1,163 research outputs found

    Confidence Estimation for Black Box Automatic Speech Recognition Systems Using Lattice Recurrent Neural Networks

    Get PDF
    Recently, there has been growth in providers of speech transcription services enabling others to leverage technology they would not normally be able to use. As a result, speech-enabled solutions have become commonplace. Their success critically relies on the quality, accuracy, and reliability of the underlying speech transcription systems. Those black box systems, however, offer limited means for quality control as only word sequences are typically available. This paper examines this limited resource scenario for confidence estimation, a measure commonly used to assess transcription reliability. In particular, it explores what other sources of word and sub-word level information available in the transcription process could be used to improve confidence scores. To encode all such information this paper extends lattice recurrent neural networks to handle sub-words. Experimental results using the IARPA OpenKWS 2016 evaluation system show that the use of additional information yields significant gains in confidence estimation accuracy. The implementation for this model can be found online.Comment: 5 pages, 8 figures, ICASSP submissio

    Future word contexts in neural network language models

    Get PDF
    Recently, bidirectional recurrent network language models (bi-RNNLMs) have been shown to outperform standard, unidirectional, recurrent neural network language models (uni-RNNLMs) on a range of speech recognition tasks. This indicates that future word context information beyond the word history can be useful. However, bi-RNNLMs pose a number of challenges as they make use of the complete previous and future word context information. This impacts both training efficiency and their use within a lattice rescoring framework. In this paper these issues are addressed by proposing a novel neural network structure, succeeding word RNNLMs (su-RNNLMs). Instead of using a recurrent unit to capture the complete future word contexts, a feedforward unit is used to model a finite number of succeeding, future, words. This model can be trained much more efficiently than bi-RNNLMs and can also be used for lattice rescoring. Experimental results on a meeting transcription task (AMI) show the proposed model consistently outperformed uni-RNNLMs and yield only a slight degradation compared to bi-RNNLMs in N-best rescoring. Additionally, performance improvements can be obtained using lattice rescoring and subsequent confusion network decoding
    • …
    corecore