1,156 research outputs found

    Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems

    Get PDF
    This work presents a fault ride-through control scheme for a non-isolated power topology used in a hybrid energy storage system designed for DC microgrids. The hybrid system is formed by a lithium-ion battery bank and a supercapacitor module, both coordinated to achieve a high-energy and high-power combined storage system. This hybrid system is connected to a DC bus that manages the power flow of the microgrid. The power topology under consideration is based on the buck-boost bidirectional converter, and it is controlled through a bespoke modulation scheme to obtain low losses at nominal operation. The operation of the proposed control scheme during a DC bus short-circuit failure is shown, as well as a modification to the standard control to achieve fault ride-through capability once the fault is over. The proposed control provides a protection to the energy storage systems and the converter itself during the DC bus short-circuit fault. The operation of the converter is developed theoretically, and it has been verified through both simulations and experimental validation on a built prototype

    Quasi-Z-Source Inverter With Hybrid Energy Storage For Induction Motor Drive System

    Get PDF
    The energy storage system (ESS) of many commercially available hybrid electric vehicle (HEV) or pure electric vehicle (EV) is composed of only battery packs with a bidirectional dc-dc converter connected to the high voltage DC bus. In order to further improve fuel consumption efficiency, topologies to hybridize ESSs for EVs and HEVs have been developed. With these various combinations of energy storage, one common feature can be seen; which is to efficiently combine one fast response energy storage device with high power density and slow response device with high energy density. In relation to this, the Quasi Z-source inverter (qZSI) topology has gained attention as an alternative to the conventional voltage source inverter (VSI) in many applications such as the electrical motor drive system. Apart from offering a single stage DC-DC-AC conversion, it offers a flexible way on how the hybrid energy storage (HES) can be introduced to the system. In this research, a new combination of battery/supercapacitor as HES with qZSI applied for the induction motor drive system is investigated. The method of interfacing the supercapacitor via bidirectional dc-dc converter is proposed with implementation of supercapacitor current control to support the battery as the main energy source. The system is designed and modelled together with the required voltage and current control and simulated at 15 kW and 1.1 kW power rating. For validation purpose, hardware experiment at a scaled down 1.1 kW power rating is also carried out. Both simulation and experiment results shows agreement to each other and the proposed method works satisfactorily to reduce the current stress on the battery around 75% at 15kW power rating and around 60% at 1.1kW power rating during acceleration and regenerative braking with overall satisfactory operation of the qZSI fed induction motor drive system. This work has contributes towards efficient hybrid energy storage system for motor drive system not only for the qZSI, but can also be applied for the conventional voltage source inverter (VSI) as well

    Modulation strategy to minimize the reactive power in the AC-link of isolated three-port DC-DC converters

    Get PDF
    [EN] The isolated three-port DC-DC converter is of interest for hybrid energy storage systems due to its advantages of the bidirectional power flow control, step-up and step-down the voltage, and the operation under soft-switching mode. The conventional control of the power flow is carried out using a phase-shift between the voltages at the transformer terminals, which can generate high reactive power due to circulating current on the AC-link of the converter, and high efficiencies only in a limited operating range. To increase the performance over the whole operating range, this work proposes a modulation strategy that extends the soft-switching region and minimizes reactive power. This strategy applies a pulse width on the higher voltage DC port, maintaining traditional square wave modulation on the opposite port. To validate the strategy, results are presented for different power transfer scenarios.[ES] El convertidor CC-CC de tres puertos aislados es de interés para los sistemas de almacenamiento de energía híbridos por su capacidad para controlar los flujos de energía de manera bidireccional, aumentar y disminuir la tensión y la operación con conmutación suave. El control convencional del flujo de energía se realiza aplicando un desfase entre las tensiones a bornes del transformador, lo que puede generar una elevada potencia reactiva debida a la corriente de circulación en el enlace de CA del convertidor, consiguiéndose rendimientos elevados sólo en un rango de operación limitado. Para aumentar el rendimiento en todo el rango de operación, este trabajo propone una estrategia de modulación que extiende la región de conmutación suave y minimiza la potencia reactiva. Esta estrategia aplica un ancho de pulso en el puerto de mayor tensión de CC, manteniendo la modulación tradicional de onda cuadrada en el puerto opuesto. Para validar la estrategia, se presentan resultados para diferentes escenarios de transferencia de potencia.Este trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, Argentina (SeCyT, UNRC), la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT, Argentina), la Red MEIHAPER CYTED y el proyecto PIN 04/I240 de la Universidad Nacional del Comahue.Troviano, M.; Piris-Botalla, LE.; Oggier, G. (2021). Estrategia de modulación para minimizar la potencia reactiva en el enlace de CA de convertidores CC-CC de tres puertos aislados. Revista Iberoamericana de Automática e Informática industrial. 18(4):347-359. https://doi.org/10.4995/riai.2021.14612OJS347359184Bai, H., Mi, C., 2008. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc-dc converters using novel dual-phase-shift control. IEEE Transactions on Power Electronics 23 (6), 2905-2914. https://doi.org/10.1109/TPEL.2008.2005103Biswas, I., Kastha, D., Bajpai, P., 2021. Small signal modeling and decoupled controller design for a triple active bridge multiport dc-dc converter. IEEE Transactions on Power Electronics 36 (2), 1856-1869. https://doi.org/10.1109/TPEL.2020.3006782Chien, L.-J., Chen, C.-C., Chen, J.-F., Hsieh, Y.-P., 2014. Novel three-port converter with high-voltage gain. IEEE Transactions on Power Electronics 29 (9), 4693-4703. https://doi.org/10.1109/TPEL.2013.2285477Choi, M.-E., Kim, S.-W., Seo, S.-W., 2012. Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Transactions on Smart Grid 3 (1), 463-472. https://doi.org/10.1109/TSG.2011.2164816De Doncker, R., D.M., D., M.H., K., 1991. A threephase soft-switched highpowerdensity dc/dc converter for high-power applications. IEEE Transactions on Industry Applications 27 (1), 63 -73. https://doi.org/10.1109/28.67533Duarte, J., Hendrix, M., Simoes, M., 2007. Three-port bidirectional converter for hybrid fuel cell systems. IEEE Transactions on Power Electronics 22 (2), 480 -487. https://doi.org/10.1109/TPEL.2006.889928Hajiaghasi, S., Salemnia, A., Hamzeh, M., 2019. Hybrid energy storage system for microgids applications: A review. Journal of Energy Storage 21, 543-570. https://doi.org/10.1016/j.est.2018.12.017Kim, S. Y., Song, H.-S., Nam, K., 2012. Idling port isolation control of threeport bidirectional converter for evs. IEEE Transactions on Power Electronics 27 (5), 2495 -2506. https://doi.org/10.1109/TPEL.2011.2172225McDonough, M., 2015. Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles. IEEE Transactions on Power Electronics 30 (11), 6423-6433. https://doi.org/10.1109/TPEL.2015.2422300Mendis, N., Muttaqi, K., Perera, S., 2014. Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of pmsg based variable-speed wind turbine generating systems. IEEE Transactions on Smart Grid 5 (2), 944-953. https://doi.org/10.1109/TSG.2013.2287874Nguyen, D., Fujita, G., Ta, M. C., 2017. A new soft-switching strategy for three-port converter to be applied in ev application. In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia). pp. 1126-1131. https://doi.org/10.1109/IFEEC.2017.7992199Oggier, G., Garcia, G., Oliva, A., 2009. Switching control strategy to minimize dual active bridge converter losses. IEEE Transactions on Power Electronics 24 (7), 1826 -1838. https://doi.org/10.1109/TPEL.2009.2020902Oggier, G., Garcia, G., Oliva, A., 2011. Modulation strategy to operate the dual active bridge dc-dc converter under soft switching in the whole operating range. IEEE Transactions on Power Electronics 26 (4), 1228-1236. https://doi.org/10.1109/TPEL.2010.2072966Oggier, G., Garcia, G., Oliva, A., 2013. Analysis of the influence of switching related parameters in the dab converter under soft-switching. Latin American Applied Research 43 (2), 121-129.Oggier, G., Piris-Botalla, L. E., Garcia, G., 2010. Soft-switching analysis for three-port bidirectional dc-dc converters. In: Industry Applications Conference. INDUSCON 9th IEEE/IAS. pp. 1-6. https://doi.org/10.1109/INDUSCON.2010.5740014Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2012. Analysis and evaluation of power switch losses for three-port bidirectional dc-dc converter. In: International Conference on Industrial Technology (ICIT), 2012 IEEE. pp. 950-955. https://doi.org/10.1109/ICIT.2012.6210061Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2013. Power losses evaluation of a bidirectional three-port dc-dc converter for hybrid electric system. International Journal of Electrical Power and Energy Systems (58), 1-8. https://doi.org/10.1016/j.ijepes.2013.12.021Piris Botalla, L., Oggier, G., Garrido, D., Garcia, G., 2016. Auxiliary inductances design of a bidirectional three-port dc-dc converter. IEEE Latin America Transactions 14 (6), 2582-2587. https://doi.org/10.1109/TLA.2016.7555222Piris-Botalla, L., Oggier, G. G., Airabella, A. M., García, G. O., 2016. Extending the soft-switching operating range of a bidirectional three-port dc-dc converter. Revista Iberoamericana de Autom'atica e Inform'atica Industrial 13 (1), 127-134. https://doi.org/10.1016/j.riai.2015.04.007Piris-Botalla, L., Oggier, G. G., Garcia, G. O., 2017. Extending the power transfer capability of a three-port dc-dc converter for hybrid energy storage systems. IET Power Electronics 10 (13), 1687-1697. https://doi.org/10.1049/iet-pel.2016.0422Purgat, P., Bandyopadhyay, S., Qin, Z., Bauer, P. G., 2020. Zero voltage switching criteria of triple active bridge converter. IEEE Transactions on Power Electronics, 1-1. https://doi.org/10.1109/TPEL.2020.3027785Saadatizadeh, Z., Babaei, E., Blaabjerg, F., Cecati, C., 2021. Three-port high step-up and high step-down dc-dc converter with zero input current ripple. IEEE Transactions on Power Electronics 36 (2), 1804-1813. https://doi.org/10.1109/TPEL.2020.3007959Sharma, A., Sharma, S., 2019. Review of power electronics in vehicle-to-grid systems. Journal of Energy Storage 21, 337-361. https://doi.org/10.1016/j.est.2018.11.022Sun, Y., Pei, W., Jia, D., Zhang, G., Wang, H., Zhao, L., Feng, Z., 2020. Application of integrated energy storage system in wind power fluctuation mitigation. Journal of Energy Storage 32 (101835). https://doi.org/10.1016/j.est.2020.101835Tao, H., Duarte, J., Hendrix, M., 2008a. Three-port triple-half-bridge bidirectional converter with zero-voltage switching. IEEE Transactions on Power Electronics 23 (2), 782 -792. https://doi.org/10.1109/TPEL.2007.915023Tao, H., Kotsopoulos, A., Duarte, J., Hendrix, M., 2008b. Transformer-coupled multiport zvs bidirectional dc-dc converter with wide input range. IEEE Transaction on Power Electronics 23, 771-781. https://doi.org/10.1109/TPEL.2007.915129Wang, L., Wang, Z., Li, H., 2012. Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional dc-dc converter for fuel cell vehicle application. IEEE Transactions on Power Electronics 27 (2), 891-904. https://doi.org/10.1109/TPEL.2011.2160405Wu, H., Sun, K., Ding, S., Xing, Y., 2013. Topology derivation of nonisolated three-port dc-dc converters from dic and doc. IEEE Transactions on Power Electronics 28 (7), 3297-3307. https://doi.org/10.1109/TPEL.2012.2221746Wu, Y., Mahmud, M. H., Christian, S., Fantino, R. A., Gomez, R. A., Zhao, Y., Balda, J. C., 2020. A 150-kw 99% efficient all silicon carbide triple-active-bridge converter for solar-plus-storage systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-1. https://doi.org/10.1109/JESTPE.2020.3044572Ye, Y., Nian, H., Kong, L., Zheng, D., 2019. Efficiency optimization strategy of three port triple active bridge dc-dc converter. In: 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). pp. 1-6. https://doi.org/10.1109/ICEMS.2019.8921669Zhao, C., Round, S., J.W., K., 2008. An isolated three-port bidirectional dc-dc converter with decoupled power flow management. IEEE Transactions on Power Electronics 23 (5), 2443 -2453. https://doi.org/10.1109/TPEL.2008.2002056Zhou, H., Bhattacharya, T., Tran, D., Siew, T., Khambadkone, A., 2011. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Transactions on Power Electronics 26 (3), 923-930. https://doi.org/10.1109/TPEL.2010.209504

    Onduleur quasi-Z-source pour un système de traction de véhicules électriques à sources multiples : contrôle et gestion

    Get PDF
    Abstract: Power electronics play a fundamental role and help to achieve the new goals of the automobiles in terms of energy economy and environment. The power electronic converters are the key elements which interface their power sources to the drivetrain of the electric vehicle (EV). They contribute to obtaining high efficiency and performance in power systems. However, traditional inverters such as voltage-source, current-source inverters and conventional two-stage inverters present some conceptual limitations. Consequently, many research efforts have been focused on developing new power electronic converters suitable for EVs application. In order to develop and enhance the performance of commercial multiple sources EV, this dissertation aims to select and to control the impedance source inverter and to provide management approaches for multiple sources EV traction system. A concise review of the main existing topologies of impedance source inverters has been presented. That enables to select QZSI (quasi-Z-source inverter) topology as promising architectures with better performance and reliability. The comparative study between the bidirectional conventional two-stage inverter and QZSI for EV applications has been presented. Furthermore, comparative study between different powertrain topologies regarding batteries aging index factors for an off-road EV has been explored. These studies permit to prove that QZSI topology represents a good candidate to be used in multi-source EV system. For improving the performance of QZSI applied to EVs, optimized fractional order PI (FOPI) controllers for QZSI is designed with the ant colony optimization algorithm (ACO-NM) to obtain more suitable aging performance index values for the battery. Moreover, this thesis proposes a hybrid energy storage system (HESS) for EVs to allow an efficient energy use of the battery for a longer distance coverage. Optimized FOPI controller and the finite control set model predictive controller (FCS-MPC) for HESS using bidirectional QZSI is applied for the multi-source EV. The flux-weakening controller has been designed to provide a correct operation with the maximum available torque at any speed within current and voltage limits. Simulation investigations are performed to verify the topologies studied and the efficacity of the proposed controller structure with the bidirectional QZSI. Furthermore, Opal-RT-based real-time simulation has been implemented to validate the effectiveness of the proposed HESS control strategy. The results confirm the EV performance enhancement with the addition of supercapacitors using the proposed control configuration, allowing the efficient use of battery energy with the reduction of root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of battery current compared to the battery-only based inverter.L'électronique de puissance joue un rôle fondamental et contribue à atteindre les nouveaux objectifs de l'automobile en termes d'économie d'énergie et d'environnement. Les convertisseurs d’électroniques de puissance sont considérés comme les éléments clés qui interfacent leurs sources d'alimentation avec la chaîne de traction du véhicule électrique (VE). Ils contribuent à obtenir une efficacité et des performances élevées dans les systèmes électriques. Cependant, les onduleurs traditionnels tels que les onduleurs à source de tension, les onduleurs à source de courant et les onduleurs conventionnels à deux étages qui constituent les onduleurs les plus couramment utilisés, présentent certaines limitations conceptuelles. Par conséquent, de nombreux efforts de recherche se sont concentrés sur le développement de nouveaux convertisseurs d’électroniques de puissance adaptés à l'application aux véhicules électriques. Afin de développer et d'améliorer les performances des VEs à sources multiples commerciales, cette thèse vise à sélectionner, contrôler l'onduleur à source impédante et fournit une approche de gestion pour l'application du système de traction du VE à sources multiples. Une revue concise des principales topologies existantes d'onduleur à source impédante a été présentée. Cela a permis de sélectionner la topologie de l’onduleur quasi-Z-source (QZS) comme architectures prometteuses pouvant être utilisées dans les véhicules électriques, avec de meilleures performances et de fiabilité. L'étude comparative entre l'onduleur bidirectionnel conventionnel à deux étages et de celui à QZS pour les applications du VE a été présentée. En outre, une étude comparative entre différentes topologies de groupes motopropulseurs concernant les facteurs d'indice de vieillissement des batteries pour une application du VE hors route a été explorée. Ces études ont permis de prouver que la topologie de l’onduleur QZS représente une bonne topologie candidate à utiliser dans un système de VE à sources multiples. Pour améliorer les performances de l’onduleur QZS appliquées aux véhicules électriques, des contrôleurs PI d'ordre fractionnaire (PIOF) optimisés pour l’onduleur QZS sont conçus avec l'algorithme de colonies de fourmis afin d'obtenir des valeurs d'indice de performance de vieillissement plus appropriées pour la batterie. De plus, cette thèse propose un système de stockage d'énergie hybride (SSEH) pour le VE afin de permettre une utilisation efficace de l'énergie de la batterie pour une couverture de distance plus longue et une extension de son autonomie. L’optimisation du contrôleur PIOF et du contrôleur par modèle prédictif d'ensemble de contrôle fini (CMP-ECF) pour l’onduleur QZS bidirectionnel a été appliqué au VE à sources multiples avec des approches de gestion appuyées par des règles. Le contrôleur d'affaiblissement de flux magnétique du moteur a été conçu pour fournir un fonctionnement correct avec le couple maximal disponible à n'importe quelle vitesse dans les limites de courant et de tension. Des investigations et des simulations sont effectuées pour vérifier les différentes topologies étudiées et l'efficacité de la structure de contrôleur proposée avec l’onduleur QZS bidirectionnel. De plus, une simulation en temps réel basée sur Opal-RT a été mise en œuvre pour valider l'efficacité de la stratégie de contrôle SSEH proposée. Les résultats confirment l'amélioration des performances du VE avec l'ajout d'un supercondensateur utilisant la configuration du contrôle proposée, permettant une utilisation efficace de l'énergie de la batterie avec une réduction de la valeur moyenne quadratique, de la valeur moyenne et de l'écart type de 57%, 59% et 27%, respectivement, du courant de la batterie par rapport à l'onduleur connecté directement à la batterie

    A smart power electronic multiconverter for the residential sector

    Get PDF
    El futuro de la red incluye la generación distribuida y las tecnologías de red inteligente. Los sistemas de gestión del lado de la demanda (DSM) también serán esenciales para lograr un alto nivel de confiabilidad y robustez en los sistemas de energía. Para hacer eso, es necesario expandir la Infraestructura de medición avanzada (AMI) y los Sistemas de gestión de energía (EMS). La dirección de la tendencia es hacia la creación de centros de recursos energéticos, como el concepto de comunidad inteligente. Este documento presenta un sistema multiconvertidor inteligente para el sector residencial / vivienda con un Sistema de Almacenamiento de Energía Híbrido (HESS) que consta de supercapacitador y batería, y con integración de fuente de energía fotovoltaica (PV) local. El dispositivo funciona como una unidad de energía distribuida ubicada en cada casa de la comunidad, recibiendo puntos de ajuste de energía activos proporcionados por una comunidad inteligente EMS. Este SGA central es responsable de administrar los flujos de energía activa entre la red eléctrica, las fuentes de energía renovables, los equipos de almacenamiento y las cargas existentes en la comunidad. El multiconvertidor propuesto es responsable de cumplir con los puntos de referencia de potencia activa de referencia con la calidad de potencia adecuada; garantizando que los módulos fotovoltaicos locales funcionen con un algoritmo de seguimiento del punto de máxima potencia (MPPT); y prolongando la vida útil de la batería gracias a un funcionamiento cooperativo del HESS. Se ha desarrollado un modelo de simulación para mostrar el funcionamiento detallado del sistema. Finalmente, se implementó un prototipo de la plataforma de multiconversores y se realizaron algunas pruebas experimentales para validarlo.The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.Ministerio de Economía y Competitividad (España) y Fondos FEDER: Proyecto TEC2013-47316-C3-3-PpeerReviewe

    Ultracapacitors for port crane applications: Sizing and techno-economic analysis

    Get PDF
    The use of energy storage with high power density and fast response time at container terminals (CTs) with a power demand of tens of megawatts is one of the most critical factors for peak reduction and economic benefits. Peak shaving can balance the load demand and facilitate the participation of small power units in generation based on renewable energies. Therefore, in this paper, the economic efficiency of peak demand reduction in ship to shore (STS) cranes based on the ultracapacitor (UC) energy storage sizing has been investigated. The results show the UC energy storage significantly reduce the peak demand, increasing the load factor, load leveling, and most importantly, an outstanding reduction in power and energy cost. In fact, the suggested approach is the start point to improve reliability and reduce peak demand energy consumption

    Hybrid Energy Management System Consisting of Battery and Supercapacitor for Electric Vehicle

    Get PDF
    This paper is mainly focused on Hybrid Energy Management System (HEMS) consisting of Battery (BT) and Super capacitor (SC). Two energy sources connected in with same DC link in parallel manner with the help of Bidirectional DC-DC converter, which is used to separate control of power flow of each source. Here Permanent magnet dc motor (PMDC) motor used as a load and speed control of PMDC motor can be done by PWM method for this purpose chopper circuit is used. Input of chopper circuit is DC link and output of the chopper is given to PMDC motor. This method of energy management gives power splitting between two sources based on State of Charge (SOC) of each individual source during different state of vehicle such as acceleration, constant running and deceleration. Improved filter-based power splitting techniques is implemented. Three acceleration reference points were taken for power splinting at different SOC levels of both energy sources. Objective of this proposed method is best use of both the sources i.e. battery and supercapacitor and maximum use of supercapacitor energy at the time of transient conditions. Battery supply energy during normal running condition or very less load condition. Hence during transient condition SC directly react with system and gives peak power requirement, so stress on battery is reduces hence lifetime of battery is increase, also power available during braking is store in SC and battery, so independence of Electric Vehicle (EV) is increases. Because of less peak power requirement, batteries with less peak output power is used so it is reduced size and cost of batteries. Matlab- Simulink software is used for simulation and also small scale hardware is also implemented of proposed method

    Hybrid Energy Management System Consisting of Battery and Supercapacitor for Electric Vehicle

    Get PDF
    This paper is mainly focused on Hybrid Energy Management System (HEMS) consisting of Battery (BT) and Super capacitor (SC). Two energy sources connected in with same DC link in parallel manner with the help of Bidirectional DC-DC converter, which is used to separate control of power flow of each source. Here Permanent magnet dc motor (PMDC) motor used as a load and speed control of PMDC motor can be done by PWM method for this purpose chopper circuit is used. Input of chopper circuit is DC link and output of the chopper is given to PMDC motor. This method of energy management gives power splitting between two sources based on State of Charge (SOC) of each individual source during different state of vehicle such as acceleration, constant running and deceleration. Improved filter-based power splitting techniques is implemented. Three acceleration reference points were taken for power splinting at different SOC levels of both energy sources. Objective of this proposed method is best use of both the sources i.e. battery and supercapacitor and maximum use of supercapacitor energy at the time of transient conditions. Battery supply energy during normal running condition or very less load condition. Hence during transient condition SC directly react with system and gives peak power requirement, so stress on battery is reduces hence lifetime of battery is increase, also power available during braking is store in SC and battery, so independence of Electric Vehicle (EV) is increases. Because of less peak power requirement, batteries with less peak output power is used so it is reduced size and cost of batteries. Matlab- Simulink software is used for simulation and also small scale hardware is also implemented of proposed method

    Analysis, modeling, and control of half-bridge current-source converter for energy management of supercapacitor modules in traction applications

    Get PDF
    In this work, an in-depth investigation was performed on the properties of the half-bridge current-source (HBCS) bidirectional direct current (DC)-to-DC converter, used to interface two DC-link voltage sources with a high-voltage-rating mismatch. The intended implementation is particularly suitable for the interfacing of a supercapacitor (SC) module and a battery stack in a hybrid storage system(HSS) for automotive applications. It is demonstrated that the use of a synchronous rectification (SR) modulation scheme benefits both the power-stage performance (in terms of efficiency and reliability) and the control-stage performance (in terms of simplicity and versatility). Furthermore, an average model of the converter, valid for every operating condition, is derived and utilized as a tool for the design of the control system. This model includes the effects of parasitic elements (mainly the leakage inductance of the transformer) and of the converter snubbers. A 3 kW prototype of the converter was used for experimental validation of the converter modeling, design, and performance. Finally, a discussion on the control strategy of the converter operation is included

    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrids

    Get PDF
    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrid
    corecore