4 research outputs found

    Intelligent Bio-Environments: Exploring Fuzzy Logic Approaches to the Honeybee Crisis

    Get PDF
    Project in collaboration with the Institute of Energy and Sustainable Development (IESD)This paper presents an overview of how fuzzy logic can be employed to model intelligent bio-environments. It explores how non-invasive monitoring techniques, combined with sensor fusion, can be used to generate a warning signal if a critical event within the natural environment is on the horizon. The honeybee hive is presented as a specific example of an intelligent bio-environment that unfortunately, under certain indicative circumstances, can fail within the natural world. This is known as Colony Collapse Disorder (CCD). The paper describes the design of a fuzzy logic methodology that utilizes input from non-invasive beehive monitoring systems, combining data from dedicated sensors and other disparate sources. An overview is given of two fuzzy logic approaches that are being explored in the context of the beehive; a fuzzy logic system and an Adaptive Neuro-Fuzzy Inference System (ANFIS)

    BHiveSense: An integrated information system architecture for sustainable remote monitoring and management of apiaries based on IoT and microservices

    Get PDF
    Precision Beekeeping, a field of Precision Agriculture, is an apiary management strategy based on monitoring honeybee colonies to promote more sustainable resource usage and maximise productivity. The approach related to Precision Beekeeping is based on methodologies to mitigate the stress associated with human intervention in the colonies and the waste of resources. These goals are achieved by supporting the intervention and managing the beekeeper’s timely and appropriate action at the colony’s level. In recent years, the growth of IoT (Internetof-Things) in Precision Agriculture has spurred several proposals to contribute to the paradigm of Precision Beekeeping, built on different technical concepts and with different production costs. This work proposes and describes an information systems architecture concept named BHiveSense, based on IoT and microservices, and different artefacts to demonstrate its concept: (1) a low-cost COTS (Commercial Off-The-Shelf) hive sensing prototype, (2) a REST backend API, (3) a Web application, and (4) a Mobile application. This project delivers a solution for a more integrated and sustainable beekeeping activity. Our approach stresses that by adopting microservices and a REST architecture, it is possible to deal with long-standing problems concerning interoperability, scalability, agility, and maintenance issues, delivering an efficient beehive monitoring system.info:eu-repo/semantics/publishedVersio

    Monitoramento de colmeia por meio de internet das coisas usando a uma aplicação mobile

    Get PDF
    Trabalho de Conclusão de Curso, apresentado para obtenção do grau de Bacharel no Curso de Ciência da Computação da Universidade do Extremo Sul Catarinense, UNESC.O emprego de tecnologias em diversas áreas da produção agrícola é uma realidade brasileira. No ramo da apicultura o cenário não se difere, grandes produtores têm acesso a ferramentas tecnológicas buscando otimizar a produtividade. Porém o acesso a meios tecnológicos não é uma realidade unânime na agricultura, como na produção de mel, por exemplo. Para implantar um sistema de monitoramento em uma colmeia existem um custo referente aos equipamentos empregados, o que acaba se tornado caro e dificultando a aquisição para o pequeno e médio produtor. Diante deste contexto, o presente trabalho objetiva a pesquisa e o desenvolvimento de uma solução de baixo custo para o monitoramento das variáveis de temperatura, umidade relativa do ar, peso e ruído em uma colmeia. Para tal foi desenvolvido um protótipo, aplicando os conceitos de Internet da Coisas e utilizando-se a placa de prototipação Arduino integrado a sensores específicos para cada variável monitorada. Os dados são coletados e enviados para um servidor na nuvem. Posteriormente, para o gerenciamento dessas informações, foi realizado o desenvolvimento de uma aplicação mobile, utilizando-se do framework React Native, onde o apicultor tem a possibilidade de visualizar e também efetuar uma pesquisa dentro de intervalo de data desejado a respeito dos dados coletado. Por fim, obteve-se um protótipo de sistema de monitoramento de colmeia, que pode ser aplicado a um ambiente real de produção, de modo a auxiliar na produção de mel e derivados e gerar melhores índices de produtividade

    Wireless sensor networks, actuation, and signal processing for apiculture

    Get PDF
    Recent United Nations reports have stressed the growing constraint of food supply for Earth's growing human population. Honey bees are a vital part of the food chain as the most important pollinator for a wide range of crops. Protecting the honey bee population worldwide, and enabling them to maximise productivity, are important concerns. This research proposes a framework for addressing these issues by considering an inter-disciplinary approach, combining recent developments in engineering and honey bee science. The primary motivation of the work outlined in this thesis was to use embedded systems technology to improve honey bee health by developing state of the art in-hive monitoring systems to classify the colony status and mechanisms to influence hive conditions. Specific objectives were identified as steps to achieve this goal: to use Wireless Sensor networks (WSN) technology to monitor a honey bee colony in the hive and collect key information; to use collected data and resulting insights to propose mechanisms to influence hive conditions; to use the collected data to inform the design of signal processing and machine learning techniques to characterise and classify the colony status; and to investigate the use of high volume data sensors in understanding specific conditions of the hive, and methods for integration of these sensors into the low-power and low-data rate WSN framework. It was found that automated, unobtrusive measurement of the in-hive conditions could provide valuable insight into the activities and conditions of honey bee colonies. A heterogeneous sensor network was deployed that monitored the conditions within hives. Data were collected periodically, showing changes in colony behaviour over time. The key parameters measured were: CO2, O2, temperature, relative humidity, and acceleration. Weather data (sunshine, rain, and temperature) were collected to provide an additional analysis dimension. Extensive energy improvements reduced the node’s current draw to 150 µA. Combined with an external solar panel, self-sustainable operation was achieved. 3,435 unique data sets were collected from five test-bed hives over 513 days during all four seasons. Temperature was identified as a vital parameter influencing the productivity and health of the colony. It was proposed to develop a method of maintaining the hive temperature in the ideal range through effective ventilation and airflow control which allow the bees involved in the activities above to engage in other tasks. An actuator was designed as part of the hive monitoring WSN to control the airflow within the hive. Using this mechanism, an effective Wireless Sensor and Actuator Network (WSAN) with Proportional Integral Derivative (PID) based temperature control was implemented. This system reached an effective set point temperature within 7 minutes of initialisation, and with steady state being reached by minute 18. There was negligible steady state error (0.0047%) and overshoot of <0.25 °C. It was proposed to develop and evaluate machine learning solutions to use the collected data to classify and describe the hive. The results of these classifications would be far more meaningful to the end user (beekeeper). Using a data set from a field deployed beehive, a biological analysis was undertaken to classify ten important hive states. This classification led to the development of a decision tree based classification algorithm which could describe the beehive using sensor network data with 95.38% accuracy. A correlation between meteorological conditions and beehive data was also observed. This led to the development of an algorithm for predicting short term rain (within 6 hours) based on the parameters within the hive (95.4% accuracy). A Random Forest based classifier was also developed using the entire collected in-hive dataset. This algorithm did not need access to data from outside the network, memory of previous measured data, and used only four inputs, while achieving an accuracy of 93.5%. Sound, weight, and visual inspection were identified as key methods of identifying the health and condition of the colony. Applications of advanced sensor methods in these areas for beekeeping were investigated. A low energy acoustic wake up sensor node for detecting the signs of an imminent swarming event was designed. Over 60 GB of sound data were collected from the test-bed hives, and analysed to provide a sound profile for development of a more advanced acoustic wake up and classification circuit. A weight measuring node was designed using a high precision (24-bit) analogue to digital converter with high sensitivity load cells to measure the weight of a hive to an accuracy of 10g over a 50 kg range. A preliminary investigation of applications for thermal and infrared imaging sensors in beekeeping was also undertaken
    corecore