
doi: 10.1016/j.procs.2015.05.379 

MPJ Express Meets YARN: Towards Java HPC on Hadoop

Systems

Hamza Zafar1, Farrukh Aftab Khan1, Bryan Carpenter2, Aamir Shafi1 and Asad
Waqar Malik1

1 SEECS, National University of Sciences and Technology (NUST), Pakistan
{11bscshzafar, farrukh.khan, aamir.shafi, asad.malik}@seecs.nust.edu.pk

2 School of Computing, University of Portsmouth, UK,
bryan.carpenter@port.ac.uk

Abstract
Many organizations—including academic, research, commercial institutions—have invested

heavily in setting up High Performance Computing (HPC) facilities for running computational
science applications. On the other hand, the Apache Hadoop software—after emerging in 2005—
has become a popular, reliable, and scalable open-source framework for processing large-scale
data (Big Data). Realizing the importance and significance of Big Data, an increasing number
of organizations are investing in relatively cheaper Hadoop clusters for executing their mission
critical data processing applications. An issue here is that system administrators at these sites
might have to maintain two parallel facilities for running HPC and Hadoop computations.
This, of course, is not ideal due to redundant maintenance work and poor economics. This
paper attempts to bridge this gap by allowing HPC and Hadoop jobs to co-exist on a single
hardware facility. We achieve this goal by exploiting YARN—Hadoop v2.0—that de-couples
the computational and resource scheduling part of the Hadoop framework from HDFS. In
this context, we have developed a YARN-based reference runtime system for the MPJ Express
software that allows executing parallel MPI-like Java applications on Hadoop clusters. The main
contribution of this paper is provide Big Data community access to MPI-like programming using
MPJ Express. As an aside, this work allows parallel Java applications to perform computations
on data stored in Hadoop Distributed File System (HDFS).

Keywords: Java MPI, MPJ Express, Apache Hadoop, YARN

1 Introduction

Since its emergence in 2005 the Apache Hadoop software [3] has become a popular, reliable,
and scalable open-source distributed computing framework for processing very large datasets—
so-called Big Data. A cornerstone of its success has been the easy-to-use MapReduce API
[8]. Realizing the importance and significance of Big Data, many commercial and academic

Procedia Computer Science

Volume 51, 2015, Pages 2678–2682

ICCS 2015 International Conference On Computational Science

2678 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29589346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.379&domain=pdf


organizations have deployed compute clusters for running MapReduce jobs using the Hadoop
framework. The “native” language for programming Hadoop is Java. This is far removed
from the traditional High Performance Computing (HPC) paradigm, which employs massively
parallel hardware including compute clusters equipped with low-latency and high-bandwidth
interconnect. For programming such systems, the Message Passing Interface (MPI) standard
[5] is the predominant API, usually available in C or Fortran. Driven by different goals or
economics, a given organization may invest in either an HPC or a Hadoop cluster. If both
paradigms are required—for example if some phase in the processing of a large Hadoop-resident
data set is best expressed in terms of MPI programming—it may be necessary to maintain
separate parallel facilities for running HPC and Hadoop computations. This, of course, is not
ideal because this means higher capital and operational expenditure.

To avoid this extra cost, two possibilities suggest themselves. One is to allow Hadoop pro-
grams to be run on HPC clusters. Historically this was supported by the Hadoop On Demand
(HOD) system, which allowed Hadoop MapReduce jobs to be scheduled by the traditional HPC
resource manager Torque. Reference [7] contains a good account of the pros and cons of this ap-
proach. More recently the MR+ [1] system has allowed jobs using the Hadoop MapReduce API
to be run under Open MPI. The second possibility—probably more attractive to organizations
already heavily invested in the Hadoop model—is to allow running of “HPC” style applications
on Hadoop clusters. Until relatively recently Hadoop was dedicated to MapReduce processing
specifically, and this was hard to contemplate. But in 2012 Hadoop v2.0 was released and the
landscape changed dramatically. The introduction of the YARN resource manager into the
Hadoop stack has opened up the Hadoop environment a great deal, so that now MapReduce is
just one framework that can execute under a YARN-managed cluster. Various other Apache
Big Data projects (for example) have now targeted their platforms so that they can operate as
computational frameworks under YARN, and thus execute harmoniously with MapReduce jobs
in the same Hadoop cluster [4, 9, 2]. And of course this also opens the possibility of running
“HPC” (or, more specifically, MPI-like) jobs under Hadoop.

The scope of this paper is limited to the second option, as we attempt to support execution
of MPI-like Java programs on Hadoop clusters by providing a software solution encapsulated in
a single library. The choice of Java looks unusual from a traditional HPC perspective, but this
language is pervasive in the “Big Data” community. (We note that the importance of providing
Java interfaces to MPI has also recently been recognized by the Open MPI developers [10].)

MPJ Express is an MPI-like—implements the mpiJava 1.2 API—messaging library with an
active user community. In this paper, we discuss and present a new version of MPJ Express
that integrates with YARN to allow executing parallel Java applications on a Hadoop cluster.
This work mainly targets the Hadoop community that benefits from the introduction of new
programming model/API to the Apache Hadoop stack. Our focus is towards producing and
releasing an implementation that can be used by Hadoop community for conducting further
research on this topic and improving scalability of Hadoop runtime system.

2 YARN Overview

This section provides an architectural overview of YARN—the resource scheduling layer in the
Hadoop v2.0 software. As depicted in Figure 1, YARN consists of three main components: 1) a
per cluster central ResourceManager (RM), a per node NodeManager (NM), and a per job Ap-
plicationMaster (AM). A typical Hadoop cluster comprises of an instance of ResourceManager
(RM)—running on a dedicated machine—along with a set of NodeManagers (NMs) executing
on every compute node of the cluster.

MPJ Express Meets YARN Zafar, Khan, Carpenter, Shafi, and Malik

2679



Figure 1: YARN Architecture

In a YARN-based Hadoop cluster, the RM module takes the central role in managing hard-
ware resources and their allocation to user jobs. As the cluster boots, the NM module reports
the capability—including number of processing cores and available memory—of its compute
node to RM. Each NM continues to periodically communicate with RM to inform about the
node status and current capability. This periodic communication is known as heartbeat be-
tween NM-RM and is shown as dotted lines in Figure 1. Note that all communication between
NM-RM is achieved by appending data to these heartbeat messages.

In order to execute a job, the end-user needs to develop a client application that is responsible
for initiating a request to execute respective computational tasks on the cluster. Once the RM
receives this request, it consults the built-in scheduler module and allocates a container on a
cluster node within which the AM process for this particular client is executed. A container is
the unit of resource allocation in the YARN framework, and is defined as “the logical bundle
of resources including processing cores and memory”. After this, the AM container negotiates
allocation of required worker containers with the RM. In Figure 1, the AM process requests
two additional containers that are allocated on Node 2 of the cluster.

3 Implementation/Evaluation of YARN-based Runtime

An important component of an MPI-like messaging system is the mechanism used to bootstrap
processes across various platforms. The MPJ Express runtime provides a unified way of starting
Java processes on a cluster or a network of computers. Figure 2(a) shows bootstrapping of an
MPJ Express program on a cluster of one head node and two compute nodes. The runtime
system consists of two modules: the daemonmodule that runs on compute nodes and the mpjrun
module that runs on the head node.

We now shift our attention towards the YARN-based implementation of the MPJ Express
runtime system. Unlike an HPC cluster, a Hadoop cluster is not equipped with shared file
system. Instead it relies on a distributed filesystem called Hadoop Distributed File System
(HDFS). For running code for Hadoop clusters, it is mandatory to upload application programs
and related MPJ Express libraries on HDFS so that parallel processes running on compute
nodes can access relevant code.

Figure 2(b) illustrates the implementation of the YARN-based runtime for the MPJ Express
software on a Hadoop cluster with one head and two compute nodes. Note that the Resource-
Manager (RM) process executes on the head node, while NodeManager (NM) processes execute
on compute nodes.

MPJ Express Meets YARN Zafar, Khan, Carpenter, Shafi, and Malik

2680



(a) Existing (b) YARN-based

Figure 2: The MPJ Express Runtime System

The parallel program execution is initiated at the head node of the cluster, where application
developers invoke the mpjrun module. A typical command for this purpose is as follows:

mpjrun -np 4 -yarn hello.jar

Here, -np 4 option specifies number of parallel process, -yarn specifies that the program is
executed using the YARN-based runtime, and hello.jar is the user’s application code.At this
stage, the user code hello.jar exists on the local disk of the head node. Once executed, the
mpjrun module in turn starts (arrow labeled 1) the MPJYarnClient module.

The MPJYarnClient module is responsible for submitting the user’s application program
to YARN. It does so by contacting the RM process, which responds by allocating a container
for executing custom ApplicationMaster (AM)—MPJAppMaster in our case that runs on com-
pute node 0 as shown in Figure 2(b) (arrow labeled 2). As reviewed in Section 2, any type of
computation meant to run on a YARN-based Hadoop cluster requires an AM process. Note
that YARN containers are typically described using a Container Launch Context (CLC). The
MPJYarnClient module creates a CLC for the MPJAppMaster process, which includes an exe-
cutable in the form of a Java ARchive (JAR) file and necessary commands to bootstrap the
process within a container on a compute node. Note that the MPJAppMaster JAR file—named
mpj-app-master.jar—is uploaded to HDFS by MPJYarnClient. The MPJYarnClient mod-
ule also forwards total number of requested processes (-np 4) and the user’s application code
(hello.jar) CLI options to MPJAppMaster.

After booting up, MPJAppMaster communicates with the RM process to register itself. In
response, the RM shares current maximum capabilities—in terms of nodes, processing cores,
and available memory—of the YARN cluster. This information is used for making dynamic
scheduling decisions, which is a unique feature of YARN. Note that MPJAppMaster is already
aware of user’s requirement for total number of parallel processes and now needs to map this to
available resources. It also decides number of processing cores and amount of memory reserved
for each container that hosts a single MPI process. Based on the number of required MPI
processes, MPJAppMaster requests that many containers from the RM. The request includes
number of cores and memory required for each container.

Once all the containers are allocated, MPJAppMaster creates a CLC for each container re-
sponsible for running user’s program in parallel (arrows labeled 3). In this case CLC contains
two JAR files—namely mpj-yarn-wrapper.jar and hello.jar—and commands to start the

MPJ Express Meets YARN Zafar, Khan, Carpenter, Shafi, and Malik

2681



Figure 3: Performance Comparison of YARN-based Runtime (for MPJ) and HAMSTER

MPJYarnWrapper module. The mpj-yarn-wrapper.jar JAR file contains binary code for the
MPJYarnWrapper module, while the hello.jar contains binary code for the user’s application
code. Note that these JAR files were previously uploaded to HDFS by MPJYarnClient. The
MPJYarnWrapper process in turn launches the user code in a separate JVM using the Java’s
Reflection API. The main role of the MPJYarnWrapper is to send standard output and error
streams of the user’s application back to the mpjrun module (arrows labeled 4).

Figure 3 shows the bootstrapping time, in seconds, for MPJ Express YARN-based run-
time and ”Hadoop And MPI on the same cluSTER” (HAMSTER) project, which allows users
to run MPI programs—executed using Open MPI—on Apache Hadoop platform. Currently
HAMSTER is available as part of the Pivotal Hadoop Distribution (PHD) [6]. We define boot-
strapping time as the ”time for launching N parallel MPJ processes”—our implementation is
marginally faster than HAMSTER.

References

[1] MR+: A Technical Overview. http://www.open-mpi.org/video/mrplus/Greenplum RalphCastain-
1up.pdf, 2012. [accessed 1-December-2014].

[2] Apache Giraph. http://giraph.apache.org/, 2014. [accessed 14-November-2014].

[3] Apache Hadoop. http://hadoop.apache.org, 2014. [accessed 14-November-2014].

[4] Apache Spark. https://spark.apache.org/, 2014. [accessed 14-November-2014].

[5] Message Passing Interface specifications. http://www.mpi-forum.org/docs/docs.html, 2014.

[6] Pivotal HD: Overview of Apache Stack and Pivotal HD Enterprise Distribution Components.
http://pivotalhd.docs.pivotal.io/doc/2010/OverviewofApacheStackandPivotalComponents.html,
2014. [accessed 1-December-2014].

[7] Doug Eadline Joseph Niemiec Arun C. Murthy, Vinod Kumar Vavilapalli and Jeff Markham.
Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2.
Addison Wesley, March 2014.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

[9] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev., 41(3):59–72,
March 2007.

[10] Jeffrey M. Squyres Oscar Vega-Gisbert, Jose E. Roman. Design and Implementation of Java
bindings in Open MPI. Technical Report Pre-print submitted to Parallel Computing, July 2014.

MPJ Express Meets YARN Zafar, Khan, Carpenter, Shafi, and Malik

2682


