7,824 research outputs found

    Data locality in Hadoop

    Get PDF
    Current market tendencies show the need of storing and processing rapidly growing amounts of data. Therefore, it implies the demand for distributed storage and data processing systems. The Apache Hadoop is an open-source framework for managing such computing clusters in an effective, fault-tolerant way. Dealing with large volumes of data, Hadoop, and its storage system HDFS (Hadoop Distributed File System), face challenges to keep the high efficiency with computing in a reasonable time. The typical Hadoop implementation transfers computation to the data, rather than shipping data across the cluster. Otherwise, moving the big quantities of data through the network could significantly delay data processing tasks. However, while a task is already running, Hadoop favours local data access and chooses blocks from the nearest nodes. Next, the necessary blocks are moved just when they are needed in the given ask. For supporting the Hadoop’s data locality preferences, in this thesis, we propose adding an innovative functionality to its distributed file system (HDFS), that enables moving data blocks on request. In-advance shipping of data makes it possible to forcedly redistribute data between nodes in order to easily adapt it to the given processing tasks. New functionality enables the instructed movement of data blocks within the cluster. Data can be shifted either by user running the proper HDFS shell command or programmatically by other module like an appropriate scheduler. In order to develop such functionality, the detailed analysis of Apache Hadoop source code and its components (specifically HDFS) was conducted. Research resulted in a deep understanding of internal architecture, what made it possible to compare the possible approaches to achieve the desired solution, and develop the chosen one

    Only Aggressive Elephants are Fast Elephants

    Full text link
    Yellow elephants are slow. A major reason is that they consume their inputs entirely before responding to an elephant rider's orders. Some clever riders have trained their yellow elephants to only consume parts of the inputs before responding. However, the teaching time to make an elephant do that is high. So high that the teaching lessons often do not pay off. We take a different approach. We make elephants aggressive; only this will make them very fast. We propose HAIL (Hadoop Aggressive Indexing Library), an enhancement of HDFS and Hadoop MapReduce that dramatically improves runtimes of several classes of MapReduce jobs. HAIL changes the upload pipeline of HDFS in order to create different clustered indexes on each data block replica. An interesting feature of HAIL is that we typically create a win-win situation: we improve both data upload to HDFS and the runtime of the actual Hadoop MapReduce job. In terms of data upload, HAIL improves over HDFS by up to 60% with the default replication factor of three. In terms of query execution, we demonstrate that HAIL runs up to 68x faster than Hadoop. In our experiments, we use six clusters including physical and EC2 clusters of up to 100 nodes. A series of scalability experiments also demonstrates the superiority of HAIL.Comment: VLDB201

    Scaling beyond one rack and sizing of Hadoop platform

    Get PDF
    This paper focuses on two aspects of configuration choices of the Hadoop platform. Firstly we are looking to establish performance implications of expanding an existing Hadoop cluster beyond a single rack. In the second part of the testing we are focusing on performance differences when deploying clusters of different sizes. The study also examines constraints of the disk latency found on the test cluster during our experiments and discusses their impact on the overall perfor- mance. All testing approaches described in this work offer an insight into understanding of Hadoop environment for the companies looking to either expand their existing Big Data analytics platform or implement it for the first time

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201

    MPJ Express meets YARN:towards Java HPC on Hadoop systems

    Get PDF
    AbstractMany organizations—including academic, research, commercial institutions—have invested heavily in setting up High Performance Computing (HPC) facilities for running computational science applications. On the other hand, the Apache Hadoop software—after emerging in 2005— has become a popular, reliable, and scalable open-source framework for processing large-scale data (Big Data). Realizing the importance and significance of Big Data, an increasing number of organizations are investing in relatively cheaper Hadoop clusters for executing their mission critical data processing applications. An issue here is that system administrators at these sites might have to maintain two parallel facilities for running HPC and Hadoop computations. This, of course, is not ideal due to redundant maintenance work and poor economics. This paper attempts to bridge this gap by allowing HPC and Hadoop jobs to co-exist on a single hardware facility. We achieve this goal by exploiting YARN—Hadoop v2.0—that de-couples the computational and resource scheduling part of the Hadoop framework from HDFS. In this context, we have developed a YARN-based reference runtime system for the MPJ Express software that allows executing parallel MPI-like Java applications on Hadoop clusters. The main contribution of this paper is provide Big Data community access to MPI-like programming using MPJ Express. As an aside, this work allows parallel Java applications to perform computations on data stored in Hadoop Distributed File System (HDFS)

    Lustre, Hadoop, Accumulo

    Full text link
    Data processing systems impose multiple views on data as it is processed by the system. These views include spreadsheets, databases, matrices, and graphs. There are a wide variety of technologies that can be used to store and process data through these different steps. The Lustre parallel file system, the Hadoop distributed file system, and the Accumulo database are all designed to address the largest and the most challenging data storage problems. There have been many ad-hoc comparisons of these technologies. This paper describes the foundational principles of each technology, provides simple models for assessing their capabilities, and compares the various technologies on a hypothetical common cluster. These comparisons indicate that Lustre provides 2x more storage capacity, is less likely to loose data during 3 simultaneous drive failures, and provides higher bandwidth on general purpose workloads. Hadoop can provide 4x greater read bandwidth on special purpose workloads. Accumulo provides 10,000x lower latency on random lookups than either Lustre or Hadoop but Accumulo's bulk bandwidth is 10x less. Significant recent work has been done to enable mix-and-match solutions that allow Lustre, Hadoop, and Accumulo to be combined in different ways.Comment: 6 pages; accepted to IEEE High Performance Extreme Computing conference, Waltham, MA, 201
    corecore