
FUTURE WORD CONTEXTS IN NEURAL NETWORK LANGUAGE MODELS

X. Chen1, X. Liu2, A. Ragni1, Y. Wang1, M.J.F. Gales1

University of Cambridge Engineering Department 1, Chinese University of Hong Kong 2

{xc257,ar527,yw396,mjfg}@eng.cam.ac.uk, xyliu@se.cuhk.edu.hk

ABSTRACT

Recently, bidirectional recurrent network language models (bi-
RNNLMs) have been shown to outperform standard, unidirectional,
recurrent neural network language models (uni-RNNLMs) on a
range of speech recognition tasks. This indicates that future word
context information beyond the word history can be useful. How-
ever, bi-RNNLMs pose a number of challenges as they make use of
the complete previous and future word context information. This
impacts both training efficiency and their use within a lattice rescor-
ing framework. In this paper these issues are addressed by proposing
a novel neural network structure, succeeding word RNNLMs (su-
RNNLMs). Instead of using a recurrent unit to capture the complete
future word contexts, a feedforward unit is used to model a finite
number of succeeding, future, words. This model can be trained
much more efficiently than bi-RNNLMs and can also be used for
lattice rescoring. Experimental results on a meeting transcription
task (AMI) show the proposed model consistently outperformed
uni-RNNLMs and yield only a slight degradation compared to
bi-RNNLMs in N-best rescoring. Additionally, performance im-
provements can be obtained using lattice rescoring and subsequent
confusion network decoding.

Index Terms— Bidirectional recurrent neural network, lan-
guage model, succeeding words, speech recognition

1. INTRODUCTION

Language models (LMs) are crucial components in many applica-
tions, such as speech recognition and machine translation. The aim
of language models is to compute the probability of any given sen-
tenceW = (w1, w2, ..., wL), which can be calculated as

P (W) = P (w1, w2, ..., wL) =

L∏
t=1

P (wt|wt−1
1) (1)

The task of LMs is to calculate the probability of word wt given
its previous history wt−1

1 = w1, w2, ..., wt−1. n-gram LMs [1]
and neural network based language mdoels (NNLMs) [2, 3] are two
widely used language models. In n-gram LMs, the most recent n−1
words are used as an approximation of the complete history, thus

P (wt|wt−1
1) ≈ P (wt|wt−1

t−n+1) (2)

This n-gram assumption can also be used to construct a n-gram
feedforward NNLMs [2]. In contrast, recurrent neural network LMs
(RNNLMs) model the complete history via a recurrent connection.

This research was funded under the ALTA Institute, University of Cam-
bridge. Thanks to Cambridge English, University of Cambridge, for support-
ing this research. Xunying Liu is funded by MSRA grant no. 6904412 and
CUHK grant no. 4055065.

Most of previous work on language models has focused on util-
ising history information, the future word context information has
not been extensively investigated. There have been several attempts
to incorporate future context information into recurrent neural net-
work language models. Individual forward and backward RNNLMs
can be built, and these two LMs combined with a log-linear in-
terpolation [4]. In [5], succeeding words were incorporated into
RNNLM within a Maximum Entropy framework. [6] investigated
the use of bidirectional RNNLMs (bi-RNNLMs) for speech recog-
nition. For a broadcast news task, sigmoid based RNNLMs gave
small gains, while no performance improvement was obtained when
using long short-term memory (LSTM) based RNNLMs. More re-
cently, bi-RNNLMs can produce consistent, and significant, perfor-
mance improvements over unidirectional RNNLMs (uni-RNNLMs)
on a range of speech recognition tasks [7].

Though they can yield performance gain, bi-RNNLMs pose sev-
eral challenges for both model training and inference as they require
the complete previous and future word context information to be
taken into account. It is difficult to parallelise training efficiently.
Lattice rescoring is also complicated for these LMs as future con-
text needs to be incorporated. This means that the form of approx-
imation used for uni-RNNLMs [8] is not suitable to apply. Hence,
N-best rescoring is normally used [5, 6, 7]. However, the ability to
manipulate lattices is very important in many speech applications.
Lattices can be used for a wide range of downstream applications,
such as confidence score estimation [9], keyword search [10] and
confusion network decoding [11]. In order to address these issues,
a novel model structure, succeeding word RNNLMs (su-RNNLMs),
is proposed in this paper. Instead of using a recurrent unit to capture
the complete future word context as in bi-RNNLMs, a feedforward
unit is used to model a small, fixed-length number of succeeding
words. This allows existing efficient training [12] and lattice rescor-
ing [8] algorithms developed for uni-RNNLMs to be extended to the
proposed su-RNNLMs. Using these extended algorithms, compact
lattices can be generated with su-RNNLMs supporting lattice based
downstream processing.

The rest of this paper is organized as follows. Section 2 gives
a brief review of RNNLMs, including both unidirectional and bidi-
rectional RNNLMs. The proposed model with succeeding words
(su-RNNLMs) is introduced in Section 3, followed by a description
of the lattice rescoring algorithm in Section 4. Section 5 discusses
the interpolation of language models. The experimental results are
presented in Section 6 and conclusions are drawn in Section 7.

2. UNI- AND BI-DIRECTIONAL RNNLMS

2.1. Unidirectional RNNLMs

In contrast to feedforward NNLMs, where only modeling the pre-
vious n − 1 words, recurrent NNLMs [13] represent the full non-

ar
X

iv
:1

70
8.

05
59

2v
1

 [
cs

.C
L

]
 1

8
A

ug
 2

01
7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/158355273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. An example unidirectional RNNLM.

truncated history wt−1
1 = w1, w2, ..., wt−1 for word wt using the

1-of-K encoding of the previous word wt−1 and a continuous vector
ht−2 as a compact representation of the remaining context wt−2

1 .
Figure 1 shows an example of this unidirectional RNNLM (uni-
RNNLM). The most recent word wt−1 is used as input and pro-
jected into a low-dimensional, continuous, space via a linear pro-
jection layer. A recurrent hidden layer is used after this projection
layer. The form of the recurrent layer can be based on a standard
sigmoid based recurrent unit, with sigmoid activations [3], or more
complicated forms such as gated recurrent unit (GRU) [14] and long
short-term memory (LSTM) units [15]. A continuous vector ht−1

representing the complete history information wt−1
1 can be obtained

using ht−2 and previous word wt−1. This vector is used as input of
recurrent layer for the estimation of next word. An output layer with
softmax function is used to calculate the probability P (wt|wt−1

1).
An additional node is often added at the output layer to model the
probability mass of out-of-shortlist (OOS) words to speed up soft-
max computation by limiting vocabulary size [16]. Similarly, an
out-of-vocabulary (OOV) node can be added in the input layer to
model OOV words. The probability of word sequenceW = wL1 is
calculated as,

Pu(wL1) =

L∏
t=1

P (wt|wt−1
1) (3)

Perplexity (PPL) is a metric used widely to evaluate the quality
of language models. According to the definition in [17], the perplex-
ity can be computed based on sentence probability with,

PPL = exp
(
− 1

N

J∑
j=1

logPu(Wj)
)

= exp
(
− 1

N

J∑
j=1

logPu(w
Lj

1)
)

= exp
(
− 1

N

J∑
j=1

Lj∑
t=1

logP (wt|wt−1
1)

)
(4)

Where N is the total number of words and J is the number of sen-
tence in the evaluation corpus. Lj is the number of word in jth
sentence. From the above equation, the PPL is calculated based on
the average log probability of each word, which for unidirectional
LMs, yields the average sentence log probability.

Uni-RNNLMs can be trained efficiently on Graphics Process-
ing Units (GPUs) by using spliced sentence bunch (i.e. minibatch)
mode [12]. Multiple sentences can be concatenated together to form
a longer sequence and sets of these long sequences can then be
aligned in parallel from left to right. This data structure is more effi-
cient for minibatch based training as they have comparable sequence

Fig. 2. An example bidirectional RNNLM.

length [12]. When using these forms of language models for tasks
like speech recognition, N-best rescoring is the most straightforward
way to apply uni-RNNLMs. Lattice rescoring is also possible by in-
troducing approximations [8] to control merging and expansion of
different paths in lattice. This will be described in more detail in
Section 4.

2.2. Bidirectional RNNLMs

Figure 2 illustrates an example of bidirectional RNNLMs (bi-
RNNLMs). Unlike uni-RNNLMs, both the history word context
wt−1

1 and future word context wLt+1 are used to estimate the proba-
bility of current word P (wt|wt−1

1 , wLt+1). Two recurrent units are
used to capture the previous and future information respectively. In
the same fashion as uni-RNNLMs, ht−1 is a compact continuous
vector of the history information wt−1

1 . While h̃t+1 is another con-
tinuous vector to encode the future information wLt+1. This future
context vector is computed from the next word wt+1 and the pre-
vious future context vector h̃t+2 containing information of wLt+2.
The concatenation of ht−1 and h̃t+1 is then fed into the output
layer, with softmax function, to calculate the output probability. In
order to reduce the number of parameter, the projection layer for the
previous and future words are often shared.

The probability of word sequence W = wL1 can be computed
using bi-RNNLMs as,

Pb(w
L
1) =

1

Zb
P̂b(W) =

1

Zb

L∏
t=1

P (wt|wt−1
1 , wLt+1) (5)

P̂b(W) is the unnormalized sentence probability computed from the
individual word probabilities of the bi-RNNLM. Zb is a sentence-
level normalization term to ensure the sentence probability is appro-
priately normalized. This is defined as,

Zb =
∑
W∈Θ

P̂b(W) (6)

where Θ is the set of all possible sentences. Unfortunately, this nor-
malization term is impractical to calculate for most tasks.

In a similar form to Equation 4, the PPL of bi-RNNLMs can be

calculated based on sentence probability as,

PPL = exp
(
− 1

N

J∑
j=1

logPb(w
Lj

1)
)

= exp
(
− 1

N

J∑
j=1

log
1

Zb
P̂b(w

Lj

1)
)

(7)

= exp
(J
N

log(Zb)−
1

N

J∑
j=1

Lj∑
t=1

logP (wt|wt−1
1 , w

Lj

t+1)
)

However, Zb is often infeasible to obtain. As a result, it is not pos-
sible to compute a valid perplexity from bi-RNNLMs. Neverthe-
less, the average log probability of each word can be used to get a
“pseudo” perplexity (PPL).

PPLpseudo = exp
(
− 1

N

J∑
j=1

Lj∑
t=1

logP (wt|wt−1
1 , w

Lj

t+1)
)

(8)

This is the second term of the valid PPL of bi-RNNLMs shown in
Equation 7. It is a “pseudo” PPL because the normalized sentence
probability Pb(W) is impossible to obtain and the unnormalized
sentence probability P̂b(W) is used instead. Hence, the “pseudo”
PPL of bi-RNNLMs is not comparable with the valid PPL of uni-
RNNLMs. However, the value of “pseudo” PPL provides informa-
tion on the average word probability from bi-RNNLMs since it is
obtained using the word probability.

In order to achieve good performance for speech recognition, [7]
proposed an additional smoothing of the bi-RNNLM probability at
test time. The probability of bi-RNNLMs is smoothed as,

P (wi|wt−1
1 , wLt+1) =

exp(αyi)∑V
j exp(αyj)

(9)

where yi is the activation before softmax function for node i in the
output layer. α is an empirical smoothing factor, which is chosen as
0.7 in this paper.

The use of both preceding and following context information in
bi-RNNLMs presents challenges to both model training and infer-
ence. First, N-best rescoring is normally used for speech recognition
[7]. Lattice rescoring is impractical for bi-RNNLMs as the compu-
tation of word probabilities requires information from the complete
sentence.

Another drawback of bi-RNNLMs is the difficulty in training.
The complete previous and future context information is required to
predict the probability of each word. It is expensive to directly train-
ing bi-RNNLMs sentence by sentence, and difficult to parallelise
the training for efficiency. In [6], all sentences in the training corpus
were concatenated together to form a single sequence to facilitate
minibatch based training. This sequence was then “chopped” into
sub-sequences with the average sentence length. Bi-RNNLMs were
then trained on GPU by processing multiple sequences at the same
time. This allows bi-RNNLMs to be efficiently trained. However,
issues can arise from the random cutting of sentences, history and
future context vectors may be reset in the middle of a sentence. In
[7], the bi-RNNLMs were trained in a more consistent fashion. Mul-
tiple sentences were aligned from left to right to form minibatches
during bi-RNNLM training. In order to handle issues caused by vari-
able sentence length, NULL tokens were appended to the ends of
sentences to ensure that the aligned sentences had the same length.
These NULL tokens were not used for parameter update. In this pa-
per, this approach is adopted to train bi-RNNLMs as it gave better
performance.

Fig. 3. An example su-RNNLM with 2 succeeding words.

3. RNNLMS WITH SUCCEEDING WORDS

As discussed above, bi-RNNLMs are slow to train and difficult to use
in lattice rescoring. In order to address these issues, a novel struc-
ture, the su-RNNLM, is proposed in this paper to incorporate future
context information. The model structure is illustrated in Figure 3.
In the same fashion as bi-RNNLMs, the previous history wt−1

1 is
modeled with recurrent units (e.g. LSTM, GRU). However, instead
of modeling the complete future context information, wLt+1, using
recurrent units, feedforward units are used to capture a finite num-
ber of succeeding words, wt+kt+1 . The softmax function is again ap-
plied at the output layer to obtain the probability of the current word
P (wt|wt−1

1 , wt+kt+1). The word embedding in the projection layer are
shared for all input words. When the succeeding words are beyond
the sentence boundary, a vector of 0 is used as the word embedding
vector. This is similar to the zero padding of the feedforward forward
NNLMs at the beginning of each sentence [13].

As the number of succeeding words is finite and fixed for each
word, its succeeding words can be organized as a n-gram future con-
text and used for minibatch mode training as in feedforward NNLMs
[13]. Su-RNNLMs can then be trained efficiently in a similar fashion
to uni-RNNLMs in a spliced sentence bunch mode [12].

Compared with equations 3 and 5, the probability of word se-
quence wL1 can be computed as

Ps(w
L
1) =

1

Zs

L∏
t=1

P (wt|wt−1
1 , wt+kt+1) (10)

Again, the sentence level normalization term Zs is difficult to com-
pute and only “pseudo” PPL can be obtained. The probabilities
of su-RNNLMs are also very sharp, which can be seen from the
“pseudo” PPLs in Table 2 in Section 6. Hence, the bi-RNNLM
probability smoothing given in Equation 9 is also required for su-
RNNLMs to achieve good performance at evaluation time.

4. LATTICE RESCORING

Lattice rescoring with feedforward NNLMs is straightforward [13]
whereas approximations are required for uni-RNNLMs lattice
rescoring [8, 18]. As mentioned in Section 2.2, N-best rescoring
has previously been used for bi-RNNLMs. It is not practical for

bi-RNNLMs to be used for lattice rescoring and generation as both
the complete previous and future context information are required.
However, lattices are very useful in many applications, such as con-
fidence score estimation [9], keyword search [10] and confusion
network decoding [11]. In contrast, su-RNNLMs require a fixed
number of succeeding words, instead of the complete future context
information. From Figure 3, su-RNNLMs can be viewed as a com-
bination of uni-RNNLMs for history information and feedforward
NNLMs for future context information. Hence, lattice rescoring is
feasible for su-RNNLMs by extending the lattice rescoring algo-
rithm of uni-RNNLMs by considering additional fixed length future
contexts.

4.1. Lattice rescoring of uni-RNNLMs

In this paper, the n-gram approximation [8] based approach is used
for uni-RNNLMs lattice rescoring. When considering merging of
two paths, if their previous n− 1 words are identical, the two paths
are viewed as “equivalent” and can be merged. This is illustrated in
Figure 5 for the start node of wordw4. The history information from
the best path is kept for the following RNNLM probability compu-
tation and the histories of all other paths are discarded. For example,
the path (w0, w2, w3) is kept and the other path (w1, w2, w3) is dis-
carded given arc w4.

There are two types of approximation involved for uni-RNNLM
lattice rescoring, which are the merge and cache approximations.
The merge approximation controls the merging of two paths. In [8],
the first path reaching the node was kept and all other paths with
the same n-gram history were discarded irrespective of the associ-
ated scores. This introduces inaccuracies in the RNNLM probability
calculation. The merge approximation can be improved by keeping
the path with the highest accumulated score. This is the approach
adopted in this work. For fast probability lookup in lattice rescor-
ing, n-gram probabilities can be cached using n − 1 words as a
key. A similar approach can be used with RNNLM probabilities. In
[8], RNNLM probabilities were cached based on the previous n− 1
words, which is referred as cache approximation. Thus a word prob-
ability obtained from the cache may be derived from another history
sharing the same n − 1 previous words. This introduces another
inaccuracy. In order to avoid this inaccuracy yet maintain the effi-
ciency, the cache approximation used in [8] is improved by adopting
the complete history as key for caching RNNLM probabilities. Both
modifications yielt small but consistent improvements over [8] on a
range of tasks.

4.2. Lattice rescoring of su-RNNLMs

For lattice rescoring with su-RNNLMs, the n-gram approximation
can be adopted and extended to support the future word context. In
order to handle succeeding words correctly, paths will be merged
only if the following succeeding words are identical. In this way, the
path expansion is carried out in both directions. Any two paths with
the same succeeding words and n− 1 previous words are merged.

Figure 4 shows part of an example lattice generated by a 2-gram
LM. In order to apply uni-RNNLM lattice rescoring using a 3-gram
approximation, the grey shaded node in Figure 4 needs to be du-
plicated as word w3 has two distinct 3-gram histories, which are
(w0, w2) and (w1, w2) respectively. Figure 5 shows the lattice after
rescoring using a uni-RNNLM with 3-gram approximation. In or-
der to apply su-RNNLMs for lattice rescoring, the succeeding words
also need to be taken into account. Figure 6 is the expanded lattice
using a su-RNNLM with 1 succeeding word. The grey shaded nodes

Fig. 4. Lattice generated by 2-gram LM.

Fig. 5. Lattice generated by uni-RNNLMs with 3-gram approxima-
tion.

in Figure 5 need to be expanded further as they have distinct suc-
ceeding words. The blue shaded nodes in Figure 6 are the expanded
node in the resulting lattice.

Using the n-gram history approximation and given k succeed-
ing words, the lattice expansion process is effectively a n+ k-gram
lattice expansion for uni-RNNLMs. For larger value of n and k, the
resulting lattices can be very large. This can be addressed by pruning
the lattice and doing initial lattice expansion with a uni-RNNLM.

5. LANGUAGE MODEL INTERPOLATION

For unidirectional language models, such as n-gram model and uni-
RNNLMs, the word probabilities are normally combined using lin-
ear interpolation,

Pu(wt|wt−1
1) = (11)

(1− λ1)Pn(wt|wt−1
1) + λ1Pr(wt|wt−1

1)

where Pn and Pr are the probabilities from n-gram and uni-RNN
LMs respectively, λ1 is the interpolation weight of uni-RNNLMs.

However, it is not valid to directly combine uni-LMs (e.g uni-
directional n-gram LMs or RNNLMs) and bi-LMs (or su-LMs) us-
ing linear interpolation due to the sentence level normalisation term
required for bi-LMs (or su-LMs) in Equation 5. As described in
[7], uni-LMs can be log-linearly interpolated with bi-LMs for speech
recognition using,

P (wt|wt−1
1 , wLt+1) = (12)

1

Z
Pu(wt|wt−1

1)(1−λ2)Pb(wt|wt−1
1 , wLt+1)λ2

Fig. 6. Lattice generated by su-RNNLMs with 3-gram approximation
for history context and 1 succeeding word.

where Z is the appropriate normalisation term. The normalisation
term can be discarded for speech recognition as it does not affect
the hypothesis ranking. Pu and Pb are the probabilities from uni-
LMs and bi-RNNLMs respectively. λ2 is the log-linear interpola-
tion weight of bi-RNNLMs. The issue of normalisation term in su-
RNLMs is similar to that of bi-RNNLMs, as shown in Equation 10.
Hence, log-linear interpolation can also be applied for the combina-
tion of su-RNNLMs and uni-LMs and is the approach used in this
paper.

By default, linear interpolation is used to combine uni-RNNLMs
and n-gram LMs. A two-stage interpolation is used when including
bi-RNNLMs and su-RNNLMs. The uni-RNNLMs and n-gram LMs
are first interpolated using linear interpolation. These linearly inter-
polated probabilities are then log-linearly interpolated with those of
bi-RNNLMs (or su-RNNLMs).

6. EXPERIMENTS

Experiments were conducted using the AMI IHM meeting cor-
pus [19] to evaluated the speech recognition performance of various
language models. The Kaldi training data configuration was used. A
total of 78 hours of speech was used in acoustic model training. This
consists of about 1M words of acoustic transcription. Eight meetings
were excluded from the training set and used as the development
and test sets.

The Kaldi acoustic model training recipe [20] featuring se-
quence training [21] was applied for deep neural network (DNN)
training. CMLLR transformed MFCC features [22] were used as
the input and 4000 clustered context dependent states were used as
targets. The DNN was trained with 6 hidden layers, and each layer
has 2048 hidden nodes.

The first part of the Fisher corpus, 13M words, was used for
additional language modeling training data. A 49k word decoding
vocabulary was used for all experiments. All LMs were trained
on the combined (AMI+Fisher), 14M word in total. A 4-gram KN
smoothed back-off LM without pruning was trained and used for
lattices generation. GRU based recurrent units were used for all uni-
directional and bidirectional RNNLMs 1. 512 hidden nodes were
used in the hidden layer. An extended version of CUED-RNNLM
[23] was developed for the training of uni-RNNLMs, bi-RNNLMs
and su-RNNLMs. The related code and recipe will be available on-
line 2. The linear interpolation weight λ1 between 4-gram LMs and
uni-RNNLMs was set to be 0.75 as it gave the best performance
on the development data. The log-linear interpolation weight λ2

for bi-RNNLMs (or su-RNNLMs) was 0.3. The probabilities of bi-
RNNLMs and su-RNNLMs were smoothed with a smoothing factor
0.7 as suggested in [7]. The 3-gram approximation was applied for
the history merging of uni-RNNLMs and su-RNNLMs during lattice
rescoring and generation [8].

Table 1 shows the word error rates of the baseline system with
4-gram and uni-RNN LMs. Lattice rescoring and 100-best rescoring
are applied to lattices generated by the 4-gram LM. As expected, uni-
RNNLMs yield a significant performance improvement over 4-gram
LMs. Lattice rescoring gives a comparable performance with 100-
best rescoring. Confusion network (CN) decoding can be applied
to lattices generated by uni-RNNLM lattice rescoring and additional
performance improvements can be achieved. However, it is difficult
to apply confusion network decoding to the 100-best 3.

Table 2 gives the training speed measured with word per sec-
ond (w/s) and (“pseudo”) PPLs of various RNNLMs with difference

1GRU and LSTM gave similar performance for this task, while GRU LMs

LM rescore dev eval
Vit CN Vit CN

ng4 - 23.8 23.5 24.2 23.9

+uni-rnn 100-best 21.7 - 22.1 -
lattice 21.7 21.5 21.9 21.7

Table 1. Baseline WER results on AMI corpus

amounts of future word context. When the number of succeeding
words is 0, this is the baseline uni-RNNLMs. When the number of
succeeding words is set to ∞, a bi-RNNLM with complete future
context information is used. It can be seen that su-RNNLMs give a
comparable training speed as uni-RNNLMs. The additional compu-
tational load of the su-RNNLMs mainly come from the feedforward
unit for succeeding words as shown in Figure 3. The computation
in this part is much less than that of other parts such as output layer
and GRU layers. However, the training of su-RNNLMs is much
faster than bi-RNNLMs as it is difficult to parallelise the training
of bi-RNNLMs efficiently [7]. It is worth mentioning again that
the PPLs of uni-RNNLMs can not be compared directly with the
“pseudo” PPLs of bi-RNNLMs and su-RNNLMs. But both PPLs
and “pseudo” PPLs reflect the average log probability of each word.
From Table 2, with increasing number of succeeding words, the
“pseudo” PPLs of the su-RNNLMs keeps decreasing, yielding com-
parable value as bi-RNNLMs.

#succ words 0 1 3 7 ∞
train speed(w/s) 4.5K 4.5K 3.9K 3.8K 0.8K
(pseudo) PPL 66.8 25.5 21.5 21.3 22.4

Table 2. Train speed and (Pseudo) Perplexity of uni-, bi-, and su-
RNNLMs. 0 succeeding word is for uni-RNNLMs and ∞ for bi-
RNNLMs.

Table 3 gives the WER results of 100-best rescoring with vari-
ous language models. For bi-RNNLMs (or su-RNNLMs), it is not
possible to use linear interpolation. Thus a two stage approach is
adopted as described in Section 5. This results in slight differences,
second decimal place, between the uni-RNNLM case and the 0 fu-
ture context su-RNNLM. The increasing number of the succeeding
words consistently reduces the WER. With 1 succeeding word, the
WERs were reduced by 0.2% absolutely. Su-RNNLMs with more
than 2 succeeding words gave about 0.5% absolute WER reduction.
Bi-RNNLMs (shown in the bottom line of Table 3) outperform su-
RNNLMs by 0.1% to 0.2%, as it is able to incorporate the complete
future context information with recurrent connection.

Table 4 shows the WERs of lattice rescoring using su-RNNLMs.
The lattice rescoring algorithm described in Section 4 was applied.
Su-RNNLMs with 1 and 3 succeeding words were used for lattice
rescoring. From Table 4, su-RNNLMs with 1 succeeding words
give 0.2% WER reduction and using 3 succeeding words gives about
0.5% WER reduction. These results are consistent with the 100-best
rescoring result in Table 3. Confusion network decoding can be ap-
plied on the rescored lattices and additional 0.3-0.4% WER perfor-
mance improvements are obtained on dev and eval test sets.

are faster for training and evaluation
2http://mi.eng.cam.ac.uk/projects/cued-rnnlm/
3N-best list can be converted to lattice and CN decoding then can be ap-

plied, but it requires a much larger N-best list, such as 10K used in [8].

LM #succ words dev eval
ng4 23.8 24.2

+uni-rnn - 21.7 22.1

+su-rnn

0 21.7 22.1
1 21.5 21.8
2 21.3 21.7
3 21.3 21.6
4 21.4 21.6
5 21.3 21.6
6 21.3 21.6
7 21.4 21.6
∞ 21.2 21.4

Table 3. WERs of uni-, bi, and su-RNNLMs with 100-best rescor-
ing. 0 succeeding word is for uni-RNNLMs and∞ for bi-RNNLMs.

LM #succ dev eval
words Vit CN Vit CN

ng4 - 23.8 23.5 24.2 23.9
+uni-rnn - 21.7 21.5 21.9 21.7

+su-rnn 1 21.6 21.3 21.6 21.5
3 21.3 21.0 21.4 21.1

Table 4. WERs of uni-RNNLMs and su-RNNLMs with lattice
rescoring

7. CONCLUSIONS

In this paper, the use of future context information on neural net-
work language models has been explored. A novel model structure
is proposed to address the issues associated with bi-RNNLMs, such
as slow train speed and difficulties in lattice rescoring. Instead of
using a recurrent unit to capture the complete future information,
a feedforward unit was used to model a finite number of succeed-
ing words. The existing training and lattice rescoring algorithms for
uni-RNNLMs are extended for the proposed su-RNNLMs. Experi-
mental results show that su-RNNLMs achieved a slightly worse per-
formances than bi-RNNLMs, but with much faster training speed.
Furthermore, additional performance improvements can be obtained
from lattice rescoring and subsequent confusion network decoding.
Future work will examine improved pruning scheme to address the
lattice expansion issues associated with larger future context.

8. REFERENCES

[1] Stanley Chen and Joshua Goodman, “An empirical study
of smoothing techniques for language modeling,” Computer
Speech & Language, vol. 13, no. 4, pp. 359–393, 1999.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of Machine Learning Research, vol. 3, pp. 1137–1155, 2003.

[3] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model.,” in Proc. ISCA INTERSPEECH, 2010.

[4] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide,
Mike Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig,
“Achieving human parity in conversational speech recogni-
tion,” arXiv preprint arXiv:1610.05256, 2016.

[5] Yangyang Shi, Martha Larson, Pascal Wiggers, and Catholijn
Jonker, “Exploiting the succeeding words in recurrent neural
network language models.,” in Proc. ICSA INTERSPEECH,
2013.

[6] Ebru Arisoy, Abhinav Sethy, Bhuvana Ramabhadran, and
Stanley Chen, “Bidirectional recurrent neural network lan-
guage models for automatic speech recognition,” in Proc.
ICASSP. IEEE, 2015, pp. 5421–5425.

[7] Xie Chen, Anton Ragni, Xunying Liu, and Mark Gales, “Inves-
tigating bidirectional recurrent neural network language mod-
els for speech recognition.,” in Proc. ICSA INTERSPEECH,
2017.

[8] Xunying Liu, Xie Chen, Yongqiang Wang, Mark Gales, and
Phil Woodland, “Two efficient lattice rescoring methods using
recurrent neural network language models,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 24,
no. 8, pp. 1438–1449, 2016.

[9] Frank Wessel, Ralf Schluter, Klaus Macherey, and Hermann
Ney, “Confidence measures for large vocabulary continuous
speech recognition,” Speech and Audio Processing, IEEE
Transactions on, vol. 9, no. 3, pp. 288–298, 2001.

[10] Xie Chen, Anton Ragni, Jake Vasilakes, Xunying Liu, Kate
Knill, and Mark Gales, “Recurrent neural network language
models for keyword search,” in Proc. ICASSP. IEEE, 2017,
pp. 5775–5779.

[11] Lidia Mangu, Eric Brill, and Andreas Stolcke, “Finding con-
sensus in speech recognition: word error minimization and
other applications of confusion networks,” Computer Speech
& Language, vol. 14, no. 4, pp. 373–400, 2000.

[12] Xie Chen, Xunying Liu, Yongqiang Wang, Mark Gales, and
Phil Woodland, “Efficient training and evaluation of recurrent
neural network language models for automatic speech recog-
nition,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 2016.

[13] Holger Schwenk, “Continuous space language models,” Com-
puter Speech & Language, vol. 21, no. 3, pp. 492–518, 2007.

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[15] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[16] Junho Park, Xunying Liu, Mark Gales, and Phil Woodland,
“Improved neural network based language modelling and
adaptation,” in Proc. ISCA INTERSPEECH, 2010.

[17] Frederick Jelinek, “The dawn of statistical asr and mt,” Com-
putational Linguistics, vol. 35, no. 4, pp. 483–494, 2009.

[18] Martin Sundermeyer, Hermann Ney, and Ralf Schluter, “From
feedforward to recurrent lstm neural networks for language
modeling,” Audio, Speech, and Language Processing,
IEEE/ACM Transactions on, vol. 23, no. 3, pp. 517–529, 2015.

[19] Jean Carletta et al., “The AMI meeting corpus: A pre-
announcement,” in Machine learning for multimodal interac-
tion, pp. 28–39. Springer, 2006.

[20] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The Kaldi
speech recognition toolkit,” in ASRU, IEEE Workshop on,
2011.

[21] Karel Veselỳ, Arnab Ghoshal, Lukás Burget, and Daniel Povey,
“Sequence-discriminative training of deep neural networks.,”
in Proc. ICSA INTERSPEECH, 2013.

[22] Mark Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” Computer Speech & Lan-
guage, vol. 12, no. 2, pp. 75–98, 1998.

[23] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland,
“CUED-RNNLM an open-source toolkit for efficient training
and evaluation of recurrent neural network language models,”
in Proc. ICASSP. IEEE, 2015.

	1 Introduction
	2 Uni- and Bi-directional RNNLMs
	2.1 Unidirectional RNNLMs
	2.2 Bidirectional RNNLMs

	3 RNNLMs with succeeding words
	4 Lattice rescoring
	4.1 Lattice rescoring of uni-RNNLMs
	4.2 Lattice rescoring of su-RNNLMs

	5 Language Model Interpolation
	6 Experiments
	7 Conclusions
	8 References

