a 

put() request for a key, the coordinator generates a 

vector clock and stores it locally. The coordinator then 

sends it to the N highest-ranked reachable nodes. When 

receiving a read() request, the coordinator requests all 

existing versions of data for that key from the N 

highest-ranked reachable nodes in the list for that key. 

If the coordinator receives multiple versions of the 

same data, it returns all the unrelated versions. 

DynamoDB provides fault detection and allows nodes 

to be added and removed without any manual 

partitioning or redistribution. 

HBase [43], [13] is an open-source, scalable, fault-

tolerant, widely used system, built on top of Apache 

Hadoop and modeled around BigTable. HBase is used 

in many different systems and by many enterprises and 

entities such as Facebook, Twitter, and Mendeley. This 

system is a sparse, multidimensional, sorted map in 

which each cell is uniquely identified by row id, 

column id and timestamp set. Its architecture relies on 

Hadoop (HDFS) to store files and MapReduce to 

single-row or multi-row operations. Processing data 

requires mapping data into Hadoop nodes, shuffle data 

and reduce the outputs (MapReduce is detailed in 

section 3.2).  

HBase is scalable and fault-tolerant and performs 

atomic row operations with row level-locking, 

featuring compression and in-memory operations. 

Partitioning and distribution methods are transparent as 

there is a multiple master support, to avoid a single 

point-of-failure. 

Hypertable [10], [39] is an open source scalable 

database modeled from BigTable as a distributed 

system that allows parallelization and represents data 

as a multidimensional table. Hypertable is designed to 

use a highly available and scalable file system such as 

Hadoop (although it can run on top of any file system). 

This system follows a master slave architecture where 

the master does not handle data; instead, it coordinates 

slave nodes (range servers), which handle write/read 

operations. 

When a write operation arrives, Hypertable inserts 

it in the Commit Log, before changing the in-memory 

CellCache. The system then sends an acknowledgment 

to the application that requested the write operation. 

When a read request arrives, Hypertable routes the 

request to the proper range server in order to get the 

data. This system provides a low-level API and has its 

own query language (Hypertable Query Language – 

HQL) that allows creating, modifying and querying the 

multidimensional table.  

MongoDB [47], [59] is an open source, scalable cross-

platform, document oriented database engine that aims 

at providing high performance, availability and easy 

scalability. A MongoDB deployment hosts a number of 

databases that consist in sets of collections that hold a 

set of documents. A document is a set of key-value 

pairs with a dynamic schema, which means that 

documents in the same collection do not need to have 

the same set of fields or structure. A document may 

hold very different and complex types of data, storing 

complex data types and large binary data files like 

videos and images. 

A MongoDB cluster is made of one or two nodes 

and read/write operations are routed to the appropriate 

nodes. Concerning scalability, auto sharding [51] 

allows to scale clusters linearly by adding more 

machines, being possible to increase capacity without 

any downtime. MongoDB’s replication is mostly used 
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for failover and not for scalability. The system supports 

master-slave replication with automatic failover and 

recovery, and replication (and recovery) is done at the 

level of shards.  
 

These six DBMS share the goal of addressing 

RDBMS inefficiencies, although they present several 

differences. In a nutshell, they differ on the type of data 

stored. While BigTable, DynamoDB and HBase can 

only store structured data, Cassandra and MongoDB 

can contain structured, semi-structured and 

unstructured data and Hypertable, structured and 

unstructured data. Also, they address data differently – 

Cassandra, BigTable and Hypertable are column 

oriented DBMS whereas DynamoDB and HBase use 

key-value pairs and MongoDB is JSON document 

oriented.  

Concerning schema, BigTable, Hypertable and 

HBase are schema-oriented, while DynamoDB is 

schema-free. Cassandra is schema-optional, which 

means that it may, or may not use schema, while 

MongoDB provides document dynamic schemas. In 

MongoDB users can easily add or remove fields from a 

document. Regarding the architecture, all systems 

follow a master-slave approach with the exception of 

Cassandra, which follows a P2P architecture. 

Concerning the API, BigTable provides functions 

to change cluster, HBase and Cassandra provide in-

memory capabilities and Hypertable has Hadoop 

compatibility. Table 2 presents a summary of each the 

features of each system. “Main type” stands for the 

type of architecture used. Here, the three types of data 

models are Column family, Document and Key-value. 

The types of data supported refer to the data that each 

DBMS can handle. Schema refers to the possibility of a 

DBMS to be schema-less or schemafull. Being a 

schemafull DBMS means that the DB must obey to a 

predefined schema to be able to manage data whereas 

schema-less means the opposite. Dynamic schema 

means that the schema can change very easily. 

Architecture stands for the type of architecture (models 

of communication) used in the design of the DBMS 

and consistency ensures that any transaction will bring 

the database from one valid state to another.  

3.2  MapReduce 

MapReduce (best known by its open source 

implementation: Hadoop) has become a de facto 

standard used by several commercial and non-

commercial solutions in the context of Big Data. The 

system consists in an abstraction layer that handles 

hardware complexity and creates an interface between 

the programmer and the data management. 

MapReduce was developed as a shared-memory 

system following a master/slave architecture and uses 

HDFS [40], which creates and replicates clusters (fault-

tolerance), splitting and replicating datasets to nodes 

where they are more likely to be consumed by 

mappers. Exploring locality is a feature that improves 

MapReduce performance [21] (i.e., the performance is 

better if the distance between tasks and needed data is 

smaller). 

The abstraction provided by this framework 

requires programming only two functions: “Map”, 

which is used for per-record computation; and 

“Reduce” that aggregates the output from the “Map” 

functions and gathers the final results. Typically, the 

programmer specifies both functions within a single 

job. The job then automatically divides the input 

dataset into several independent subsets that are then 

processed by the “Map” tasks in slave nodes. At last, 

MapReduce sorts (shuffle) the “Map” results, 

aggregating them through the “Reduce” function (job 

performed by a Master node). 

The MapReduce framework has been scored as one 

of the best frameworks regarding Big Data. This is due 

to several features, namely: fault-tolerance, parallelism, 

locality exploration, throughput, and abstraction. 

However, the purpose of storing such amounts of data 

is to analyze and retrieve meaningful information from 

it. In this topic, MapReduce lacks essential features 

[66]: first, its performance is better than the traditional 

DMBSs only when it concerns high volumes of data 

and second, custom code has to be written even for the 

most common operations.  

Many programmers are unfamiliar with the 

MapReduce framework. Thus, they rather prefer to use 

SQL or a similar language as a high-level declarative 

language to program tasks, leaving details to the 

backend engine. In this direction, several languages 

were developed to simplify the task of programming 

for MapReduce: 

Hive [15] is a platform that uses an SQL-similar 

language (declarative) – HiveQL – to query 

MapReduce, translating queries into acyclic graphs of 

MapReduce jobs and submitting them to Hadoop for 

execution. It becomes a user-friendly SQL-like easy to 

use tool that serves as intermediate between 

MapReduce and the user, skipping the difficulties of 

programming directly MapReduce tasks. Hive was 

developed by Facebook and adds some other features 

to traditional SQL queries. Particularly, it introduces 

subqueries in the “from” clause, various types of 

“joins”, “group-by”, aggregations and “create table as 

select”. 

Jaql [42] is a general-purpose dataflow language 

designed by IBM upon the JSON data model. It 

manipulates semi-structured data in the form of 

abstract JSON values, providing SQL-like operators  as 
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Table 2. Features of NoSQL systems 
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Table 3: Programming Languages for MapReduce 

Language Name of the 

language 

Developed by Type of 

language 

Types of Data 

structures 

Schema 

optional 

Jaql Jaql IBM Data Flow JSON Yes 

Hive HiveQL Facebook Declarative Complex No 

Pig Pig Latin Yahoo! Data Flow Complex, Nested Yes 

 

well as Hive and Pig. Moreover, it offers a rich set of 

built-in functions for processing unstructured or semi-

structured data. 

Pig [12] was developed by Yahoo and uses Pig-Latin 

language, a data flow scripting language to process 

data in Hadoop systems. It combines SQL with 

MapReduce, providing a way to express common SQL 

operations such as “select”, “join” and so on. A Pig 

script is a query execution plan or a dataflow graph that 

is compiled and optimized by MapReduce. Pig has a 

flexible data model that supports complex types such as 

set or map and also provides code debugging. 

Concerning the programmer’s point of view, the 

frameworks above improve the use of MapReduce by 

offering rich easy-to-use APIs as either declarative or 

data-flow languages. Declarative languages are those 

that specify what one wants to do rather than how to do 

it, and do not allow procedural programming. On the 

contrary, data-flow languages allow instruction and 

procedural programming.  

These frameworks abstract the programmer from 

the whole system, making her/him comfortable within 

the MapReduce distributed programming model.  

Table 3 presents a comparison between these three 

programming languages developed for MapReduce. 

Note that, although these languages were developed to 

improve MapReduce jobs programming, they are very 

different in nature. Concerning the type of language, 

Pig and Jaql are Data Flow languages while Hive is 

declarative. Pig operates over nested complex data 

while Jaql operates over JSON. Complex data 

structures stands for arrays, collections, scalars and 

hashes [3], while nested data structure simply means 

that a collection can contain objects of its own data 

type. JSON data structures refers to documents as a 

way to store values. Finally, Pig and Jaql are schema 

optional while Hive is not [7]. 

3.3  Enhancements to MapReduce 

Concerning analytics’ algorithms, MapReduce lacks 

built-in support for iterative process, which is a crucial 

feature in many applications. Thus, several alternatives 

to MapReduce were developed, such as HaLoop, 

Twister, and Apache Spark: 

Apache Spark [48] is a MapReduce based 

implementation that allows data reuse across multiple 

iterations. It offers MapReduce native scalability and 

fault-tolerance, adding support for in-memory 

processes. Spark introduces the concept of Resilient 

Distributed Datasets (RDDs), which are fault-tolerant 

distributed collection items that allow users to control 

partitioning and preserve intermediate results in 

memory, optimizing data location and data 

manipulation, using a rich set of operators. RDDs can 

be cached in memory or in permanent storage, which 

overcomes the handicaps of Twister that only keeps 

intermediate data in memory. However, Apache Spark 

does not support group Reduce functions, gathering all 

results through only one reduce function. 

HaLoop [68], [69] is a highly available, fault-tolerant 

and scalable framework that provides support for 

iterative algorithms by scheduling tasks across 

iterations and using several caching mechanisms. The 

system reuses mappers and reducers assigned to the 

same MapReduce job. Moreover, it attributes tasks to 

the same nodes in a loop-like way. By caching loop 

invariants it employs few resources, reloading repeated 

information several times. There is also a local 

“Reducer” that tests the loop condition. HaLoop 

distributed programming system maintains fault 

tolerance from MapReduce. 

Twister [37], [18] is an in-memory MapReduce, 

scalable and fault-tolerant framework. Therefore, it 

performs loops in MapReduce normal execution, 

triggering another MapReduce iteration. The system is 

optimized at runtime for iterative computations and 

was developed to retain in memory (if possible) 

intermediate data to reduce computation overhead. 

Moreover, Twister allows configuring static data in 

both Map and Reduce tasks; uses a higher granularity 

for the Map tasks; offers a new operation (Combine), 

which is another reduction level; and allows the 

implementation of a set of programming extensions to 

MapReduce. However, when comparing to Hadoop, 

this system is weak fault-tolerance. 
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3.4 Graph Databases 

Several alternatives to MapReduce are based in 

different computation models. Apache Giraph, 

GraphLab and Pregel, are graph parallel computation 

models that appeared to solve graph based problems: 

Apache Giraph [38] is an open source, master/slave 

architecture, graph parallel computation model that 

loads and splits graphs across workers by using 

MapReduce’s Map function. The master decides when 

workers shall start computing consecutive supersteps. 

Apache Giraph’s computation starts by assigning 

vertices to the workers. The computation is then 

performed by each worker and stops when all vertices 

are inactive. Synchronization is maintained during 

operations. Since it implements a MapReduce‘s Map 

function, it is able to run on an Hadoop infrastructure 

while providing Pregel’s API and middleware. The 

system is fault-tolerant, provides high-availability and 

allows in-memory processing, being able to compute 

iterative algorithms. 

GraphLab [70] is an asynchronous peer-to-peer system 

developed at Carnegie Mellon University as a highly 

scalable and fault-tolerant graph processing system. It 

runs efficiently in both shared and distributed-memory 

systems and provides MapReduce-similar functions: 

Update and Sync. The Update function reads and 

modifies overlapping sets of data, whereas the Sync 

function performs reductions in the background while 

other computation is being performed. Also, by using 

scheduling primitives, GraphLab controls the order in 

which update functions are executed.  

The GraphLab execution model follows a single 

loop semantics. A computation consists of a set of 

vertices V, set of edges E, and user-defined data D, 

defined in a Graph G = (V, E, D), an update function 

and an initial set of vertices V to be executed. The 

system keeps adding and removing vertices to the set 

of vertices V and ends when there are no vertices in V. 

The resulting values are returned when the algorithm 

ends. This framework also includes toolkits for graph 

analytics, clustering, collaborative filtering, graphical 

models and so on. 

Pregel [33], [23] is a highly available, scalable, and 

fault-tolerant synchronous system developed by 

Google to address many practical computational 

problems such as Web mining or social network graph. 

The system provides support for iterative algorithms, 

since it preserves the state (and the graph structure) of 

each vertex between the iterations. The input to a 

Pregel computation is a direct graph in which a vertex 

is uniquely identified by a vertex identifier. 

Additionally, each vertex is associated with a 

modifiable, user value. The edges are associated with 

their sources vertices and each edge consists of a 

modifiable, user defined value and a target vertex 

identifier. In a Pregel computation, the first operation 

performed is graph initialization. Then, a chain of 

supersteps allows vertices to be executed in parallel, 

executing the same user-defined function that expresses 

the logic for a given algorithm. A vertex can modify its 

state or the state of its outgoing edges. The algorithm 

ends, when all vertices are inactive.  

3.5 GPU Processing 

While hardware has been evolving through the years, 

data analytics tools have not kept up. The need for 

better algorithms has been an issue and their 

performance have been relying entirely on the 

capabilities of DBMSs for scaling-out. Recently, [41] 

and [22] presented new approaches for storing Big 

Data by means of GPU processing. MapD [49] is 

perhaps one of the most successful approaches that 

brings GPUs into the Big Data ecosystem.  

This framework pairs “off-the-shelf video game 

GPU cards with a new design for parallel databases” 

[49]. It is packed in both Server and Desktop versions: 

MapD Server allows analyzing multibillion-row 

datasets by multiple simultaneous users. It is designed 

to run in headless server environments supporting up to 

16 GPUs per server – eight GPU cards with 192GB 

total GPU memory can be installed in a single server, 

allowing data to be queried at rates approaching three 

terabytes per second by almost 40,000 cores; and 

MapD Desktop, which allows on-site analysis of 

hundreds of millions of rows of data at great speeds.  

Both versions are packaged with a web-based 

frontend that enables easy-to-use, interactive visual 

analytics. However, it also provides SQL and user 

defined functions (UDF) so that complex analytics 

such as regression and deep learning can be performed 

directly on GPU query results. 

3.6 Discussion 

All discussed systems present options to provide 

availability, fault-tolerance and scalability. MapReduce 

and its alternatives, MapReduce, HaLoop, Twister and 

Apache Spark, are key/value systems and all support 

in-memory iterative algorithms (with exception of 

MapRedue) but all are data oriented. Pregel, GraphLab 

and Apache Giraph are Graph oriented systems. Table 

4 presents an overview of the main features of these 

systems. MapD is not mentioned in the comparison 

because it is still in its early day and little information 

is available. 

Comparing all systems studied within the scope of 

this paper, we can see that all provide fault-tolerance, 
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availability and scalability, which are three major 

characteristics regarding Big Data needs. Concerning 

iterative Analytics, only HaLoop, Twister, Apache 

Spark, Pregel, GraphLab and Apache Giraph are 

eligible. Table 5 presents a comparison overview 

concerning fault-tolerance, availability, scalability, 

replication, and in-memory operations for all systems. 

Furthermore, it also presents some of the Big Data 

vendors that sell these systems as services in the cloud. 

4 BIG DATA IN THE CLOUD 

Storing and processing big loads of data requires 

scalability, easiness-to-growth, fault tolerance and 

availability. Cloud computing is able to deliver all 

these characteristics through hardware virtualization. 

As such, Big Data and Cloud computing are two 

compatible concepts: Cloud can make Big Data 

available, scalable and fault tolerant.  

With the rapid increase of data and the demand for 

new ways to store, process and analyze data, a new 

business area has emerged. Companies started to view 

Cloud and, more recently, Big Data as a valuable 

business opportunity. Several new companies such as 

Cloudera5, Hortonworks6, and Teradata7 and many 

others, are now focused in deliver Big Data as a 

Service (BDaaS) or DataBase as a Service (DBaaS). 

Companies such as Google, IBM, Amazon and 

Microsoft also provide ways for costumers to consume 

Big Data on demand. Next, we present two case 

studies, Nokia and RedBus, which discuss the 

successful use of Big Data within Cloud environments. 

4.1 Case Studies 

Nokia8, was one of the first companies to understood 

the value of Big Data and Cloud computing 

technologies together [20]. Several years ago, the 

company used individual DBMS to accommodate each 

application requirement. Although, realizing, the 

advantages of integrating all data into one application, 

Nokia decided to migrate to Hadoop based systems, 

integrating data within the same domain to get proper 

insights on how its clients interact with their 

applications. As Hadoop uses commodity hardware, the 

cost per terabyte of storage is cheaper than a traditional 

RDBMS. Moreover, it allows both structured and 

unstructured data [20]:  

“The benefits of Hadoop were clear – it offers 

reliable, cost-effective data storage and high 

                                                           
5http://www.cloudera.com/ 
6 http://hortonworks.com/ 
7 http://www.teradata.com/ 
8 http://www.nokia.com/ 

performance parallel processing of multi-

structured data at petabyte scale”. 

As Cloudera Distributed Hadoop (CDH)9 bundles 

the most popular open source projects in the Apache 

Hadoop stack into a single, integrated package, with 

stable and reliable releases, it represents a great 

opportunity for implementing Hadoop infrastructures, 

transferring all specialized processes, IT 

preoccupations and technical concerns onto the 

vendors’ specialized teams. Nokia regarded BDaaS as 

an advantage and trusted Cloudera's expertise to deploy 

a Hadoop environment that cope with its requirements 

in a short time frame.  

Hadoop, and in particular Cloudera’s Distributed 

Hadoop, strongly helped Nokia to fulfill their needs 

[20]: 

“Hadoop was absolutely mission critical for 

Nokia…” which can now “…understand how 

people interact with the apps on their phones to 

view usage patterns across applications… and 

we wouldn’t have gotten our Big Data platform 

to where it is today without Cloudera’s platform, 

expertise and support”. 

Nokia’s case study shows that Big Data can be 

advantageous and how partnering with Big Data 

vendors can leverage an easy deployment of a Big Data 

solution. 

RedBus10 is India's largest online bus ticket and hotel 

booking company. They wanted to implement a 

powerful data analysis to gain insights over its bus 

booking service [34]. RedBus datasets could reach up 2 

terabytes in size and the application would have to be 

able to analyze booking and inventory data across 

hundreds of bus operators serving more than 10.000 

routes. Furthermore, the company wanted to avoid 

setting up and maintaining a complex in-house 

infrastructure.  

At first, the company considered using clusters of 

Hadoop servers to process the data, although they 

realized it would take too much time to set up and 

would require specialized personal in order to maintain 

such infrastructure in-house. 

The company considers Google BigQuery as the 

perfect match for their needs: “We explored several 

data analytics solutions. Nothing comes remotely close 

to the sheer power of Google BigQuery - It made large-

scale data collection and crunching possible with little 

effort…” [34]. 

                                                           
9 http://www.cloudera.com/ 
10 https://www.redbus.in/ 
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Table 4: Map Reduce, enhancements and alternatives 
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Table 5: Comparison of Big Data systems 

System / 

Features 

Fault-

tolerance 
Availability Scalability Replication 

Available as a 

service by a 

cloud vendor 

In-memory 

operations 

BigTable    

Synchronous 

and 

Asynchronous 

Google 

X 

Cassandra    
Asynchronous Google and 

others 
X 

DynamoDB    Asynchronous Amazon X 

Hbase    
Asynchronous Microsoft Azure 

HDInsights 
X 

HyperTable    Synchronous X X 

MongoDB    Synchronous MongoDirector X 

MapReduce 

(Hadoop) 
   

Synchronous Cloudera, 

Hortonworks 

and others 

X 

Apache 

Spark 
   

Synchronous 

and 

Asynchronous 

IBM, Microsoft 

Azure 

HDInsights 

 (allows 

streamming) 

HaLoop    Synchronous X  

Twister    Synchronous X  

Apache 

Giraph 
   

Bulk-

synchronous 

Microsoft Azure 

HDInsights 

(allows 

installation) 

 

GraphLab    Asynchronous Dato  

Pregel    
Bulk-

synchronous 
X  
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Using BigQuery, allows RedBus to [34]: 

 Know how many times costumers tried to find an 

available seat but were unable to do it due bus 

overload;  

 Examine decreases in bookings; 

 Identify server problems by quickly analyzing data 

related to server activity; 

Useless to say that moving towards Big Data 

brought RedBus business advantage. Google BigQuery 

provides RedBus with real-time data analysis 

capabilities at 20% of the cost of maintaining a 

complex Hadoop infrastructure. As affirmed in [34]: 

“The fast insights gained through BigQuery are also 

making RedBus a stronger company. By minimizing the 

time it takes staff members to solve technical 

problems…”. 

As supported by the use cases of Nokia and 

RedBus, and also other examples described in [2] and 

[6], switching towards Big Data enables organizations 

to gain competitive advantage. Moreover, Big Data as a 

Service (BDaaS), provided by Big Data vendors allows 

companies to leave the technical details for Big Data 

vendors and focus on their core business needs. Table 5 

presents Big Data vendors that provide the discussed 

systems. Hadoop open-source is used mainly by 

Cloudera and Hortonworks, although several other 

implementations are used by other vendors such as 

Microsoft. BigTable and DynamoDB are proprietary 

and are provided by Google and Amazon. MongoDB is 

provided by MongoDirector, while the remaining 

systems are implemented on-demand by Microsoft 

Azure, a Microsoft’s platform that sells Big Data and 

Analytics as a Service. 

4.2 Moving Big Data to the Cloud 

Although this technology enables the deployment of 

Big Data DBMS, moving Big Data to the Cloud 

presents issues that are not easy to resolve. Security 

and privacy are issues that typically concern Big Data 

clients. The major problem resides in the transfer of big 

loads of data through the Web. Uploading a 2 terabyte 

dataset through the Web is not a fast task and can be 

insecure without proper security configurations. 

Regarding bandwidth bottleneck the most pragmatic 

solution is to physically send the hard drives to the data 

center so that data can be uploaded onto the Cloud. 

However, this can be hard to accomplish without any 

loss of data. There are always the possibility of traffic 

accident and HDD damage during the trip. Plus, the 

cost of transfer would be enormous.  

A better solution resides in improve bandwidth or 

create new algorithms and protocols for better data 

transfer. As bandwidth improvement passes through 

improved hardware from source to destination, a 

dedicated connection can be set up. However, this is 

not feasible in all cases, as the client would lose 

flexibility, since data cannot be uploaded from 

wherever s/he wants.  

Software improvement consists in the best solution 

for work around this issue. Regarding software 

development for improving data paths, [44] presents 

the implementation of two algorithms that optimize at 

any given time the choice of the data center for data 

aggregation and processing, as well as the routes for 

transmitting data there. The first is an online lazy 

migration (OLM) algorithm and the second is a 

randomized fixed horizon control (RFHC) algorithm. 

Another contribution comes from Aspera [16] that built 

atop of its FASPTM transport technology, a proprietary 

suit of on demand transfer products [16]. 

  

5 DISASTER RECOVERY 

Data is extremely important for a corporation since it 

provides information over the client’s needs and 

through it, powers business and marketing teams to 

keep up with current demands and predict new trends. 

As data is very valuable, any loss of data results in the 

loss of money and competitiveness. In case of 

emergency or hazardous accidents such as floods, fires 

and others, data loss needs to be minimal. Disaster 

recovery techniques were developed to assure that data 

are quickly available with minimal downtime and loss. 

However, although this is a very important issue, the 

number of research articles focusing this particular area 

is relatively small [62], [64], [65]. 

  By its definition [14], Cloud provides a good way 

to minimize data loss during emergencies. There are 

two important coefficients that are imperative to 

minimize: Recovery Point Objective, which refers the 

acceptable amount of application data that is acceptable 

to loose; and Recovery Time Objective, which refers to 

the acceptable downtime of the system. The author of 

[65] states that it is important to define a disaster 

recovery plan that not only relies on backups to reset 

data but also consists in a set of procedures that should 

be tested at least twice each year. Works such as [45], 

[64], [62] and [65] study this issue in depth from 

several perspectives. 

From a technical perspective, [65] presents a very 

good methodology, proposing a “multi-purpose 

approach, which allows data to be restored to multiple 

sites with multiple methods”, ensuring a recovery 

percentage of almost 100%. Furthermore, this study 

states that usually, data recovery methods use what 

they call “single-basket approach”, which means there 

is only one destination from which to secure the 
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restored data. This area is of most importance and 

further research need to be done to minimize loss of 

data in case of accident. 

6 BIG DATA CHALLENGES, NEW TRENDS AND 

FUTURE DIRECTIONS 

This section discusses Big Data challenges, trends and 

future directions that must be taken into consideration 

within the next years to keep up with the rapid growth 

of data.  

6.1 Challenges of Big Data 

The current state of the art of Big Data, and Big Data 

platforms in particular, presents several challenges that 

must be addressed to keep up with the ever increasing 

rate of data and business needs. Moving huge amounts 

of data into a Cloud based Big Data platform, as 

discussed previously, is not simple and corporations 

often opt to physically send the hard drives to the data 

centers so that data can be uploaded. However, because 

this is neither the most practical solution nor the safest, 

several algorithms have been developed through the 

years ease data upload for cloud systems. This issue 

consists in a severe bottleneck when using Big Data in 

the cloud [44], [16]. 

Other problems such as, disaster recovery, 

scalability, locality exploration and fault tolerance are 

also big data challenges. Regarding scalability, there is 

some concerning about Exaflop computing [5], [26], 

[63]. Today’s supercomputers and clouds can deal with 

Petaflop data sets, however, dealing with Exaflop size 

data sets is still under study and it rises concerns, since 

high performance and high bandwidth is required to 

transfer and process such huge volumes of data over 

the network. Cloud computing is slower than 

supercomputers since it is limited by the existent 

bandwidth and it is very expensive concerning complex 

projects. High performance computers (HPC) are the 

most promising solutions, however, the annual cost of 

such a computer is tremendous. There are several 

problems in designing Exaflop HPCs, especially 

regarding efficiency in power consumption – here, 

solutions tend to be more GPU based instead of CPU 

based. There are also problems related with the high 

degree of parallelism needed among hundred thousands 

of CPUs. 

Analyzing big data loads requires the improvement 

of Big Data and analytics algorithms that are able to 

correlate and extract information from unstructured and 

structured data. Integration protocols and API 

standards would enable users to easily manage data and 

switch among solutions. Furthermore, the creation of 

such standards would also enable big data users to 

wisely choose a big data vendor solely based on cost 

and performance services, since API standardization 

reduces vendor lock-in algorithms. 

With the rapid growth of real-time applications 

such as traffic monitoring [52], weather monitoring 

[44], CCTV monitoring like “Singapore Safe City 

Pilot” [57], social networks monitoring such as 

Google+ Ripples [29] and others, the development of 

stream analysis and iterative algorithms that efficiently 

manage processing power and memory consumption is 

a major challenge for research teams.   

Efficiently recognize and store essential 

information (value) is very important since huge 

amounts of data are worthless if they do not have any 

value at all [46]. Human collaboration within the data 

visualization field is also an important issue, since 

there are patterns that humans can easily detect but that 

computer algorithms can hardly find (e.g.: captchas). 

Ideally, Big Data analytics would not be only 

computational. Another challenge is cloud elasticity 

capabilities, which allows cloud suppliers to 

accommodate user needs when there are peaks of 

information. This is a gap of cloud computing that is 

currently under study [55]. 

6.2 New Trends of Big Data 

Big Data is an emerging technology broadly discussed 

both in business and academics areas. As a hot topic it 

enables corporations and governmental institutions to 

gain deep insights over its clients/citizens, there is a 

tremendous interest in a constant development of new 

DBMS and algorithms that enable corporations to 

predict more accurately their client’s behavior. This 

technology has particular interest for marketing and 

CRM (Customer Relationship Management) teams that 

can target campaigns much more focused, 

implementing a concept known as digital marketing 

[50].  

Big Data’s interest from corporations and 

governmental institutions inevitably boosts research for 

new frameworks to provide further insights in an 

efficient and rapid way [50]. This necessity for new 

technology and high skilled personal do not show any 

signal of slowing down in the next three years. As 

stated by McKinsey in [50], the demand for Big Data 

expertise and specially data scientists will increase by 

2018.  

6.3  Future Research Directions 

As data keeps constantly increasing and there is no 

signal that this trend will stop, new frameworks that are 

able to handle Exaflop computing in a fast and efficient 
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way should be taken into consideration. New ways to 

transfer data on to the cloud and API standardization 

through platforms are needed.  

As future directions, we also point out: i) Big data 

API standardization to prevent vendor lock-in 

platforms; ii) improving iterative and streaming 

algorithms; iii) improving fault-tolerance, locality 

exploration, scalability and disaster recovery; iv) 

develop better protocols for file transferring over the 

WAN; and (v) develop cloud abilities to adapt load 

peaks by providing elasticity to its consumers. 

7 CONCLUSIONS 

The volume of data generated by applications and 

gadgets is being produced in an ever increasing rate. 

Big Data is seen by industries as an efficient way to 

store and explore data, whereas Cloud, due to its high 

flexibility and scalability, is the appropriate framework 

concerning the storage of Big Data solutions.  

This study focused particularly on database engines 

that are able to run over distributed systems. In other 

words, systems that would fit cloud architectures. 

Concerning Big Data, some of the most known 

implementations are Cassandra, MongoDB and 

DynamoDB. However, they do not perform well 

comparing to MapReduce, which provides fault-

tolerance and high availability and performance while 

abstracting programmers from the system details. 

MapReduce, within its open source implementation 

(Hadoop), is in fact the best known Big Data 

framework. However it presents some problems: it is 

very much static; it is difficult to program jobs; and it 

does not support graph computing. To overcome these 

problems several solutions like Twister, Spark, Pregel 

and GraphLab arose. Pregel and GraphLab provides a 

way to compute graph problems like web mining or 

social network trending, whereas Twister and Spark try 

to overcome the MapReduce’s lack of interactivity.  

With this study we aim at providing a better 

understand of Big Data, Cloud and how these two 

concepts fit together. To conclude, we show that, 

although Big Data and Cloud computing match very 

well together, there are some issues that should be 

addressed in a near future. 
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