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ABSTRACT

Recently, there has been growth in providers of speech transcrip-
tion services enabling others to leverage technology they would not
normally be able to use. As a result, speech-enabled solutions have
become commonplace. Their success critically relies on the quality,
accuracy, and reliability of the underlying speech transcription sys-
tems. Those black box systems, however, offer limited means for
quality control as only word sequences are typically available. This
paper examines this limited resource scenario for confidence estima-
tion, a measure commonly used to assess transcription reliability. In
particular, it explores what other sources of word and sub-word level
information available in the transcription process could be used to
improve confidence scores. To encode all such information this pa-
per extends lattice recurrent neural networks to handle sub-words.
Experimental results using the IARPA OpenKWS 2016 evaluation
system show that the use of additional information yields significant
gains in confidence estimation accuracy.

Index Terms— confidence, sub-word, lattice, neural network

1. INTRODUCTION

Automatic Speech Recognition (ASR) has seen a surge in interest as
speech enabled devices continue to proliferate the consumer market.
From dedicated voice activated assistants, such as Amazon Alexa
[1] and Google Home [2], to virtual assistants embedded in general
purpose devices, such as Microsoft Cortana and Apple Siri, speech
recognition is fast becoming a mainstream medium for interacting
with technology. Though access to the underlying ASR technology
has become easier [3, 4], more and more ASR systems are purchased
as black box models in the sense that the internal state of the system
is inaccessible to the user. This is particularly common in cloud-
based solutions where transcriptions are often served via an applica-
tion programming interface (API). The usability of these black box
ASR technologies is determined by their ability to produce a correct
transcription for a given audio signal. Though efforts are made to en-
sure they can operate over a wide variety of conditions [2], it is hard
to guarantee high transcription quality for all possible scenarios. As
a result, error mitigation strategies have become important.
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Confidence scores provide a mechanism to mitigate error-prone
ASR systems by presenting a measure of uncertainty for intelligent
post-processing modules [5, 6]. These scores also find applications
within upstream tasks, such as speaker adaptation [7] and semi-
supervised training [8], and downstream tasks, such as machine
translation [9] and information retrieval [10]. In the simplest case,
confidence scores are posterior probabilities derived during the nor-
mal decoding process [11, 12]. These scores are often the only
uncertainty information provided even though rich graph represen-
tations, which encode multiple hypotheses at the sub-word level, are
being generated during decoding. Posterior probabilities, however,
are known to over-estimate confidence [12]. Though prior work ex-
ists on improving confidence estimation [13, 12, 14, 15, 16, 17, 18],
no one has examined the impact of already available information on
the ability of black box ASR users to improve confidence estimates.

This paper examines confidence estimation when limited infor-
mation is available. In particular, it shows that significantly more
accurate estimates can be obtained if additional information is prop-
agated by these black box systems. In order to encode complex and
rich graph representations, which combine information supplied by
the black box system and the user, this paper extends bi-directional
lattice recurrent neural networks (BiLatRNN) [18] from the word
level to include sub-word level features. Two attention-based ap-
proaches for handling variable length sub-word sequences are pro-
posed. The more complex bi-directional encoder approach is found
to be more accurate than the simpler self-attention approach [19].

The rest of this paper is organised as follows. Section 2 discusses
standard representations of information within black box ASR sys-
tems, which includes graphs encoding alternative transcriptions and
sub-word units. A neural network approach for encoding word level
graphs is discussed in Section 3. Section 4 describes standard word
level features as well as introduces two approaches for encoding sub-
word information. Experimental results are presented in Section 5.
The conclusions drawn from this work are given in Section 6.

2. BLACK BOX ASR SYSTEMS

A black box ASR system is a solution provided by an external com-
pany or individual for the task of speech transcription. Such solu-
tions are particularly popular among early-stage companies or those
not primarily focused on ASR. Based on their physical location,
black box ASR systems can be divided into on-premise and cloud-
based. On-premise solutions physically operate on user premises to
support applications with certain restrictions on security and latency
of transcription. Whilst cloud-based solutions delegate transcription
to a remote server that may be optimised to offer higher accuracy.

Despite many advances in speech recognition field to speed up
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decoding and digital communication field to offer ultra-fast data
transmission, black box ASR systems continue to provide only a
very limited amount of information about the transcription process
even if located on the user premises. Such information typically
contains start and end times of the first and last transcribed word
and the complete, one-best, word sequence. Figure 1 (a) provides
a graphical representation for the one-best word sequence corre-
sponding to the hypothetical utterance quick brown fox. Despite
their restrictive nature, one-best sequences are the de facto standard
output provided by commercial systems and are commonly used by
downstream applications in natural language processing.

t0 t1 t2 t3

quick brown fox
t0 t1 t2 t3quick

brown

fox

quit frown ox

crown

(a) one-best sequence (b) confusion network

quit
quick

wick

crown

fox

ox

fast

brown

gown

(c) lattice

Fig. 1. Standard speech recognition output representations

Since word sequences alone carry no information about how cer-
tain the black box ASR system is, downstream applications have lim-
ited means for addressing transcription errors. The addition of sim-
ple features, such as word posterior probabilities and durations, pro-
vides the potential for a significantly better error mitigation mecha-
nism to be devised. Other potentially useful characteristics include
the word confusions found in confusion or consensus [12, 11] net-
works (CN) illustrated by Figure 1 (b). Such networks are typically
generated by the black box ASR as a part of one-best generation
process. CNs are a type of linear directed acyclical graph (DAG)
which provides information pertaining to the most likely candidate
transcriptions. Not only do the word confusions in CNs provide al-
ternative word hypotheses, but they also provide an indication of
the confidence in the prediction. Such rich and compact output rep-
resentations have been found to be crucial for developing accurate
downstream applications [20, 10], and are expected [18] to benefit
confidence estimation for one-best word sequences.

CNs are normally derived from a more general DAG representa-
tion produced during decoding. These graphs, or lattices, illustrated
by Figure 1 (c), encode a wealth of information coming from acous-
tic, language and pronunciation models. The clustering process be-
hind CN construction combines multiple, not necessary precisely
overlapping in time, word level lattice arcs to yield one CN arc, thus
loosing the individual sources of information. Those sources can be
linked to confusion network arcs and leveraged for confidence esti-
mation if lattices were made available by black box ASR developers.

3. LATTICE RECURRENT NEURAL NETWORKS

Recently there has been interest in examining modern forms of
neural networks for confidence estimation. Figure 2 shows a bi-
directional recurrent neural network (BiRNN) architecture exam-
ined in [16, 17]. Given a sequence of word level feature vectors
X1:T = x1, . . . ,xT , the BiRNN makes use of forward and back-
ward recurrent states to predict the sequence of confidence scores
c1:T = c1, . . . , cT . The recurrent states are aimed at encoding the
complete past or future information respectively. In the simplest

~hi−1 ~hi
~hi+1

ci−1 ci ci+1

xi−1 xi xi+1

hi−1 hi hi+1

~hi−1 ~hi
~hi+1

RNN Unit

Concatenation

Fig. 2. Bi-directional RNN for confidence prediction

case the forward state is defined recursively by

−→
h i = σ(W

(
−→
h )−→h i−1 +W

(x)xi) (1)

where W (
−→
h ) and W (x) are weight matrices for the forward state

and the feature vector respectively, σ(·) is an element-wise non-
linearity, such as sigmoid,

−→
h 0 can be set to 0 or learnt. The back-

ward state can be defined analogously. Given the forward and back-
ward states at time i, the confidence score can be predicted by

ci = σ(w(c)Thi + b(c)) (2)

where hi = [
−→
h T

i

←−
h T

i ]
T, w(c) and b(c) are weight vectors and a

scalar bias, σ is a non-linearity mapping confidence scores to [0, 1]
range. Note that unlike many other supervised learning problems,
the targets for confidence scores need to be derived by automatically
aligning predicted and manually transcribed word sequences [18].

The BiRNN is inherently limited to sequence data. As discussed
in Section 2 one-best sequences carry only a small portion of in-
formation otherwise available in either constrained (CN) or uncon-
strained (lattice) DAG format. Those DAGs are highly flexible struc-
tures that can be additionally enriched with a wide range of features
[21, 22]. Recently there has been much interest in examining neu-
ral network extensions to DAGs and other general graph structures
[23, 18, 24]. The key question that any such approach needs to an-
swer is how information associated with multiple graph arcs or nodes
is combined. Figure 3 illustrates one such bi-directional approach for
lattices (BiLatRNN). Compared to the sequence model in Figure 2,
the lattice model has one or more past recurrent states which propa-
gates the current state to one or more subsequent states. In order to
handle a variable number of past recurrent states, BiLatRNN makes
use of an attention mechanism to create a combined representation

−→
h−→N i

=
∑
j∈
−→
N i

αj
−→
h j (3)

where
−→
N i is a set of incoming arcs for arc i. The attention mecha-

nism makes use of arc contributions e to yield attention weights

αj = exp(ej)

/ ∑
j′∈
−→
N i

exp(ej′) (4)

There are numerous ways for how arc contributions can be defined,
such as scaled dot-product self-attention [19]

ej =
−→
h T

j

[
1√

dim(
−→
h j)
I
]−→
h j (5)
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Fig. 3. Bi-directional lattice RNN for confidence prediction

multiplicative self-attention [25] with trainable weightsW (m),

ej =
−→
h T

jW
(m)−→h j (6)

or additive attention [25, 26] with trainable weightsW (q) andw(a).

ej = σ

(
w(a)Tσ

(
W (q)

[
kT
j

−→
h T

j

]T))
(7)

The additive form offers flexibility by “querying” the state
−→
h j with

a key kj . In previous work [18] the key was set to

kj =
[
log(ĉj) log(µ̂j) log(σ̂j)

]T (8)

where ĉj , µ̂j and σ̂j are posterior probability, mean and standard de-
viation of all arc posterior probabilities which overlap in time with
arc j. Such key design should enable the attention mechanism to
downweight states of unlikely paths. Once the combined represen-
tation have been obtained, the current state can be updated by

−→
h i = σ(W

(
−→
h )−→h−→N i

+W (x)xi) (9)

The confidence score prediction is then done using equation (2). The
targets for lattice arc confidence scores are generated by extending
the alignment algorithm for one-best sequences as described in [18].

4. FEATURES

As discussed in Section 2, a large amount of information is produced
during the decoding process. However, for users of black box ASR
typically only the one-best word sequence w1:T = w1, . . . , wT is
available. If posterior probabilities and durations were also propa-
gated the complete set of word level features could be expressed as

x
(w)
i =

[
eTwi

dwi log(ĉwi)
]T (10)

where ewi is word wi represented as a one-hot encoding or embed-
ding, dwi is the word duration, and ĉwi is the posterior probability.
The word embedding is a continuous word representation [27] that
can either be trained jointly with the rest of the neural network or
independently on large quantities of text data [28, 29] and then pos-
sibly fine-tuned. These simple features have been used with both
BiRNN [17] and BiLatRNN [18] for confidence prediction.

As mentioned in Section 3, a wide range of additional informa-
tion can be augmented to graph structures such as confusion net-
works and lattices. Any word level information can be added by
simply extending the number of features in equation (10). The use
of sub-word information, such as phone, grapheme, morpheme, or
byte-pair encoding, is more complicated due to variable length na-
ture of sub-word sequences. A fixed length representation can be
obtained by adopting the attention mechanism described in Section 3

x
(s)
i =

∑
j∈Si

αi,jhi,j (11)

where Si is a sequence of sub-word units for word wi, αi,j and hi,j

are an attention weight and continuous representation for sub-word
unit sj respectively. There are several options for how sub-word
representations hi,j can be derived. In the simplest case, sub-word
features can be defined in a similar manner to the word features by

xi,j =
[
εTsj dsj log(ĉsj )

]T
(12)

where εsj is either a one-hot encoding or embedding, dsj and ĉsj
are duration and posterior probability respectively for sub-word sj .
A more powerful approach would be to use a bi-directional encoder
as shown in Figure 4. To estimate sub-word attention weightsαi for
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Fig. 4. Bi-directional RNN sub-word encoder

each word wi it is possible to use one of the approaches discussed
in Section 3. For instance, the use of additive attention in equa-
tion (7) offers a number of interesting choices for selecting keys ki,j

to match against hidden states hi,j that may include not only sub-
word but also word level information.

As discussed in Section 2, one-best word sequences are usually
obtained from CNs rather than lattices, which makes information en-
coded into the latter not directly available for the former. Therefore,
all prior work examined confidence estimation either based on CN or
lattice output. Lattices, however, provide a rich and flexible frame-
work for representing not only already available information but also
various other external sources. As a result, they naturally facilitate
interesting and often powerful features. Two of the simplest lattice
features are the acoustic model score and the language model score
[30]. More intricate features include acoustic stability [31] and hy-
pothesis density [32]. In order to make those features available, an
alignment of CNs to lattices can be performed to match each CN arc
to one or more lattice arcs depending on the time overlap tolerance
specified. Provided that the lattices are large enough, the chance that
any given CN arc cannot be matched to at least one lattice arc is



small. Once lattice arcs have been aligned with CN arcs a number
of approaches, such as simple averaging or an attention mechanism,
can be used to yield lattice features for CN arcs.

5. EXPERIMENTS

The experiments in this work were conducted on the decoded output
from a graphemic ASR system trained for the IARPA OpenKWS
2016 competition. The audio recordings consist of Georgian conver-
sational telephone speech, of which 25 hours was used for training
and testing confidence estimation approaches. The predictions from
this system, which are treated as a black box, are split into indepen-
dent training, cross-validation, and test sets with an 8 : 1 : 1 ratio.
After CN decoding, the ASR system has a word error rate of ap-
proximately 38%, which leads to an imbalanced distribution of cor-
rect and incorrect word predictions. All models, BiRNN and BiLa-
tRNN, use a single 128-dimensional bi-directional LSTM layer with
a fully connected hidden layer consisting of 128 neurons. The sub-
word encoder uses a similar architecture based on a 10-dimensional
GRU layer. The results are presented in terms of two standard met-
rics, normalised cross-entropy (NCE), which indicates the relative
change in cross-entropy when the empirical estimate of correctness
is replaced with hypothesised confidence score [17, 33], and area
under the curve (AUC), where the precision-recall curve is used to
mitigate the effect of the dataset imbalance [34]. A random classifier
in this setup will render an AUC score of 0.6310.

The set of word level features used include a 50-dimensional
fastText [35] pre-trained word embedding, duration, and posterior
without and with decision tree mapping [12]. Table 1 demonstrates
how the incremental addition of these input features to the BiRNN
model results in performance improvements relative to the use of
simple word embeddings. As expected, the use of words and du-

Word Features NCE AUC
words 0.0358 0.7496

+duration 0.0541 0.7670
+ posteriors 0.2765 0.9033

+ mapping 0.2911 0.9121

Table 1. Confidence estimation performance using word features

rations yields low, although higher than random, AUC values whilst
the introduction of posteriors sees a large performance improvement.

The set of sub-word level features used included a 4-dimensional
word2vec [27] pre-trained grapheme embedding and duration. As
described in Section 4, sub-word features can be incorporated into
word level models using an attention mechanism applied either di-
rectly to sub-word features or to encoder states. A comparison of
attention approaches (see Section 3), which is not reported here due
to space constraints, showed that the additive attention with the sub-
word embedding and duration as a key yielded slightly better results
and hence is used in the rest of this section. Table 2 shows that the

Sub-word Features NCE AUC
none 0.2911 0.9121
embedding 0.2936 0.9127

+ duration 0.2944 0.9129
+encoder 0.2978 0.9139

Table 2. Impact of sub-word features

use of sub-word information (embedding, +duration) and more com-
plex representations (+encoder) yields small but consistent gains.

The BiRNN examined so far lacked any information about com-
peting transcriptions available within CNs. Depending on applica-
tion there are several ways how such information can be utilised. If
the task is to predict confidence scores for one-best word sequences
(as in this work) the training loss should be accumulated over one-
best sequences only. However, if confidence scores of all arcs are
of interest (as in previous work [18]) the training loss should be ac-
cumulated over all arcs. Note that the forward propagation is done
through all arcs irrespective of the choice made above. Table 3 shows

Confusions Loss NCE AUC
1-best 1-best 0.2911 0.9121

CN 1-best 0.2931 0.9201
CN CN 0.2934 0.9178

Table 3. Impact of word confusion information

that although both BiLatRNN approaches yield gains over the one-
best baseline, the former as expected yields better AUC values. Ta-
ble 4 also shows that word confusion and sub-word information are
quite complimentary, yielding significant gains over word only one-
best baseline.

Features NCE AUC
word (all) 0.2911 0.9121

+confusions 0.2934 0.9201
+sub-word 0.2998 0.9228

+lattice 0.3004 0.9231

Table 4. Impact of word confusion, sub-word and lattice features

As discussed in Section 4, a range of lattice features can be in-
corporated into BiLatRNNs by aligning lattices to CNs. As a proof
of concept this work examined a simple set of lattice features: the
acoustic and language model scores. Given a relatively large set of
lattices and a tight threshold on time overlap, the alignment process
failed to match 1.7% of training utterances, which, in this work, were
removed from training. Note that significantly larger lattices can be
obtained by simply increasing decoding beam size. Table 4 shows
that the BiLatRNN can leverage even the simplest of lattice features
with more gains expected from more complex approaches.

6. CONCLUSION

With black box automatic speech recognition (ASR) systems be-
coming more popular, the importance of error mitigation strategies
grows. Despite clear evidence from the literature that word se-
quences alone are not adequate for building accurate applications,
the restricted form of one-best remains the de facto standard output
of commercial ASR. Word sequences, however, provide a limited
opportunity for devising even the simplest error mitigation strategy,
a confidence score. This paper examines a hypothetical scenario
where progressively more (normally discarded) information, such
as confusion networks and lattices, are propagated to the user. To
leverage these graph structures a bi-directional lattice recurrent neu-
ral network was used and extended to handle sub-word information.
Experimental results on the challenging IARPA OpenKWS 2016
task show that additional information is crucial and can be easily
leveraged using available neural network approaches.
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