39,258 research outputs found

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Information Splitting for Big Data Analytics

    Full text link
    Many statistical models require an estimation of unknown (co)-variance parameter(s) in a model. The estimation usually obtained by maximizing a log-likelihood which involves log determinant terms. In principle, one requires the \emph{observed information}--the negative Hessian matrix or the second derivative of the log-likelihood---to obtain an accurate maximum likelihood estimator according to the Newton method. When one uses the \emph{Fisher information}, the expect value of the observed information, a simpler algorithm than the Newton method is obtained as the Fisher scoring algorithm. With the advance in high-throughput technologies in the biological sciences, recommendation systems and social networks, the sizes of data sets---and the corresponding statistical models---have suddenly increased by several orders of magnitude. Neither the observed information nor the Fisher information is easy to obtained for these big data sets. This paper introduces an information splitting technique to simplify the computation. After splitting the mean of the observed information and the Fisher information, an simpler approximate Hessian matrix for the log-likelihood can be obtained. This approximated Hessian matrix can significantly reduce computations, and makes the linear mixed model applicable for big data sets. Such a spitting and simpler formulas heavily depends on matrix algebra transforms, and applicable to large scale breeding model, genetics wide association analysis.Comment: arXiv admin note: text overlap with arXiv:1605.0764

    Big Data Analytics

    Get PDF
    The basic of this dissertation is the rise of "big data" and the use of analytics to storehouse the data. Big data is mainly used to analyze the large amount of data. The Big data store large amount of data and provide helpful information in an efficient manner leads a system toward a serious computational challenges, like to analyze, mixture, and store, where information are remotely collected. In the recent times, data warehousing, data repository and data mining are mostly used for Bid data. Big data warehouse known as terabytes which mean data collect in warehouse was terabytes in storage but in recent time it is petabytes, and the data built at a high speed. The progress in companies and organization is mainly because it store and analyze the data at greater levels and in greater details, as well as meta data , Web data and code-generated data, to build better relationship between customer and market behavior. Big data provide helpful information to achieve a goal. A lot of companies in recent time use big data to improve their quality. Growth of big data increase at higher speed in recent time, even trend going in coming year
    • …
    corecore