40,084 research outputs found

    Better Appearance Models for Pictorial Structures

    Get PDF
    We present a novel approach for estimating body part appearance models for pictorial structures. We learn latent relationships between the appearance of different body parts from annotated images, which then help in estimating better appearance models on novel images. The learned appearance models are general, in that they can be plugged into any pictorial structure engine. In a comprehensive evaluation we demonstrate the benefits brought by the new appearance models to an existing articulated human pose estimation algorithm, on hundreds of highly challenging images from the TV series Buffy the vampire slayer and the PASCAL VOC 2008 challenge

    Articulated Clinician Detection Using 3D Pictorial Structures on RGB-D Data

    Full text link
    Reliable human pose estimation (HPE) is essential to many clinical applications, such as surgical workflow analysis, radiation safety monitoring and human-robot cooperation. Proposed methods for the operating room (OR) rely either on foreground estimation using a multi-camera system, which is a challenge in real ORs due to color similarities and frequent illumination changes, or on wearable sensors or markers, which are invasive and therefore difficult to introduce in the room. Instead, we propose a novel approach based on Pictorial Structures (PS) and on RGB-D data, which can be easily deployed in real ORs. We extend the PS framework in two ways. First, we build robust and discriminative part detectors using both color and depth images. We also present a novel descriptor for depth images, called histogram of depth differences (HDD). Second, we extend PS to 3D by proposing 3D pairwise constraints and a new method that makes exact inference tractable. Our approach is evaluated for pose estimation and clinician detection on a challenging RGB-D dataset recorded in a busy operating room during live surgeries. We conduct series of experiments to study the different part detectors in conjunction with the various 2D or 3D pairwise constraints. Our comparisons demonstrate that 3D PS with RGB-D part detectors significantly improves the results in a visually challenging operating environment.Comment: The supplementary video is available at https://youtu.be/iabbGSqRSg

    Discovering useful parts for pose estimation in sparsely annotated datasets

    Full text link
    Our work introduces a novel way to increase pose estimation accuracy by discovering parts from unannotated regions of training images. Discovered parts are used to generate more accurate appearance likelihoods for traditional part-based models like Pictorial Structures and its derivatives. Our experiments on images of a hawkmoth in flight show that our proposed approach significantly improves over existing work for this application, while also being more generally applicable. Our proposed approach localizes landmarks at least twice as accurately as a baseline based on a Mixture of Pictorial Structures (MPS) model. Our unique High-Resolution Moth Flight (HRMF) dataset is made publicly available with annotations.https://arxiv.org/abs/1605.00707Accepted manuscrip

    Combining Local Appearance and Holistic View: Dual-Source Deep Neural Networks for Human Pose Estimation

    Full text link
    We propose a new learning-based method for estimating 2D human pose from a single image, using Dual-Source Deep Convolutional Neural Networks (DS-CNN). Recently, many methods have been developed to estimate human pose by using pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective. In this paper, we propose to integrate both the local (body) part appearance and the holistic view of each local part for more accurate human pose estimation. Specifically, the proposed DS-CNN takes a set of image patches (category-independent object proposals for training and multi-scale sliding windows for testing) as the input and then learns the appearance of each local part by considering their holistic views in the full body. Using DS-CNN, we achieve both joint detection, which determines whether an image patch contains a body joint, and joint localization, which finds the exact location of the joint in the image patch. Finally, we develop an algorithm to combine these joint detection/localization results from all the image patches for estimating the human pose. The experimental results show the effectiveness of the proposed method by comparing to the state-of-the-art human-pose estimation methods based on pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective.Comment: CVPR 201

    Harvesting Multiple Views for Marker-less 3D Human Pose Annotations

    Full text link
    Recent advances with Convolutional Networks (ConvNets) have shifted the bottleneck for many computer vision tasks to annotated data collection. In this paper, we present a geometry-driven approach to automatically collect annotations for human pose prediction tasks. Starting from a generic ConvNet for 2D human pose, and assuming a multi-view setup, we describe an automatic way to collect accurate 3D human pose annotations. We capitalize on constraints offered by the 3D geometry of the camera setup and the 3D structure of the human body to probabilistically combine per view 2D ConvNet predictions into a globally optimal 3D pose. This 3D pose is used as the basis for harvesting annotations. The benefit of the annotations produced automatically with our approach is demonstrated in two challenging settings: (i) fine-tuning a generic ConvNet-based 2D pose predictor to capture the discriminative aspects of a subject's appearance (i.e.,"personalization"), and (ii) training a ConvNet from scratch for single view 3D human pose prediction without leveraging 3D pose groundtruth. The proposed multi-view pose estimator achieves state-of-the-art results on standard benchmarks, demonstrating the effectiveness of our method in exploiting the available multi-view information.Comment: CVPR 2017 Camera Read

    Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations

    Full text link
    We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adaptive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and also to predict the spatial relationships between them (Image Dependent Pairwise Relations). These spatial relationships are represented by a mixture model. We use Deep Convolutional Neural Networks (DCNNs) to learn conditional probabilities for the presence of parts and their spatial relationships within image patches. Hence our model combines the representational flexibility of graphical models with the efficiency and statistical power of DCNNs. Our method significantly outperforms the state of the art methods on the LSP and FLIC datasets and also performs very well on the Buffy dataset without any training.Comment: NIPS 2014 Camera Read

    DeepPose: Human Pose Estimation via Deep Neural Networks

    Full text link
    We propose a method for human pose estimation based on Deep Neural Networks (DNNs). The pose estimation is formulated as a DNN-based regression problem towards body joints. We present a cascade of such DNN regressors which results in high precision pose estimates. The approach has the advantage of reasoning about pose in a holistic fashion and has a simple but yet powerful formulation which capitalizes on recent advances in Deep Learning. We present a detailed empirical analysis with state-of-art or better performance on four academic benchmarks of diverse real-world images.Comment: IEEE Conference on Computer Vision and Pattern Recognition, 201
    • …
    corecore