100,130 research outputs found

    Line-of-Sight Obstruction Analysis for Vehicle-to-Vehicle Network Simulations in a Two-Lane Highway Scenario

    Get PDF
    In vehicular ad-hoc networks (VANETs) the impact of vehicles as obstacles has largely been neglected in the past. Recent studies have reported that the vehicles that obstruct the line-of-sight (LOS) path may introduce 10-20 dB additional loss, and as a result reduce the communication range. Most of the traffic mobility models (TMMs) today do not treat other vehicles as obstacles and thus can not model the impact of LOS obstruction in VANET simulations. In this paper the LOS obstruction caused by other vehicles is studied in a highway scenario. First a car-following model is used to characterize the motion of the vehicles driving in the same direction on a two-lane highway. Vehicles are allowed to change lanes when necessary. The position of each vehicle is updated by using the car-following rules together with the lane-changing rules for the forward motion. Based on the simulated traffic a simple TMM is proposed for VANET simulations, which is capable to identify the vehicles that are in the shadow region of other vehicles. The presented traffic mobility model together with the shadow fading path loss model can take in to account the impact of LOS obstruction on the total received power in the multiple-lane highway scenarios.Comment: 8 pages, 11 figures, Accepted for publication in the International Journal of Antennas and Propagation, Special Issue on Radio Wave Propagation and Wireless Channel Modeling 201

    Testing Enabling Technologies for Safe UAS Urban Operations

    Get PDF
    A set of more than 100 flight operations were conducted at NASA Langley Research Center using small UAS (sUAS) to demonstrate, test, and evaluate a set of technologies and an overarching air-ground system concept aimed at enabling safety. The research vehicle was tracked continuously during nominal traversal of planned flight paths while autonomously operating over moderately populated land. For selected flights, off-nominal risks were introduced, including vehicle-to-vehicle (V2V) encounters. Three contingency maneuvers were demonstrated that provide safe responses. These maneuvers made use of an integrated air/ground platform and two on-board autonomous capabilities. Flight data was monitored and recorded with multiple ground systems and was forwarded in real time to a UAS traffic management (UTM) server for airspace coordination and supervision

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    An Assessment on the Use of Stationary Vehicles as a Support to Cooperative Positioning

    Get PDF
    In this paper, we consider the use of stationary vehicles as tools to enhance the localisation capabilities of moving vehicles in a VANET. We examine the idea in terms of its potential benefits, technical requirements, algorithmic design and experimental evaluation. Simulation results are given to illustrate the efficacy of the technique.Comment: This version of the paper is an updated version of the initial submission, where some initial comments of reviewers have been taken into accoun

    Quantifying Operational Constraints of Low-Latency Telerobotics for Planetary Surface Operations

    Full text link
    NASA's SLS and Orion crew vehicle will launch humans to cislunar space to begin the new era of space exploration. NASA plans to use the Orion crew vehicle to transport humans between Earth and cislunar space where there will be a stationed habitat known as the Deep Space Gateway (DSG). The proximity to the lunar surface allows for direct communication between the DSG and surface assets, which enables low-latency telerobotic exploration. The operational constraints for telerobotics must be fully explored on Earth before being utilized on space exploration missions. We identified two constraints on space exploration using low-latency surface telerobotics and attempts to quantify these constraints. A constraint associated with low-latency surface telerobotics is the bandwidth available between the orbiting command station and the ground assets. The bandwidth available will vary during operation. As a result, it is critical to quantify the operational video conditions required for effective exploration. We designed an experiment to quantify the threshold frame rate required for effective exploration. The experiment simulated geological exploration via low-latency surface telerobotics using a COTS rover in a lunar analog environment. The results from this experiment indicate that humans should operate above a threshold frame rate of 5 frames per second. In a separate, but similar experiment, we introduced a 2.6 second delay in the video system. This delay recreated the latency conditions present when operating rovers on the lunar farside from an Earth-based command station. This time delay was compared to low-latency conditions for teleoperation at the DSG (≤\leq0.4 seconds). The results from this experiment show a 150% increase in exploration time when the latency is increased to 2.6 seconds. This indicates that such a delay significantly complicates real-time exploration strategies.Comment: 10 pages, 8 figures, Proceedings of the IEEE Aerospace Conference, Big Sky, MT. arXiv admin note: text overlap with arXiv:1706.0375

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail
    • …
    corecore