66 research outputs found

    A systematic review of the biological processes involved in deep-brain stimulation for parkinson’s disease: A focus on the potential disease-modifying effects

    Get PDF
    Deep-Brain Stimulation (DBS) is an important treatment option for the management of Parkinson’s disease (PD) and is a common symptomatic treatment. However, an increasing number of studies have examined the biological processes to assess if DBS can also modify the natural history of PD by acting on its pathophysiological mechanisms. Relevant literature published up to November 2020 was systematically searched on databases such as PubMed, ISI Web of Knowledge, Academic Search Index, and Science Citation Index. The following predefined inclusion criteria were applied to the full-text versions of the selected articles: I) recruiting and monitoring of PD subjects that were previously treated with DBS and ii) investigating the electrophysiological, biochemical, epigenetic, or neuroimaging effects of DBS. Studies focusing exclusively on motor and clinical changes were excluded. Reviews, case reports, studies on animal models, and computational studies were also not considered. Out of 2,960 records screened, 43 studies met the inclusion criteria. Only three studies described a potential disease-modifying effect of DBS. However, a wide heterogeneity was observed in the investigated biomarkers, and the design and methodological issues of several studies limited their ability to find potential disease-modifying features. Specifically, 60.4% of the trials followed-up subjects for no more than 1 year from the surgical intervention, and 67.4% observed patients with PD only once after DBS. Moreover, 64.2% of the studies enrolled late-stage PD patients. Most of the studies (88.4%) reported that DBS only had a symptomatic effect, with several of them showing some limitations in the study design and recruitment of patients. Further studies using shared biomarkers are encouraged to assess if and how DBS might affect the progression of PD. Based on the existing preclinical literature, prospective clinical trials examining the course of PD in early-stage patients are needed

    Cortical beta burst dynamics are altered in Parkinson's disease but normalized by deep brain stimulation

    Get PDF
    Exaggerated subthalamic beta oscillatory activity and increased beta range cortico-subthalamic synchrony have crystallized as the electrophysiological hallmarks of Parkinson's disease. Beta oscillatory activity is not tonic but occurs in 'bursts' of transient amplitude increases. In Parkinson's disease, the characteristics of these bursts are altered especially in the basal ganglia. However, beta oscillatory dynamics at the cortical level and how they compare with healthy brain activity is less well studied. We used magnetoencephalography (MEG) to study sensorimotor cortical beta bursting and its modulation by subthalamic deep brain stimulation in Parkinson's disease patients and age-matched healthy controls. We show that the changes in beta bursting amplitude and duration typical of Parkinson's disease can also be observed in the sensorimotor cortex, and that they are modulated by chronic subthalamic deep brain stimulation, which, in turn, is reflected in improved motor function at the behavioural level. In addition to the changes in individual beta bursts, their timing relative to each other was altered in patients compared to controls: bursts were more clustered in untreated Parkinson's disease, occurring in 'bursts of bursts', and re-burst probability was higher for longer compared to shorter bursts. During active deep brain stimulation, the beta bursting in patients resembled healthy controls' data. In summary, both individual bursts' characteristics and burst patterning are affected in Parkinson's disease, and subthalamic deep brain stimulation normalizes some of these changes to resemble healthy controls' beta bursting activity, suggesting a non-invasive biomarker for patient and treatment follow-up.Peer reviewe

    Advances in closed-loop deep brain stimulation devices

    Full text link
    BACKGROUND: Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS: This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS: Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS: The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized

    The role of somatosensory afferences in Parkinson's disease

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the world. The primary motor symptom of PD is bradykinesia, a slowing and reduction in amplitude of voluntary movement. Here, I aim to test some neurophysiological aspects of PD. Furthermore, I explored the possibility to develop non-invasive treatment for this group of patients. The first two studies tested the contribution of a specific phenomenon labelled sensory attenuation or sensory gating in the motor symptoms of PD, especially bradykinesia. I found that the sensory attenuation is abnormal in this group of patients. Especially, PD patients OFF medications showed a reduced sensory attenuation measured as the amplitude of the somatosensory evoked potentials. Interestingly, I found that the sensory attenuation was equal to the healthy age matched controls when the patients were tested in ON pharmacological state. Additionally, this research tested a theory of the functional role of sensorimotor beta oscillations that could explain beta power modulations in healthy subjects and the increase in beta power observed in PD patients. My results were in line with the previous data presented in the literature. Indeed, I found the increase beta power in both my two cohorts of PD patients. Finally, I tested a potential correlation between the abnormalities of these two phenomena in PD: reduced sensory attenuation and increased beta oscillations. I did not find any significant correlation between the two phenomena. They might be two different neurophysiological mechanisms 5 underlying this disease. However, further studies are necessary to investigate this hypothesis. Having tested the influence of the somatosensory signal in some motor symptoms, the second part of the thesis was focused on the development of non-invasive treatments of bradykinesia in PD. I tested the impact of vibratory stimuli to improve these motor signs. In particular, several frequencies of vibration have been tested through different devices applied to the wrist. The device was called “Emma watch” and I found that the application of vibration with the modulation of 60 bpm improved the bradykinesia in PD patients Finally, I presented a case study regarding the benefit of vibratory stimulation on the freezing of gait thought shoe insoles generating vibration. The tested patient showed an improvement of the frequency of the freezing episodes after a week wearing the insoles, which generated vibration at 200 Hz

    Neural oscillations underlying gait and decision making

    Get PDF

    Spontaneous sensorimotor cortical activity is suppressed by deep brain stimulation in patients with advanced Parkinson's disease

    Get PDF
    Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the sub thalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD.Peer reviewe

    Neuromagnetic investigations of mechanisms and effects of STN-DBS and medication in Parkinson's disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder cardinally marked by motor symptoms, but also sensory symptoms and several other non-motor symptoms. PD patients are typically treated with dopaminergic medication for several years. Many patients eventually experience bouts of periods where medication might not be able to effectively control symptoms as well as experience side-effects of long-term dopaminergic treatments. Deep brain stimulation (DBS) is an option as the next therapeutic recourse for such patients. DBS treatment essentially involves placement of stimulating electrodes in the subthalamic nucleus (STN) or the globus pallidus internum (GPi) along with an implanted pulse generator (IPG) in the sub-clavicular space. STN-DBS alleviates motor symptoms and leads to substantial improvements in quality of life for PD patients. Although DBS is known to improve several classes of symptoms, the effect mechanism of DBS is still not clear. While there is a lack of electrophysiological investigation of sensory processing and the effects of treatments in PD altogether, the electrophysiological studies of the cortical dynamics during motor tasks and at rest lack consensus.We recorded magnetoencephalography (MEG) and electromyography (EMG) from PD patients in three studies: (i) at rest, (ii) during median nerve stimulation, and (iii) while performing phasic contractions (hand gripping). The three studies focused on cortical oscillatory dynamics at rest, during somatosensory processing and during movement, respectively. The measurements were conducted in DBS-treated, untreated (DBS washout) and dopaminergic-medicated states. While both treatments (DBS and dopaminergic medication) ameliorated motor symptoms similarly in all studies, they showed differentiated effects on: (i) increased sensorimotor cortical low-gamma spectral power (31-45 Hz) (but no changes in beta power (13-30 Hz)) at rest only during DBS, (ii) somatosensory processing with higher gamma augmentation (31-45 Hz, 20-60 ms) in the dopaminergic-medicated state compared to DBS-treated and untreated states, and (iii) hand gripping with increased motor-related beta corticomuscular coherence (CMC, 13-30 Hz) during dopaminergic medication in contrast to increased gamma power (31-45 Hz) during DBS.Firstly, we infer from the three studies that DBS and dopaminergic medication employ partially different anatomo-functional pathways and functional strategies when improving PD symptoms. Secondly, we suggest that treatments act on pathological oscillatory dynamics differently at cortical and sub-cortical levels and may do so through more sophisticated mechanisms than mere suppression of the pathological spectral power in a particular band. And thirdly, we urge exploring effect mechanisms of PD treatments beyond the motor system. The effects of dopaminergic medication on early somatosensory processing has opened the door for exploring the effects of treatments and studying their mechanisms using electrophysiology, especially in higher order sensory deficits. Integration of such research findings into a holistic view on mechanisms of treatments could pave way for better disease management paradigms. 
    • …
    corecore