273 research outputs found

    Image Segmentation Using Weak Shape Priors

    Full text link
    The problem of image segmentation is known to become particularly challenging in the case of partial occlusion of the object(s) of interest, background clutter, and the presence of strong noise. To overcome this problem, the present paper introduces a novel approach segmentation through the use of "weak" shape priors. Specifically, in the proposed method, an segmenting active contour is constrained to converge to a configuration at which its geometric parameters attain their empirical probability densities closely matching the corresponding model densities that are learned based on training samples. It is shown through numerical experiments that the proposed shape modeling can be regarded as "weak" in the sense that it minimally influences the segmentation, which is allowed to be dominated by data-related forces. On the other hand, the priors provide sufficient constraints to regularize the convergence of segmentation, while requiring substantially smaller training sets to yield less biased results as compared to the case of PCA-based regularization methods. The main advantages of the proposed technique over some existing alternatives is demonstrated in a series of experiments.Comment: 27 pages, 8 figure

    A deep learning algorithm for contour detection in synthetic 2D biplanar X-ray images of the scapula: towards improved 3D reconstruction of the scapula

    Get PDF
    Three-dimensional (3D) reconstruction from X-ray images using statistical shape models (SSM) provides a cost-effective way of increasing the diagnostic utility of two-dimensional (2D) X-ray images, especially in low-resource settings. The landmark-constrained model fitting approach is one way to obtain patient-specific models from a statistical model. This approach requires an accurate selection of corresponding features, usually landmarks, from the bi-planar X-ray images. However, X-ray images are 2D representations of 3D anatomy with super-positioned structures, which confounds this approach. The literature shows that detection and use of contours to locate corresponding landmarks within biplanar X-ray images can address this limitation. The aim of this research project was to train and validate a deep learning algorithm for detection the contour of a scapula in synthetic 2D bi-planar Xray images. Synthetic bi-planar X-ray images were obtained from scapula mesh samples with annotated landmarks generated from a validated SSM obtained from the Division of Biomedical Engineering, University of Cape Town. This was followed by the training of two convolutional neural network models as the first objective of the project; the first model was trained to predict the lateral (LAT) scapula image given the anterior-posterior (AP) image. The second model was trained to predict the AP image given the LAT image. The trained models had an average Dice coefficient value of 0.926 and 0.964 for the predicted LAT and AP images, respectively. However, the trained models did not generalise to the segmented real X-ray images of the scapula. The second objective was to perform landmark-constrained model fitting using the corresponding landmarks embedded in the predicted images. To achieve this objective, the 2D landmark locations were transformed into 3D coordinates using the direct linear transformation. The 3D point localization yielded average errors of (0.35, 0.64, 0.72) mm in the X, Y and Z directions, respectively, and a combined coordinate error of 1.16 mm. The reconstructed landmarks were used to reconstruct meshes that had average surface-to-surface distances of 3.22 mm and 1.72 mm for 3 and 6 landmarks, respectively. The third objective was to reconstruct the scapula mesh using matching points on the scapula contour in the bi-planar images. The average surface-to-surface distances of the reconstructed meshes with 8 matching contour points and 6 corresponding landmarks of the same meshes were 1.40 and 1.91 mm, respectively. In summary, the deep learning models were able to learn the mapping between the bi-planar images of the scapula. Increasing the number of corresponding landmarks from the bi-planar images resulted into better 3D reconstructions. However, obtaining these corresponding landmarks was non-trivial, necessitating the use of matching points selected from the scapulae contours. The results from the latter approach signal a need to explore contour matching methods to obtain more corresponding points in order to improve the scapula 3D reconstruction using landmark-constrained model fitting

    Image Segmentation using PDE, Variational, Morphological and Probabilistic Methods

    Get PDF
    The research in this dissertation has focused upon image segmentation and its related areas, using the techniques of partial differential equations, variational methods, mathematical morphological methods and probabilistic methods. An integrated segmentation method using both curve evolution and anisotropic diffusion is presented that utilizes both gradient and region information in images. A bottom-up image segmentation method is proposed to minimize the Mumford-Shah functional. Preferential image segmentation methods are presented that are based on the tree of shapes in mathematical morphologies and the Kullback-Leibler distance in information theory. A thorough evaluation of the morphological preferential image segmentation method is provided, and a web interface is described. A probabilistic model is presented that is based on particle filters for image segmentation. These methods may be incorporated as components of an integrated image processed system. The system utilizes Internet Protocol (IP) cameras for data acquisition. It utilizes image databases to provide prior information and store image processing results. Image preprocessing, image segmentation and object recognition are integrated in one stage in the system, using various methods developed in several areas. Interactions between data acquisition, integrated image processing and image databases are handled smoothly. A framework of the integrated system is implemented using Perl, C++, MySQL and CGI. The integrated system works for various applications such as video tracking, medical image processing and facial image processing. Experimental results on this applications are provided in the dissertation. Efficient computations such as multi-scale computing and parallel computing using graphic processors are also presented

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Automated Segmentation of Left and Right Ventricles in MRI and Classification of the Myocarfium Abnormalities

    Get PDF
    A fundamental step in diagnosis of cardiovascular diseases, automated left and right ventricle (LV and RV) segmentation in cardiac magnetic resonance images (MRI) is still acknowledged to be a difficult problem. Although algorithms for LV segmentation do exist, they require either extensive training or intensive user inputs. RV segmentation in MRI has yet to be solved and is still acknowledged a completely unsolved problem because its shape is not symmetric and circular, its deformations are complex and varies extensively over the cardiac phases, and it includes papillary muscles. In this thesis, I investigate fast detection of the LV endo- and epi-cardium surfaces (3D) and contours (2D) in cardiac MRI via convex relaxation and distribution matching. A rapid 3D segmentation of the RV in cardiac MRI via distribution matching constraints on segment shape and appearance is also investigated. These algorithms only require a single subject for training and a very simple user input, which amounts to one click. The solution is sought following the optimization of functionals containing probability product kernel constraints on the distributions of intensity and geometric features. The formulations lead to challenging optimization problems, which are not directly amenable to convex-optimization techniques. For each functional, the problem is split into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Finally, an information-theoretic based artificial neural network (ANN) is proposed for normal/abnormal LV myocardium motion classification. Using the LV segmentation results, the LV cavity points is estimated via a Kalman filter and a recursive dynamic Bayesian filter. However, due to the similarities between the statistical information of normal and abnormal points, differentiating between distributions of abnormal and normal points is a challenging problem. The problem was investigated with a global measure based on the Shannon\u27s differential entropy (SDE) and further examined with two other information-theoretic criteria, one based on Renyi entropy and the other on Fisher information. Unlike the existing information-theoretic studies, the approach addresses explicitly the overlap between the distributions of normal and abnormal cases, thereby yielding a competitive performance. I further propose an algorithm based on a supervised 3-layer ANN to differentiate between the distributions farther. The ANN is trained and tested by five different information measures of radial distance and velocity for points on endocardial boundary
    corecore