547 research outputs found

    Beyond representing orthology relations by trees

    Get PDF
    Reconstructing the evolutionary past of a family of genes is an important aspect of many genomic studies. To help with this, simple relations on a set of sequences called orthology relations may be employed. In addition to being interesting from a practical point of view they are also attractive from a theoretical perspective in that e.\,g.\,a characterization is known for when such a relation is representable by a certain type of phylogenetic tree. For an orthology relation inferred from real biological data it is however generally too much to hope for that it satisfies that characterization. Rather than trying to correct the data in some way or another which has its own drawbacks, as an alternative, we propose to represent an orthology relation ÎŽ\delta in terms of a structure more general than a phylogenetic tree called a phylogenetic network. To compute such a network in the form of a level-1 representation for ÎŽ\delta, we formalize an orthology relation in terms of the novel concept of a symbolic 3- dissimilarity which is motivated by the biological concept of a ``cluster of orthologous groups'', or COG for short. For such maps which assign symbols rather that real values to elements, we introduce the novel {\sc Network-Popping} algorithm which has several attractive properties. In addition, we characterize an orthology relation ÎŽ\delta on some set XX that has a level-1 representation in terms of eight natural properties for ÎŽ\delta as well as in terms of level-1 representations of orthology relations on certain subsets of XX

    GreenPhylDB: a database for plant comparative genomics

    Get PDF
    GreenPhylDB (http://greenphyl.cirad.fr) is a comprehensive platform designed to facilitate comparative functional genomics in Oryza sativa and Arabidopsis thaliana genomes. The main functions of GreenPhylDB are to assign O. sativa and A. thaliana sequences to gene families using a semi-automatic clustering procedure and to create ‘orthologous’ groups using a phylogenomic approach. To date, GreenPhylDB comprises the most complete list of plant gene families, which have been manually curated (6421 families). GreenPhylDB also contains all of the phylogenomic relationships computed for 4375 families. A total of 492 TAIR, 1903 InterPro and 981 KEGG families and subfamilies were manually curated using the clusters created with the TribeMCL software. GreenPhylDB integrates information from several other databases including UniProt, KEGG, InterPro, TAIR and TIGR. Several entry points can be used to display phylogenomic relationships for A. thaliana or O. sativa sequences, using TAIR, TIGR gene ID, family name, InterPro, gene alias, UniProt or protein/nucleic sequence. Finally, a powerful phylogenomics tool, GreenPhyl Ortholog Search Tool (GOST), was incorporated into GreenPhylDB to predict orthologous relationships between O. sativa/A. thaliana protein(s) and sequences from other plant species

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Identifying orthologs with OMA: A primer [version 1; peer review: 2 approved]

    Get PDF
    The Orthologous Matrix (OMA) is a method and database that allows users to identify orthologs among many genomes. OMA provides three different types of orthologs: pairwise orthologs, OMA Groups and Hierarchical Orthologous Groups (HOGs). This Primer is organized in two parts. In the first part, we provide all the necessary background information to understand the concepts of orthology, how we infer them and the different subtypes of orthology in OMA, as well as what types of analyses they should be used for. In the second part, we describe protocols for using the OMA browser to find a specific gene and its various types of orthologs. By the end of the Primer, readers should be able to (i) understand homology and the different types of orthologs reported in OMA, (ii) understand the best type of orthologs to use for a particular analysis; (iii) find particular genes of interest in the OMA browser; and (iv) identify orthologs for a given gene.  The data can be freely accessed from the OMA browser at https://omabrowser.org
    • 

    corecore