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A B S T R A C T

Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the sub-
thalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses
the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases
and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are pro-
blematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD
patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to
stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5–25 Hz was sup-
pressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the
cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results
indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD.

1. Introduction

Parkinson’s disease (PD) is a progressive extrapyramidal movement
disorder. Abnormal oscillatory activity occurs within the basal ganglia
in PD. This abnormal activity is modified by the stimulation of different
cerebello–thalamo–cortical structures, restoring normal un-
synchronized activity in the basal ganglia circuitry and reducing the
clinical symptoms of PD [1]. One important hub of this network is the
subthalamic nucleus (STN). Deep brain stimulation (DBS) of the STN
effectively alleviates PD symptoms [2,3] although the physiological
basis of DBS efficacy remains poorly understood.

Direct local field potential recordings (LFPs) from STN indicate a
pathological role for oscillations at about 10–30 Hz. STN DBS sup-
presses this oscillatory activity during or after periods of stimulation.
Moreover, lower oscillatory activity after STN DBS is associated with
better motor task performance (for references, see [4]). STN oscillatory
signals may be a useful marker in a brain-computer interface control-
ling DBS [5].

In rat models of PD, the optical stimulation of primary motor cortex
ameliorates PD symptoms [6], and abnormal cortical beta band

oscillations are suppressed by STN stimulation in parallel with im-
proved movements [7]. In humans, STN activity is coherent with EEG
recorded over the sensorimotor areas [8]. In three patients, beta band
electro-corticographic (ECoG) activity was suppressed during DBS in
the motor cortex close to the cortical end of the hyperdirect pathway
connecting STN and cortex [9]. An 11% decrease of EEG alpha band
peak amplitude around 9–10 Hz occurs during DBS mainly in the
frontocentral regions [10].

Magnetoencephalography (MEG) is an excellent tool for non-in-
vasive studies for cortical electrophysiology. Severe electromagnetic
artifacts generated by the stimulator complicate MEG studies on pa-
tients with DBS. An artifact suppression algorithm, however, enables
the analysis of MEG also during DBS stimulation [11–14]. Both de-
creases [15,16] and increases [14] of sensorimotor beta band MEG
activity have been reported with DBS delivered during rest. Simulta-
neous recordings from STN and MEG suggest that DBS suppresses the
synchronization of beta band activity between the STN and supple-
mentary motor areas [17]. For a recent review of the MEG studies of
DBS, see [18].

Cortico-muscular coherence (CMC) is another measure of beta-band
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cortical activity, reflecting connectivity between the sensorimotor
cortex and contracted muscles [19]. DBS has a varying effect on CMC in
patients with PD [20].

Here we further clarify the DBS modifications of cortical sponta-
neous MEG and CMC at the sensor level when brain activity was re-
corded during DBS on and off conditions. We studied the effects of DBS
in both rest and active conditions.

2. Material and methods

2.1. Patients

Eighteen patients with advanced PD and bilateral STN DBS were
studied. Data of two patients was excluded: one had only a minimal
amount of acceptable data during the motor task (see below), and an-
other did not have a clear CMC peak. In the remaining sixteen patients
(mean age 57 ± 11 years; 11 male, 5 female) four had a Medtronic
Kinetra and twelve a Medtronic Activa PC stimulator. The patients had
no clinical signs of dementia, psychosis, or depression. The active
contacts, voltage, pulse width, and frequency of the stimulator were
individually optimized for optimal therapeutic efficiency. The mea-
surements were made 2–24 months after the DBS implantation. All
patients used their normal antiparkinsonian medication during MEG
measurements. Table 1 describes clinical details of the patients and DBS
settings. The study was approved by the Ethics Committee of Helsinki
University Hospital and all patients gave an informed written consent.
Data from four patients were reported previously in [15] and motor
task related data from 13 patients in [20].

2.2. Data acquisition and experimental paradigm

The MEG signals were recorded with a 306-channel Elekta
Neuromag MEG device (Elekta Oy, Helsinki, Finland) inside a magne-
tically shielded room (Euroshield, Eura, Finland). The sampling fre-
quency was 1012 Hz and the recording passband 0.03–330 Hz. A nurse
monitored the patient inside the shielded room. The patient's head with
respect to the MEG sensors was localized by activating the head posi-
tion indicator (HPI) coils at the beginning of the measurements in pa-
tients 1–13 and continuously for patients 14–16.

MEG was recorded for three minutes with eyes closed and for five
minutes with eyes open. Thereafter, patients extended the wrist of the
more strongly affected upper limb five times for one minute, with a 20-s
rest periods between the extensions. Simultaneously, muscle activity
was recorded with surface EMG from extensor carpi radialis longus
muscle. The MEG was measured twice, first with DBS on and then with
DBS off. The DBS switching was done in the shielded room. The patient,
seated on the measurement chair, was taken out from the sensor helmet
to get some distance between the MEG sensors and the programmer
device. Shifting the patient from under the MEG device, turning the
stimulator off, repositioning the patient and relocalization of the head
position took approximately 10min. The patient’s Unified Parkinson’s
Disease Rating Scale (UPDRS-III motor) scores were measured before
(DBS on) and after the MEG measurement (DBS off). For one patient,
the UPDRS scores were not available.

The amount of successfully collected data during the wrist extension
varied particularly when DBS was off as patients were often unable to
maintain the extension for one minute. Moreover, EMG signal was
unstable at the beginning of each extension. We selected stable intervals
for the motor task analysis by manually inspecting the variance of the
EMG signal. We matched the data set length between the two mea-
surements by excluding data if necessary to avoid any bias in co-
herence. On average, 268 ± 14 s of spontaneous MEG and 223 ± 32 s
of MEG during the wrist extension were analyzed.

2.3. Data preprocessing

DBS produced large artifacts in the MEG signals. Prominent high-
frequency stimulation artifacts were seen at the DBS frequency and its
harmonics, particularly in monopolar recordings [13]. In addition,
subject movement induced low-frequency artifacts from the pulse
generator and the implanted wires on the neck. These artifacts may be
as large as several nanoteslas, i.e. approximately 1000 times as large as
the largest signals created by spontaneous brain activity. However, the
spatiotemporal signal space separation method (tSSS [21];), suppressed
these artifacts by projecting out temporal patterns specific to the DBS
stimulation artifacts [11–15], resulting in satisfactory data quality. We
applied tSSS using Elekta MaxfilterTM software (version 2.2.15). The
correlation coefficient was set to 0.8. This value efficiently suppressed
artifacts close to the sensors, but did not suppress brain signals [22].
The processing window length was 8 s.

All subsequent analyses were done with FieldTrip (version 2014-03-
05 [23],) and MATLAB (www.mathworks.com, version R2008b) unless
otherwise noted. After applying Maxfilter™, the data still contained
narrow-band DBS interference in the DBS stimulation frequency, its
harmonics and aliased harmonics. Additionally, part of the artifacts
resided outside these frequencies. Therefore, we identified artifact
spikes below 50 Hz from the power spectral density calculated using
four-second Hanning windows with 50% overlap, resulting in a fre-
quency resolution of about 0.25 Hz. We filtered out the frequencies
containing these artifacts from the MEG data by a fourth-order band-
stop Butterworth filter. The same filtering was done for both DBS
conditions. In addition, MEG was high-pass filtered from 1Hz and EMG
from 5Hz.

We divided the filtered data into segments of about one second and
applied multitaper spectral analysis [24]. The resulting frequency re-
solution was approximately 1 Hz. FieldTrip optimizes the number of
tapers based on a smoothing window parameter: we used a smoothing
window of 6 Hz (± 3Hz around each frequency). The analyzed fre-
quencies were 5–43 Hz. The analysis was done for gradiometers. The
data of each gradiometer pair was combined in power and coherence
analysis.

We computed a relative power change, defined as (PDBSon −
PDBSoff)/PDBSon, of the spontaneous MEG data and the data during the
wrist extension. In most patients, the relative power was decreased at
mid-frontal sensors with DBS on. To analyze this further, we visually
identified the frequencies of maximum power decrease for each patient
both in spontaneous MEG and during the motor task. They varied be-
tween 11–25 Hz. To compare power change between patients, we es-
timated a single power value over the 11–25 Hz band using a smoothing
window of 14 Hz that covered this band. In addition, we calculated the
suppression in 5–11 Hz band to study the behavior of the low-frequency
component of the sensorimotor mu rhythm. The distribution of the
power change in Patient #4 is shown in Fig. 1.

We calculated the CMC between gradiometer pairs and the EMG for
both DBS conditions during the motor task. When analyzing coherence
at the group level, we applied a normalizing Fisher’s z-transformation
to the square root of the CMC according to [25]: γz = arctanh(γ). The
EMG signal was not rectified before the CMC calculation as rectification
may impair the coherence [26]. We display the CMC maps for quali-
tative comparison of the extents of CMC and DBS-induced spontaneous
activity modifications. In our earlier analysis sharing most of the same
patients, the effect of STN DBS on CMC was variable [20].

2.4. Statistical analysis

The group level statistical analysis was done with non-parametric
cluster-based statistics [27]. It tests for clusters in the data that pass a
specific sample-level statistics, and compares statistics derived from
these clusters against statistics obtained from a permutation distribu-
tion created by the Monte Carlo method. The permuted units were the
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DBS conditions within each subject and the clustered units were the
gradiometer pairs. The null hypothesis was that the results from both
DBS conditions are derived from the same probability distribution. This
non-parametric approach inherently handles the problem of multiple
comparisons arising in situations with multiple sensors.

We tested the power change at the sensor level using the 5–11 and
11–25 Hz bands. The side of the wrist extension was not considered in
the power analysis of the MEG recorded during the motor task. We used
a dependent samples t-test for the sample-level statistics and maximum
of sums of the T-statistics of all the clusters as cluster-level statistics. A
permutation distribution was created with 10 000 randomizations. We
used a two-tailed test for both positive and negative power change and
report corrected p-values for the two-tailed test. A p-value of less than
0.05 was considered significant. The cluster with the smallest p-value is
reported as the p-value from a cluster-based test.

We tested for correlation between power changes during the resting
state and the motor task, and corresponding changes in UPDRS III total
scores by Spearman’s rank correlation. These results were not sig-
nificant.

3. Results

The spontaneous MEG power at the sensor level in 11–25 Hz band
differed significantly between DBS on and DBS off conditions
(p=0.0052 for one cluster) when eyes were open. This was the most
evident as power decrease over bilateral frontoparietal regions when
DBS was on (Fig. 2). The average power change over the cluster of
sensors indicated by the statistical test was −44 ± 61%, with 14 pa-
tients out of 16 having a lower power when DBS was on.

In eyes closed and wrist extension conditions, we observed smaller,
non-significant suppressions in the same regions (p=0.2074 and
p=0.2214, respectively). The average power change in the same
cluster as in the spontaneous MEG was -40 ± 67% and −32 ± 51%
for the eyes closed and wrist extension conditions, respectively, with 12
out of 16 patients having a lower power with DBS on. The average
power was 6% stronger in the spontaneous MEG than during the wrist
extension when DBS was on; with DBS off the difference was 17%.

In the 5–11 Hz band, a similar power decrease encompassed ap-
proximately the same regions (Fig. 2). When eyes were open, the sup-
pression was significant (p= 0.0108 for one cluster). Non-significant
suppressions occurred also in eyes closed and wrist extension condi-
tions.

The DBS-induced MEG power changes and the corresponding total
UPDRS-III score changes were not correlated significantly. Patient 9
who had, contrary to the general trend, higher MEG power when DBS
was on had also the largest resting tremor subscores when DBS was off
and the largest decrease of tremor subscores when DBS was turned on.

The average CMC had a maximum contralateral to the extended
hand overlapping the estimated sensorimotor regions (Supplementary
Figure). The field distribution of CMC was more limited than the extent
of the suppression of spontaneous 5–25 Hz activity by DBS (Fig. 2).

4. Discussion

We detected a significant power decrease of spontaneous MEG at
5–25 Hz when DBS was on and eyes were open in patients with ad-
vanced PD. This power change was the clearest in the sensors dis-
playing the highest CMC during the wrist extension.

4.1. Modifications of brain electrophysiology by DBS

The 10–30 Hz activity was suppressed during DBS in ECoG record-
ings over the motor cortex in three patients [9]. The measurements
were, however, made with 1 x 6 cm electrode strips having a limited
spatial sampling. Our data suggest a more widespread effect, in line
with the reported distribution of STN-cortex coherence in the beta band
[28,29], and suppression of beta-band coherence between the STN and
supplementary motor areas during DBS [17]. A similar but non-sig-
nificant suppression was observed in eyes closed condition. The occi-
pital alpha rhythm dominates spontaneous MEG when eyes are closed
and probably dilutes the effect of DBS on spontaneous activity. Sup-
pression of 5–25 Hz activity by DBS was seen also during the tonic
muscle contraction but was not significant, possibly because the con-
traction suppressed the beta band strength [19,30].

Our results indicate that STN DBS suppresses spontaneous cortical
oscillatory activity in PD patients. The previous MEG studies of spon-
taneous activity with simultaneous DBS suggest an average decrease in
the alpha and beta band activities [15,16], an increase in the 14–18 Hz
range over diffuse cortical areas [14] or no effect [17]. Recently, Abbasi
et al. [16] described the effects of unilateral DBS, delivered one day
after implantation, on MEG alpha- and beta band activity. Suppressions
similar to our observations were seen; the suppressed sources, analyzed
with a beamformer, were centered on bilateral sensorimotor cortices,
but extended to secondary sensory and premotor areas and supple-
mentary motor cortices. Our results support the similar suppression of
alpha and beta band activity also in the chronic DBS therapy.

The modifications of spontaneous brain oscillations in PD may re-
late to the pathological processes leading to clinical symptoms, or to
compensatory mechanisms induced by dopamine depletion [31,32].
The oscillatory synchronization indexed by beta activity in the STN LFP
may be at least a faithful biomarker of PD impairment if not causally
important [5]. The present results suggest an analogous biomarker role
to cortical oscillatory activity depicted by MEG as we did not find
correlation between power of spontaneous activity and UPDRS changes.

One patient had an increase in beta band power during DBS.
Notably, he also had the most severe resting tremor as displayed in
UPDRS subscores when DBS was off; the tremor virtually disappeared
during DBS. Parkinsonian tremor suppresses the spontaneous sensor-
imotor activity [33] and the sensorimotor beta band MEG in PD pa-
tients with STN electrodes [31]; as DBS alleviated the tremor, this could
explain beta band increase during DBS on in this patient. The three
other patients with milder resting tremor had the beta band power
decrease by DBS. The possible contribution of tremor to the power

Fig. 1. Relative power change at the sensor level for patient #4. The power
decrease peaks at 22 Hz. The gray lines denote the power change during
spontaneous activity and the black lines power change during the right wrist
extension. Negative: power decrease; positive: power increase when DBS on.
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changes should be taken into account when analyzing the effects of DBS
on the sensorimotor activity in PD patients.

Maximum CMC occurred over the sensorimotor area in the hemi-
sphere contralateral to the extended hand, as reported previously (e.g
[19].). The spontaneous activity suppression induced by DBS was more
extensive, particularly in the frontal regions and may indicate con-
tribution of supplementary motor areas in the effect of DBS (cf [17].).

4.2. Limitations of the study

DBS produces strong artifacts to MEG signals. DBS artifacts increase
in power when DBS is on; instead, we observed a power decrease over
the frontoparietal cortex. As DBS interference was suppressed by tSSS
and notch filtering, an artifactual power decrease could be possible if
the filtered DBS interference was correlated with brain activity. If the
power decrease was purely artifactual, they would remain approxi-
mately the same in analysis of spontaneous data and the MEG during
wrist extension. Instead, we observed weaker beta power during the
wrist extension than in the spontaneous activity recording.

The MEG measurements were done first with DBS on and then,
approximately 10min later, with DBS off. At least three hours of STN
DBS off is required to establish a steady DBS off state for efficacy studies
[34]. About 50% of the total change has, however, been estimated to
occur in 5min after DBS is turned off [5]. Clearer changes could have
occurred if the period between on and off states would have been
longer, and if patients had been recorded in medication off-phase.

5. Conclusions

Sensor-level MEG of 16 PD patients with STN DBS revealed sig-
nificantly decreased power in 5–25 Hz spontaneous activity at rest
when DBS was turned on. This power decrease was the clearest in the
bilateral frontoparietal areas and overlapped with the distribution of

CMC. Our results support the notion that DBS alleviates motor symp-
toms in PD by reducing pathological synchrony in the sensorimotor
network.
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Fig. 2. Average relative power change between the DBS conditions for 5–11 Hz and 11–25 Hz during rest and wrist extension. The blue color denotes power decrease
and red color power increase by DBS. The small black circles represent gradiometer pairs and the white dots represent a cluster with the highest power decrease
(p=0.0108 for 5–11 Hz and p=0.0052 for 11–25 Hz). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).
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