7,712 research outputs found

    COBE vs Cosmic Strings: An Analytical Model

    Full text link
    We construct a simple analytical model to study the effects of cosmic strings on the microwave background radiation. Our model is based on counting random multiple impulses inflicted on photon trajectories by the string network between the time of recombination and today. We construct the temperature auto-correlation function and use it to obtain the effective power spectrum index n, the rms-quadrupole-normalized amplitude QrmsPSQ_{rms-PS} and the rms temperature variation smoothed on small angular scales. For the values of the scaling solution parameters obtained in Refs.\cite{bb90},\cite{as90} we obtain n=1.14±0.5n=1.14 \pm 0.5, QrmsPS=(4.5±1.5)GμQ_{rms-PS}=(4.5\pm 1.5) G\mu and (ΔTT)rms=5.5Gμ({{\Delta T}\over T})_{rms}=5.5 G\mu. Demanding consistency of these results with the COBE data leads to Gμ=(1.7±0.7)×106G\mu=(1.7 \pm 0.7)\times 10^{-6} (where μ\mu is the string mass per unit length), in good agreement with direct normalizations of μ\mu from observations.Comment: 12 pages, 5 figures (available upon request), use late

    Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes

    Get PDF
    \u3cp\u3eThe formation of quantized energy states in ultrathin layers of indium oxide (In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) grown via spin coating and thermally annealed at 200°C in air is studied. Optical absorption measurements reveal a characteristic widening of the optical band gap with reducing In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e layer thickness from ≈43 to ≈3 nm in agreement with theoretical predictions for an infinite quantum well. Through sequential deposition of In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e and gallium oxide (Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) layers, superlattice-like structures with controlled dimensionality and spatially varying conduction band characteristics are demonstrated. This simple method is then explored for the fabrication of functional double-barrier resonant tunneling diodes. Nanoscale current mapping analysis using conductive atomic force microscopy reveals that resonant tunneling is not uniform but localized in specific regions of the apparent device area. The latter observation is attributed to variation in the layer(s) thickness of the In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e quantum well and/or the Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e barrier layers. Despite the nonidealities, the tremendous potential of solution-processable oxide semiconductors for the development of quantum effect devices that have so far been demonstrated only via sophisticated growth techniques is demonstrated.\u3c/p\u3

    Analog quantum simulation of the Rabi model in the ultra-strong coupling regime

    Get PDF
    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation (RWA). The RWA breaks down in the ultra-strong coupling (USC) regime, where the effective coupling strength gg is comparable to the energy ω\omega of the bosonic mode, and remarkable features in the system dynamics are revealed. We demonstrate an analog quantum simulation of an effective quantum Rabi model in the USC regime, achieving a relative coupling ratio of g/ω0.6g/\omega \sim 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.Comment: 20 pages, 13 figure

    A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data

    Get PDF
    The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images

    Coherent electrical readout of defect spins in 4H-SiC by photo-ionization at ambient conditions

    Full text link
    Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for such defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects the approach presented here holds promises for scalability of future SiC quantum devices

    Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics

    Get PDF
    The simulation of low-temperature properties of many-body systems remains one of the major challenges in theoretical and experimental quantum information science. We present, and demonstrate experimentally, a universal cooling method which is applicable to any physical system that can be simulated by a quantum computer. This method allows us to distill and eliminate hot components of quantum states, i.e., a quantum Maxwell's demon. The experimental implementation is realized with a quantum-optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). These results open a new path for simulating low-temperature properties of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
    corecore