1,399 research outputs found

    Sensors and actuators in smart cities

    Get PDF
    With the city, from its earliest emergence in the Near East between 4500 and 3100 BCE, came a wide range of new discoveries and inventions, from synthetic materials to wheeled vehicles[...

    PADL: A Modeling and Deployment Language for Advanced Analytical Services

    Get PDF
    In the smart city context, Big Data analytics plays an important role in processing the data collected through IoT devices. The analysis of the information gathered by sensors favors the generation of specific services and systems that not only improve the quality of life of the citizens, but also optimize the city resources. However, the difficulties of implementing this entire process in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their geographical distribution, and the complexity of the necessary IT infrastructures. For this reason, the main contribution of this paper is the PADL description language, which has been specifically tailored to assist in the definition and operationalization phases of the machine learning life cycle. It provides annotations that serve as an abstraction layer from the underlying infrastructure and technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition, we provide tools that facilitate its adoption in production environments. Finally, we showcase the usefulness of the language by showing the definition of PADL-compliant analytical pipelines over two uses cases in a smart city context (flood control and waste management), demonstrating that its adoption is simple and beneficial for the definition of information and process flows in such environments.This work was partially supported by the SPRI–Basque Government through their ELKARTEK program (3KIA project, ref. KK-2020/00049). Aitor Almeida’s participation was supported by the FuturAAL-Ego project (RTI2018-101045-A-C22) granted by the Spanish Ministry of Science, Innovation and Universities. Javier Del Ser also acknowledges funding support from the Consolidated Research Group MATHMODE (IT1294-19), granted by the Department of Education of the Basque Government

    Pull and Push: Strengthening Demand for Innovation in Education

    Get PDF
    Examines policy, information, and cultural barriers that minimize the "demand pull" for educational innovation. Calls for encouraging early adopters, bolstering smart adoption, providing better information, and rewarding productivity improvements

    Law in the present future : approaching the legal imaginary of smart cities with science (and) fiction

    Full text link
    This doctoral research concerns smart cities, describing digital solutions and social issues related to their innovative technologies, adopted models, and major projects around the world. The many perspectives mentioned in it were identified by online tools used for the textual analysis of two databases that were built from relevant publications on the main subject by authors coming from media and academia. Expected legal elements emerged from the applied process, such as privacy, security, transparency, participation, accountability, and governance. A general review was produced on the information available about the public policies of Big Data in the two municipal cases of Rio de Janeiro and Montréal, and their regulation in the Brazilian and Canadian contexts. The combined approaches from science and literature were explored to reflect on the normative concerns represented by the global challenges and local risks brought by urban surveillance, climate change, and other neoliberal conditions. Cyberpunk Science Fiction reveals itself useful for engaging with the shared problems that need to be faced in the present time, all involving democracy. The results achieved reveal that this work was, in fact, about the complex network of practices and senses between (post)modern law and the imaginary of the future.Cette recherche doctorale centrée sur les villes intelligentes met en évidence les solutions numériques et les questionnements sociétaux qui ont trait aux technologies innovantes, ainsi qu’aux principaux modèles et projets développés autour d’elles à travers le monde. Des perspectives multiples en lien avec ces développements ont été identifiées à l’aide d’outils en ligne qui ont permis l’analyse textuelle de deux bases de données comprenant des publications scientifiques et des écrits médiatiques. De ce processus analytique ont émergé des éléments juridiques relatifs aux questions de vie privée, de sécurité, de transparence, de participation, d’imputabilité et de gouvernance. De plus, à partir de ces informations a été réalisée une revue des politiques publiques relatives aux mégadonnées dans les villes de Rio de Janeiro et de Montréal, ainsi que des réglementations nationales du Canada et du Brésil en lien avec ce sujet. Finalement, à travers l’exploration d’écrits scientifiques et fictionnels de la littérature, les principaux enjeux normatifs soulevés localement et mondialement par la surveillance urbaine, les changements climatiques et les politiques néolibérales ont pu être mis à jour. Le courant cyberpunk de la science-fiction s’est avéré particulièrement utile pour révéler les principaux problèmes politiques, en lien avec la préservation de la démocratie, auxquelles sont confrontées nos sociétés présentement. Les résultats de la recherche démontrent finalement la présence d’un réseau de pratiques et de significations entre le droit (post)moderne et les représentations imaginaires du futur

    Intelligent Control and Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)

    Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications

    Get PDF
    Cyber-physical systems (CPS) are expected to revolutionize the world through a myriad of applications in health-care, disaster event applications, environmental management, vehicular networks, industrial automation, and so on. The continuous explosive increase in wireless data traffic, driven by the global rise of smartphones, tablets, video streaming, and online social networking applications along with the anticipated wide massive sensors deployments, will create a set of challenges to network providers, especially that future fifth generation (5G) cellular networks will help facilitate the enabling of CPS communications over current network infrastructure. In this dissertation, we first provide an overview of CPS taxonomy along with its challenges from energy efficiency, security, and reliability. Then we present different tractable analytical solutions through different 5G technologies, such as device-to-device (D2D) communications, cell shrinking and offloading, in order to enable CPS traffic over cellular networks. These technologies also provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability and security. By tuning specific network parameters, the proposed solutions allow the achievement of balance and fairness in spectral efficiency and minimum achievable throughout among cellular users and CPS devices. To conclude, we present a CPS mobile-health application as a case study where security of the medical health cyber-physical space is discussed in details

    Dos and Don'ts in Mobile Phone Sensing Middleware: Learning from a Large-Scale Experiment

    Get PDF
    International audienceMobile phone sensing contributes to changing the way we approach science: massive amount of data is being contributed across places and time, and paves the way for advanced analyses of numerous phenomena at an unprecedented scale. Still, despite the extensive research work on enabling resource-efficient mobile phone sensing with a very-large crowd, key challenges remain. One challenge is facing the introduction of a new heterogeneity dimension in the traditional middleware research landscape. The middleware must deal with the heterogeneity of the contributing crowd in addition to the system's technical heterogeneities. In order to tackle these two heterogeneity dimensions together, we have been conducting a large-scale empirical study in cooperation with the city of Paris. Our experiment revolves around the public release of a mobile app for urban pollution monitoring that builds upon a dedicated mobile crowd-sensing middleware. In this paper, we report on the empirical analysis of the resulting mobile phone sensing efficiency from both technical and social perspectives, in face of a large and highly heterogeneous population of participants. We concentrate on the data originating from the 20 most popular phone models of our user base, which represent contributions from over 2,000 users with 23 million observations collected over 10 months. Following our analysis, we introduce a few recommendations to overcome-technical and crowd-heterogeneities in the implementation of mobile phone sensing applications and supporting middleware
    • …
    corecore