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Abstract 

Microelectrode recordings (MER) involve insertion of an electrode, approximately 50 

micrometers at the tip, into deep brain structures and recording the electrical activity. It is 

commonly used in surgeries to accurately determine the location of a target for deep brain 

stimulation (DBS). A common target for this type of procedure is the subthalamic nucleus 

(STN), identified by a unique spiking pattern and a change in the background noise level 

compared to surrounding structures. This change in background noise level indicates that 

the noise is composed of neuronal sources. 

 

This thesis aims to develop a model to determine what extent the volume of neurons around 

the electrode contribute to an MER. The potential usefulness of the model as a biomarker 

for the behaviour of the STN is then explored. The model for the STN MER involves 

simulating thousands of neurons by assuming they follow a renewal process. This 

assumption requires that the timing between a single neuron’s spikes (inter-spike interval - 

ISI) are independent and identically distributed (IID). The model is tuned to intraoperative 

recordings to determine the best simulation parameters. To investigate the usefulness of the 

model as a biomarker of STN behaviour, the IID assumption is relaxed by introducing 

synchronization between neurons or changing their spike timings to be driven by a 

dynamical model of the basal ganglia. Fitting the parameters of the renewal process model 

to these extended models is then used to see if they can reliably describe the new behaviour. 

 

The results show firstly that a volume of ~1mm3, or on the order of 10,000 neurons, are 

required to simulate an STN MER that best describes patient data. This result indicates that 

the background noise of MERs is in fact partly caused by neuronal sources. The speed of 

the renewal model, faster than real time, allowed many simulations (Ο(106)) with different 

parameters to be created for tuning and verification of the model. The Weibull distribution is 

used as a parameterized ISI distribution for the renewal model and was found to reliably 

describe the simulations when the IID assumptions were relaxed. The first example of this 

was when neurons had synchronized firing times. In this case the Weibull distribution reliably 

fit the underlying ISI distribution for different realizations of the same simulation parameters. 

Finally, the thesis shows that using a neural mass model of the basal ganglia to generate 

the STN firing times, that the renewal model can differentiate between certain cortical inputs. 

This motivates future investigation into using the parameters from fitting a renewal model to 

an MER as biomarkers. 
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1 Introduction 
 
This thesis is a compilation of work completed during the investigation using firing time 

renewal processes for modelling and analysis of single point microelectrode recordings of 

the subthalamic nucleus. It is presented as a summary of the work completed for the thesis 

along with publications based on this work. First details of the background, motivation and 

aims is presented. A literature summary is then provided to identify the current state of the 

art in the field and how the work presented in this thesis builds on this. Subsequently, a 

summary of the publications made during the research for this thesis is provided. The 

methods used for the investigation are summarised and an overview of the results are then 

given. The conclusions of this work are presented in the final chapter along with limitations, 

future work and the novel contributions of the thesis. In addition to this summary of work, 

complete copies of the published works are provided in the appendix. All code used for this 

thesis is also available in the appendix and online (Weegink, 2017). This thesis presents a 

concise description of the work performed and includes full details for replication of the work 

available to enable further research using this foundation. 

 

Contained in the rest of this section is a more descriptive outline of the thesis. This outline 

includes a summary of the background and motivation for performing the work within this 

thesis. The chapter concludes by defining the scope and objectives of this work. 

 

1.1 Background and motivation 
 

Decoding how neurons carry information is not just a question of philosophy but biological 

importance, as it can be used to create brain interfaces, characterize pathological processes 

or to diagnose disease (Reike, et al., 1997) (Bialek, et al., 1999) (Rouse, et al., 2011) 

(Hosain, et al., 2014) (Remple, et al., 2011). Detecting when a patient enters a diseased 

state would allow treatment to be tuned to when it is needed, a prime example of this is deep 

brain stimulation (DBS) where treatment is moving towards intelligent systems that use 

adaptive stimulus (Priori, et al., 2013) (Little, et al., 2013) (Hosain, et al., 2014) (Rouse, et 

al., 2011). This type of treatment could reduce side effects and improve the efficiency of the 

treatment. 
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Figure 1 - The position of the microelectrodes when placed in the sub thalamic nucleus for DBS treatment of PD. The graph 
demonstrates a typical MER used in this thesis (adapted from (Mayo Foundation for Medical Education and Research (MFMER), 
2017)). 

 

Deep brain stimulation (DBS) is used to treat chronic neuro-psychological disorders by 

applying a localized current to a specific structure of the brain. A common disease treated 

with DBS is Parkinson’s disease (PD) (Davie, 2008). Currently patients who are treated with 

DBS receive open-loop stimulation, where the stimulation is constant and adjustments are 

made in clinical visits (Moro, et al., 2006). To improve the positive outcomes of DBS, 

decrease the side effects and to increase the battery life, closed-loop stimulation (also 

known as adaptive DBS) is being developed (Rouse, et al., 2011) (Chen & al., 2010) 

(Parastarfeizabadi & Kouzani, 2017) (Priori, et al., 2013) (Little, et al., 2013) (Hosain, et al., 

2014) (Rouse, et al., 2011). An overview of these two methods is shown in Figure 2. For 

adaptive DBS to work a biomarker, or combination of biomarkers, is required that indicates 

when the patient is in a normal or abnormal state (Eusebio & Brown, 2009) (Rouse, et al., 

2011) (Chen & al., 2010). Biomarkers can range from accelerometers on limbs monitoring 

tremor or gait, micro-electrodes monitoring single cell behaviour to macro-electrodes 

monitoring large scale brain dynamics (Akingba & al., 2003) (Eusebio & Brown, 2009) 

(Hosain, et al., 2014) (Rouse, et al., 2011).  
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Figure 2 - Comparison of open and closed-loop DBS. a) The current method for tuning DBS for individual patients involves a 
trained clinician adjusting the settings of the stimulator during clinical visits. b) In closed-loop, also known as adaptive DBS, by 
detecting a biomarker that indicates an abnormal state the stimulator automatically adjusts the stimulation parameters. c) An 
example of a benefit of closed-loop DBS where the stimulation is only applied when it is needed, opposed to constant application 
in open-loop. From (Parastarfeizabadi & Kouzani, 2017). 

 
Due to the invasiveness and dangers involved, there are very few opportunities to obtain 

electrical recordings from deep within the human brain. Deep brain recordings of 

extracellular activity using microelectrodes, Figure 3, are used to locate brain structures in 

surgeries to implant deep brain stimulation systems. The treatment involves localizing the 

subthalamic nucleus (STN) within the basal ganglia (BG) deep inside the brain using a 

combination of imagery and microelectrode recordings (MER) (Coyne, et al., 2006). The role 

of the MER is to assist the clinical team in identifying the target structure. By using their 

experience, the team can recognize the unique patterns of the STN by observing the spiking 

intensity, rate and background noise patterns (Camalier, et al., 2014) (Baker & al, 2004) 

(Burchiel & Israel, 2004) (Coyne, et al., 2006) (Snellings, et al., 2009). 

 

Figure 3 - Examples of how the spiking activity and the background noise changes as the MER enters different structures in the 
Basal Ganglia (Camalier, et al., 2014). 
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Extracellular recordings of the electrical activity have been used to determine brain functions 

since the invention of the microelectrode in 1921 (Israel & Schulder, 2004).  MERs have 

been used to investigate in vivo neuron firing in animals and humans (Israel & Schulder, 

2004). They have been used to locate different brain structures, map the somatotopy of 

motor and sensory structures within the brain and characterize the different firing rates and 

the firing patterns in healthy and diseased models (Israel & Schulder, 2004). These findings 

have led to the development of many methods of analysis and modelling of the electrode 

recordings. These models however fail to address the change in background noise, Figure 

4, that neurologists can use to identify the STN. 

 

 

Figure 4 – A typical STN MER recording showing the spiking activity from the closest neuron and the background noise (circled 
in red) that neurologist may use to identify the location of the MER. Adapted from (Theodosopoulos, et al., 2004). 

 

MERs are analysed by looking at the spiking behaviour of a single neuron that is recorded 

(Burchiel & Israel, 2004). A typical MER, shown in Figure 4, contains a strong spiking signal 

from the closest neuron/s and noise that can have maximum amplitude of 10-50% of the 

spiking amplitude (Heinricher, 2004) (Garonzik, et al., 2004). Figure 5 shows how an MER 

consists of the contribution of slow oscillations from the neurons located further from the 

electrode, known as the local field potential (LFP), as well as high frequency spikes from 

close neurons (Garonzik, et al., 2004) (Akingba & al., 2003). The recordings are filtered to 

remove the LFP, leaving the strong spikes and high frequency noise (Medtronic Inc., 

Minneapolis, MN) (Garonzik, et al., 2004) (Rasch, et al., 2009). The change in this high 

frequency noise with the electrode position leads to the possibility of the neurons in the LFP 

zone still contributing in the high frequency. The possibility of this background noise having 

a neuronal component means that MERs could be used as a biomarker of the collective 

behaviour of a group of neurons, instead of only targeting a single neuron. This raises the 

first question of the work performed for this thesis: What range do the neurons further from 

the electrode contribute to the MER background noise? 
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Figure 5 – How neurons contribute to an MER. The dark area represents the neurons that produce a strong spiking signal on 
the recording (unit recording) and the light gray area represents the neurons that contribute to the LFP. 

 
Most theoretical efforts thus far have analyzed and modeled the recordings with high 

impedance electrodes for single-cell electrical activity (Burchiel & Israel, 2004) (Favre & 

Baumann, 2004) (Sarma & al., 2010) (Pedoto, et al., 2012) (Michmizos & Nikita, 2012). The 

analysis techniques involve isolating the firing times of individual neurons identifiable in the 

recording. These times can then be used to identify the statistics of the individual cell, or 

they can be compared to a stimulus or another recording to determine correlations. This 

type of analysis using a single electrode restricts the scope to a small number of neurons, 

one to three. To model these types of recordings nonlinear neuron models are used. These 

nonlinear models can be computationally expensive, thus restricting simulations to a small 

number of neurons, single to hundreds. To be able to answer the question of how neurons 

contribute to the background noise of the STN MER models of potentially on the order of 

105 neurons may be required. The types of models discussed so far are unsuitable for this, 

therefore stochastic models will be used, specifically renewal process models. The renewal 

process characterizes the neurons by using a probability distribution to describe the interval 

between spike events, raising the second question addressed by this thesis: Can fitting the 

inter-spike interval probability distribution of renewal models to STN MERs be used as a 

potential biomarker? 

 

With the increasing usage of DBS as a tool for treatment, the chance to explore the electrical 

activity of the deep brain becomes accessible. It is the purpose of this thesis that by 

modelling firing times as renewal processes simulations of STN MERs can be generated 

from tens of thousands of neurons. These models can then be used to analyze how further 

neurons contribute to the recording, how synchronization and brain dynamics affect the 
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spike time statistics and if they can be modelled suitably using the assumption of 

independent, identically distributed inter-spike interval times. Then the usefulness of 

renewal models for predicting underlying dynamics will be demonstrated. 

 

Understanding how large volumes of neurons contribute to MERs and investigating how well 

renewal models can be used to determine underlying dynamics can identify methods to 

elucidate brain behavior. This work could potentially be used to predict the properties of 

brain behavior allowing better diagnosis of disease and could possibly be used in 

development of adaptive deep brain stimulation. 

 
 

1.2 Scope and objective 
 
Section 1.1 provided motivation for two research question that this thesis aims to answer: 

1. What range do the neurons further from the electrode contribute to the MER 

background noise? 

2. Can fitting the inter-spike interval probability distribution of renewal models to STN 

MERs be used as a potential biomarker? 

 

To address these questions, I aim to investigate the use of renewal processes firing times 

for modelling and analysis of single point microelectrode recordings of the subthalamic 

nucleus. To do this I will develop and validate a computationally efficient simulation of STN 

MERs using a renewal process. The model will simulate the STN and surrounding 

structures. The neurons will be simulated using combined statistical and biologically inspired 

dynamical models. The microelectrode recording will be produced by using these neuron 

models developed and electromagnetic (EM) models for the interaction of the neurons with 

the electrode. Developing an efficient model will allow many simulations to be performed for 

tens of thousands of neurons which means significant statistics of the model behaviour can 

be produced and in future work could potentially be used to develop real time control of 

DBS.  

 
The methodological approach of this thesis to help answer the research questions are: 

• Develop a renewal model to simulate an MER of thousands of neurons with physically 

realistic coupling of neurons to the electrode that includes attenuation, extracellular 

filtering and electrical noise, with post processing. 
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• Verify and tune the MER model against intraoperative recordings of patients. 

Including investigate how the number of neurons contribute to the recording and the 

effect of firing statistics on the MER power spectrum using the model. 

• Enhance the model by:  

o Relaxing the assumption of independence between neurons. This will allow 

correlations between neurons firing within the STN. 

o Relaxing the assumption of the ISI times being drawn from a distribution that 

is stationary in time (changing from time-homogeneous to time-

inhomogeneous). This can be achieved by extending the evolution of the 

statistic of the MER model to include the relevant pathways in the BG and 

have connections to and from other parts of the brain into the BG.  

• Investigate how well the renewal model developed in the first objective fits these 

enhanced models where the assumptions of the simple model are no longer valid. 

 

 

Figure 6 - Summary of the logical flow of the methodology of this thesis. By developing a model of an MER that uses renewal 
neurons and tuning the model against patient data the number of neurons that contribute to the high frequency noise in an MER 
can be determined. Modifying the model to include more biological realism can then be used to determine if the renewal model 
could be useful as a biomarker. 

 
The scope of the work presented is to understand the neuronal origin of the high frequency 

noise in STN MERs by determining the volume of neurons that contribute to a recording. 

The ability to fit features of the MERs will be investigated under different assumptions of 

neuronal behaviour, specifically fitting the inter-spike interval from the power spectrum using 

a parametrized distribution. This thesis will not attempt to develop an increased 
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understanding of PD or the behaviour of the neural structures modelled. An application to 

DBS is also not included in this thesis, however a method for using the results contained for 

predictions of the neural state using a renewal model is given as an example for how this 

work could be extended for adaptive DBS. 

 

1.3 Summary 
 
This introduction has motivated the purpose of this thesis, to develop an efficient model of 

an MER that describes changes in the properties of the background noise. This will involve 

comparison of the model to patient data and development of analysis techniques using 

renewal processes. The rest of this thesis will be structured as follows: 

• Literature Review – this chapter will contain a summary of the relevant literature 

related to neuron modelling, MER modelling, BG modelling and renewal models. 

• Methods – this chapter describes the methods used for the models developed in this 

thesis and the techniques used to validate and analyse them. 

• Results – all the results found during the development of this thesis are summarised 

including a discussion on the significance of these results. 

• Summary of Papers – a short summary of each paper that contributes to this thesis. 

• Conclusion – a summary of the contributions of this thesis are presented. This 

chapter also includes limitations and suggestions of future work based on the 

research within this thesis. 

• Appendix – copies of the papers that have contributed to this thesis.  



31 

 

2 Literature Review 
 
This chapter outlines briefly the current research available on models of the brain relevant 

to this thesis and it identifies gaps in knowledge that this thesis will fill. The aim of this review 

is to determine methods to identify how neurons contribute to the noise of an MER and to 

determine how renewal models could be used for analysis of MERs. To model an MER there 

are several factors that need to be considered: the behaviour of individual neurons, how the 

brain on a larger scale influences the behaviour of the neurons and how the neurons interact 

with the electrode and recording equipment. There is a large set of literature on neuron 

modeling, and neural network modeling, however for this thesis, previous models of the 

subthalamic nucleus (STN) and basal ganglia (BG) will be reviewed since the in vivo 

recordings available are acquired from the STN. The other set of models that will be 

reviewed are statistical models, specifically renewal models. Renewal models are 

considered due to their speed compared to dynamical models, as well as their ability to 

describe stochastic signals using a small set of parameters. Both properties would be 

important for development of closed loop DBS. This chapter is divided into the following 

sections: 2.1 Dynamical neuron models, 2.2 Renewal Process Models, 2.3 Models of the 

basal ganglia, 2.4 Neuron-Electrode Interaction and 2.5 Summary. 

  

2.1 Dynamical neuron models 
 
Figure 7 outlines the components of MERs that are commonly used for analysis, the local 

field potential (LFP), the multiunit activity and the single unit activity (Rasch, et al., 2009). 

One of the main uses of MERs is to identify single or multi-unit recordings. This means they 

identify the spiking behaviour of a single neuron close to the electrode tip, with a possibility 

of several neurons close and contributing to spikes in the MER. This highlights the 

importance of modelling individual neurons. The main feature of neurons that contribute to 

the spikes observed in MERs are action potentials (AP). The AP is characterised by a rapid 

change in the electrical potential across the neurons cell membrane, followed by a rapid 

reversal of the potential. The AP is of interest as it is thought that it is the method for neurons 

to transmit and process information. 
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Figure 7 – The steps in acquiring the local field potential (LFP) and the single unit analysis (SUA) from a MER recording otherwise 
known as an extracellular field potential (EFP). From (Rasch, et al., 2009). 

 

Methods of modelling an individual neuron can vary dramatically, from stochastic models 

that determine only the timing of AP events (Johnson, 1996) (Zelniker & al., 2008) (Sarma 

& al., 2010), to dynamical models that use differential equations to model the structures in 

the neuron that control the flow of charged particles across the cell membrane (Hodgkin & 

Huxley, 1952) (Terman, et al., 2002). The problem with modelling all the processes involved 

in the activation of the neuron individually with dynamical equations is that it can be 

computationally intensive with regards to the time to find numerical solutions. To overcome 

this different work has been performed to model the behaviour of neurons using dynamics 

to approximate mathematical features that are seen in the full model (Izhikevich, 2003) 

(Izhikevich, 2007). As the biological plausibility (the number of mathematical features 

simulated) of a model increases, the computational time to implement the model increases 

(Figure 8).  
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Figure 8 - A comparison of the computational cost to implement different models, versus their biological plausibility, from 
(Izhikevich, 2004). 

 

Many of these models have been used for studies investigating the STN. These approaches 

include using the Hodgkin and Huxley (HH) equations for each neuron and simulating a 

small subset of neurons (Feng, et al., 2007) (Rubin & Terman, 2004) (Terman, et al., 2002), 

use of an Izhikevich model for each neuron to simulate a larger number of neurons for each 

structure (Kang & Lowery, 2011) (Michmizos & Nikita, 2012) and renewal models to evaluate 

the spike timings (Dummer, et al., 2014) (Rajdl & Lansky, 2015) (Camunas-Mesa & Quiroga, 

2013). The findings, advantages, disadvantages and relation to this thesis of these models 

will be discussed. 

 

The HH model for a neuron was originally described by Hodgkin and Huxley for the squid 

giant axon (Hodgkin & Huxley, 1952). It relates the membrane potential to the different 

membrane currents caused by activation and deactivation of different ion transporters. 

Numerous papers have been produced with slight modifications of this model to relate to 

the STN (Feng, et al., 2007), (Rubin & Terman, 2004), (Terman, et al., 2002). These models 

collectively can demonstrate the common pathalogical behaviour of beta band (10-30 Hz) 

synchronization in STN neurons for simulations of the Parkinsonian state that are not 

present in simulations of the normal state, shown in Figure 9. 
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Figure 9 - The STN cell behavior in HH BG models with inputs describing the pathological state (Episodic) and inputs describing 
the normal state (Continuous), from (Terman, et al., 2002). 

 

They can also show the arrest of this synchronization when DBS is applied. Computational 

limitations prevent the models mentioned so far from simulating a large number of 

neurons, allowing only a subset (the closest neurons to the electrode) to contribute to an 

MER simulation. This model has been analysed numerous times in the liturature and it’s 

robustness and accuracy have been tested. It has been found to be a accurate model for 

representing an individual neuron (Pascual, et al., 2006). 

 

The HH type of model is not the most suitable for creating a complete MER for this thesis 

due to the small number, ~101, of neurons simulated for the STN (Rubin & Terman, 2004) 

(Terman, et al., 2002). If the model is extended to see how large numbers, >105, of neurons 

contribute to the MER noise numerical solutions for simulations would take too long.   

 

An advancement, in terms of cell number simulated, of the HH BG models is to use the 

Izhekevich model (Kang & Lowery, 2011). The Izhikevich model is a simplification of the HH 

type models by reducing them to a two-dimensional system of ordinary differential 

equations. This model has been shown to be very computationally effective, see Figure 8. 

These equations represent an approximation of the phase space of the HH based two 

dimensional models around the stationary point with the reset auxillary equation accounting 

for the trajectories outside of this region (Izhikevich, 2003). There are also several papers 

that have demonstrated the ability for the model to simulate the twenty common firing types 

of neurons, Figure 10 (Izhikevich, 2004). The model has also been used to efficiently 

simulate on a large scale, hundreds of neurons, that can display common neural network 

phenomena of spike timing dependant plasticity (Izhikevich, 2007) and synchronisation 

(Izhikevich, 2006). 
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Figure 10 – Examples of the 4 out of 20 common firing behaviors of neurons achieved by the Izhikevich model. These four types 
of behavior represent common behavior of the STN. Adapted from (Izhikevich, 2004). 

Due to the decrease in computational time per neuron, when compared to the HH model, 

this model allows a larger set of neurons to be modeled for each structure. A BG model for 

DBS has been produced using these equations that contains 200 STN , 200 GPi, 200 GPe 

and 200 thalamocortical neurons (Kang & Lowery, 2011). These numbers compare to 

approximately 5x106 neurons contained in the human STN alone (Hardman, et al., 2002). 

With this model it was demonstrated that it could reproduce the beta band synchronicity 

given inputs describing the pathalogical state. The model was also able to describe the 

arrest of this behaviour in all the STN cells upon application of DBS to 1 and 2 neurons. This 

model also allowed the state of the STN cells to be monitored to determine the revival time 

of beta-band oscillations after ceasement of DBS (Kang & Lowery, 2011).  

 

Using the Izhikevich model neuron simulations of up to 1011 neurons has been demonstrated 

(Izhikevich 2005). Although there is a large time improvement compared to the HH model, 

the large scale simulation took over 1 month to calculate the dynamics. For real simulations 

the Izhikevich model can be used to generate accurate statistics for the spike timing of ~103 

neurons. This improved computational time still prevents investigation of how a large 

number of neurons, ~105, contribute to an MER. This model still presents a computation 

cost significant enough to prevent investigation of how a large number of neurons, >104, 

contribute to an MER. Another problem when using this model to generate MERs is the 

shape of the waveform generated for the AP. The AP is added to the simulation by addition 

of a spike when a threshold voltage is reached. This affects the appearance of the MER 

power spectrum because it does not accruately model the frequency components of AP. 

Due to the random nature of the MER recordings analysis using the power spectrum is 

prefered over using techniques directly on the time series. The analysis of the Izhikevich 

model, and hence the problems associated with using the Izhikevich method for modelling 

MERs are discussed later in this chapter, see Chapter 2.2.2. 

 



36 

 

 

Figure 11 - a) A comparison of the CDF from a MER with the CDF from a model for the single unit driven by the MER LFP. b) The 
Cross-correlation between the binary spike trains for the MER and the Model, from (Michmizos & Nikita, 2012). 

 
To demonstrate potential analysis of MERs using the Izhikovich model another study that 

has showed that given the LFP as a parameterized input, it could reproduce the single unit 

behaviour from the recording (Michmizos & Nikita, 2012). The model was verified by 

comparing the cumulative distribution function (CDF) for the spike statistics, through a plot 

of recorded CDF versus model CDF.  An accurate reproduction of the single unit produces 

a 45o line shown in Figure 11. Binary spike trains were also produced from the model and 

the cross-correlation was used to validate the results. The model produced the single unit 

behaviour with 95% confidence 70% of the time. This type of behaviour from a model would 

be desierable for MER monitoring, as the initial state of the neurons may not be known in a 

real recording. Data from the real MER could then be used to set up the initial state of the 

model, and the simulation could then track the MER behaviour. To do this analysis the spikes 

need to be isolated in the time domain using spike sorting, since the only feature of the 

recording reproduced is the spike times. While these papers demonstrate the LFP of the 

MER contains information on the spike times of the neurons, it removes the noise from the 

LFP and neuron spike trains and does not include it in the modelling. It is this noise that can 

be used to identify the STN during surgery, and so may be more than just uncorrelated 

fluxuations (Coyne, et al., 2006). 

 
Other work has demonstrated how LFPs can drive single unit activity (SUA) (Santaniello, et 

al., 2004) (Rasch, et al., 2008). By looking at a parameterized third order model of a spiking 

neuron (Santaniello, et al., 2004) showed that the LFP can be used to produce accurate 

spike timings and shape. To produce the SUA the LFP was used to drive a model that 
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produced the spike shapes and times for STN neurons. The LFP was acquired by using a 

low pass filter on in vivo recordings. The parameterized LFP was then fed into a third order 

dynamical model, Figure 12, where the parameters were found by extracting the spikes from 

in vivo recordings by using a wavelet filter to find the spike times and shape. The spike times 

were then used to generate the cumulative distribution function which was also used to fit 

the model.  

 

Figure 12 - The third order (x ,̇ y ,̇ z )̇ dynamical model fitted to single unit activity of a MER, which can then be used to reproduce 
MERs. The output is given by z(t) with the addition of LFP noise. The refractory, depolarization and hyperpolarization cell phases 
correspond to the R, D and H respectively. From (Santaniello, et al., 2004). 

 

The work by Santaniello, et al. is another example of how the spike timing of a neuron seen 

by an MER can be generated using the LFP. This contrasts with using the Izhikevich model 

to demonstrate how the SUA can describe the LFP. However, both methods indicate that 

the LFP comprises of information related to the spike time statistics. Although this model 

can reproduce a MER that has the same statistics as an experimentally acquired MER, it 

required the inputs from the experimental MERs, and does not dynamically predict their 

evolution.  

 

The previous models reviewed described methods for modelling spikes using the LFP, there 

is a set of literature that describes the process in the other direction, generating the LFP 

using the spike times (Rasch, et al., 2009). A linear method is used to estimate the 

convolution kernel that when applied to the SUA produces the LFP. Using recordings from 

545 recordings from seven different monkeys of ~4 mins length, the convolution kernel 

(ℎ(𝑡 − 𝜏)) was estimated that would generate the LFP, Figure 13, from a function describing 

the SUA (𝑥(𝜏)) using the estimated LFP: 
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𝐿𝑒𝑠𝑡(𝑡) = ∫ 𝑑𝜏ℎ(𝑡 − 𝜏)𝑥(𝜏)

𝑇

0

, 

 

(1) 

 

Figure 13  – The reproduction of the LFP using the single unit spike train, from (Rasch, et al., 2009). 

 

This method once again assumes a fixed correlation between the LFP and the single unit, 

however in contrast to (Santaniello, et al., 2004) and (Rasch, et al., 2008) who showed that 

the LFP can reproduce the SUA, this work shows that the single unit activity can describe 

the LFP. This work does not reproduce accurate MER simulations instead it can be used to 

generate an LFP after processing an experimental MER using spike sorting to determine 

the spike times. This demonstrates that spikes contribute to the LFP, with correlations up to 

0.6, it fails to identify high frequency contributions to the MER noise since the LFP is 

extracted using a low pass filter with a 300Hz corner. This removes any contribution from 

the extracellular action potential (EAP) of further neurons, only realizing the slower network 

behaviour. The contribution from neurons whose SUA is not captured by the MER is also 

not considered in this model.  

 

The main problem with these dynamical models when developing a MER is fitting the model 

parameters with a small amount of data. To be useful in the diagnosis of disease, 

confirmation of location, or applied to feedback controllers for adaptive DBS the ability to 

quickly determine the model parameters is important. Another important feature is to have 

as few model parameters as possible. The minimum number of parameters helps to reduce 

the complex information that is being sort, such as patient state. The models presented so 

far contain a large number of parameters for characterizing the behvaiour of a single neuron, 

and extending them to a large number of neurons (> Ο(104)) creates a combinatorial 

increase as the number of parameters increase when the connectivity between each neuron 

(~Ο(103) conections per neuron) is considered. 
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The types of models reviewed in this section are satisfactory for reproducing features of 

recordings after online analysis and they demonstrate how different components of MERs, 

spikes or LFP, can be predicted by using the other. These models do not attempt to 

reproduce MERs of more than a small number, 1-100 neurons. To investigate how a large 

number, on the order 104, neurons contribute to an STN MER the models presented so far 

in this section present a problem due to their computational time required for a numerical 

solution. The HH model does present the most accurate way of producing the STN action 

potential shape, so it is used for the work in this thesis in conjunction with a statistical model 

for the spike timing, see Chapter 4.2.2. 

 

2.2 Renewal Process Models 
 
How the neurons in the brain carry and encode information is one of the fundamental 

questions of neuroscience. There are several models a neuron’s spikes could encode 

information (Bialek, et al., 1999). One approach, temporal encoding, relies on the precise 

timing of spikes in relation to a stimulus or neighbouring spike times (Bialek, et al., 1999). 

An alternate approach, developed using concepts from information theory, attempts to 

characterize the spike train by using the statistical distribution of the time between spikes 

(inter-spike interval, ISI) (Bialek, et al., 1999).  This section describes how neurons have 

successfully been modelled using renewal models. There are three subsections:  2.2.1 

introduces how renewal models have been used for simulating neurons, 2.2.2 outlines 

mathematical properties of renewal models that will be used in this thesis and 2.2.3 

summarises properties of the STN that will be used to develop the model developed as part 

of this thesis. 

 

2.2.1 Renewal process models for simulating neurons 
 

One of the simplest forms of describing neuron behavior is in Perkel et al. who showed 

that neural activity can be described in terms of the statistics of the inter spike interval, ISI 

(the time between two consecutive spikes) (Perkel, et al., 1967) (Perkel, et al., 1967). The 

model that describes this behavior is known as a point process, where each event (spike) 

in time has a probability of occurring. A special case of point processes are renewal 

processes, where the ISI distributions are independent and identically distributed (IID) for 

all ISI times. There has been a relationship between the HH model and renewal models 
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established (Johnson, 1996). The resetting of the Na+ and K+ channels after an action 

potential is analogous to the renewal of the firing time. The Izhikevich model also has an 

explicit reset after neuron firing. Renewal process model has been used extensively in 

neuroscience for both experimental (Moore, et al., 1966) (Maimon & Assad, 2009) (Bastian 

& Nguyenkim, 2001) and theoretical work (Johnson, 1996) (Pawlas & Lansky, 2011) 

(Wilbur & Rinzel, 2983). 

 

Renewal process models have been used in spike sorting to aid in clustering by maximizing 

the probability a neuron belongs to using Bayes rule (Pouzat, et al., 2004). However, there 

is evidence that not all neurons follow renewal statistics. The condition for ISI statistics 

following a renewal process has been looked at in work by Avil-Akerberg et al. In their work, 

they summarise the findings about neurons whose ISIs display non-renewal spiking 

statistics (Avil-Akerberg & Chacron, 2011). They compile thirty different studies that show 

non-renewal neurons, of note is that the STN was not included in this list. A specific study 

of STN cells showed that they can be modelled using a three-state point process (Zelniker 

& al., 2008). Although not a renewal model, since the ISI times are not IID, it was shown that 

the ISI statistics from intraoperative recordings of the STN can be modelled stochastically.  

 

The renewal model only creates the timing of neuron firing. This type of model contains no 

action potential shape, representing only the timing of neuron firing events. To model the 

neuron electric field detected by an electrode a filtered point process (FPP) is needed. A 

FPP involves convolution of an action potential shape (the “Filter”) with the spikes that 

represent the neuron firing times. Although this type of model can simulate the waveform 

dynamics for super-threshold activity, it cannot predict any subthreshold activity for the 

neurons.  

 

Due to the ability to simulate many neurons, the model for the MER developed in this thesis, 

described in Chapter 4.2, will involve simulating the neurons as renewal models and pooling 

their response at the electrode tip. Similar work to this has been done in (Dummer, et al., 

2014), (Rajdl & Lansky, 2015) and (Camunas-Mesa & Quiroga, 2013), the latter of which 

was developed independently and parallel to the work in this thesis. While (Dummer, et al., 

2014) and (Rajdl & Lansky, 2015) use a renewal model to simulate the neuronal input into 

a dynamical neuron, Chapter 4.2 will develop a model where the dynamical neuron is 

replaced with an extracellular medium/microelectrode model. The work in (Camunas-Mesa 
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& Quiroga, 2013) used a similar model to this, where they investigated the neuron-electrode 

interaction using a special type of renewal process known as a Poisson process. 

 

2.2.2 Properties of renewal models 
 

To begin this section a definition of renewal processes, as related to spike trains, will be 

formalized. Using this definition useful properties of renewal processes that relate to the 

research undertaken for this thesis will be presented. 

 

First a series of positive times, 𝑇𝑖, that are independent, identically distributed random 

variables that have an expectation value (𝔼[ ]): 

0 < 𝔼[Ti]  < ∞. (2) 

This series of times represents the ISI times for a given neuron. The spike time (tn) of the 

nth spike, where 𝑛 > 0, can then be written as: 

𝑡𝑛 = ∑ 𝑇𝑖

𝑛

𝑖=1

. 
 

(3) 

A random variable, 𝑁𝑡, can now be defined that counts the number of spikes up until a time 

t by considering the supremum of the set of spike times less than or equal to t: 

𝑁𝑡 = sup{𝑛: 𝑡𝑛 ≤ 𝑡}. (4) 

Since renewal processes are often concerned with the number of events within a period, the 

renewal function is defined by: 

𝑚(𝑡) = 𝔼[𝑁𝑡]. (5) 

To see the usefulness of the renewal function, consider when the ISI times are drawn from 

a probability density function (𝑓(𝑡)), pdf, defined by the cumulative distribution function 

(𝐹(𝑡)): 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 . 

(6) 

The renewal function satisfies the renewal function: 

𝑚(𝑡) = 𝐹(𝑡) +  ∫ 𝑚(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠
𝑡

0

. 
(7) 

Taking the derivative of the renewal function  

𝑑𝑚(𝑡)

𝑑𝑡
=

𝑑𝐹(𝑡)

𝑑𝑡
+

𝑑

𝑑𝑡
∫ 𝑚(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠

𝑡

0

. 
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𝑑𝑚(𝑡)

𝑑𝑡
= 𝑓(𝑡) + ∫

𝑑𝑚(𝑡 − 𝑠)

𝑑𝑡
𝑓(𝑠)𝑑𝑠

𝑡

0

. 
(8) 

Solving for 
𝑑𝑚(𝑡)

𝑑𝑡
 in terms of the ISI pdf gives: 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑓(𝑡) +  ∫ 𝑓(𝑡′)𝑓(𝑡 − 𝑡′)𝑑𝑡′

∞

0

+ ∫ ∫ 𝑓(𝑡′)𝑓(𝑡′′)𝑓(𝑡 − 𝑡′ − 𝑡′′)𝑑𝑡′
∞

0

𝑑𝑡′′
∞

0

+ ⋯ 

(9) 

This result is of interest because it shows how the renewal function can be written in terms 

of an infinite sum of nested convolutions of the ISI pdf. The nested convolutions represent 

the probability of a spike at time t. The first term is the probability of the first spike, the second 

term the probability of the second spike, etc. Hence, the derivative of the renewal function 

can be thought of as the probability density of any spike occurring at a given time, and is 

known as the renewal density function.   

 

To represent a neuron with this model the ISI times can be drawn from a pdf. Using these 

times and given the action potential shape, g(t), the neuron time series can be written as:  

 
𝑉(𝑡) =  ∫ 𝑔(𝑡 −  𝑡′) ∑ 𝛿(𝑡′ − 𝑡𝑛)

∞

𝑛=1

𝑑𝑡′
∞

0

, ∀  𝑡 > 0 
(10) 

The autocorrelation function of the single neuron time series, with a firing rate of 𝜈, has been 

shown as a function of the renewal density function as: 

 
𝑅(𝑡) = 𝜈 ∫ 𝑔(𝑡 − 𝑡′)

𝑑𝑚(𝑡)

𝑑𝑡
 𝑑𝑡′

∞

0

, ∀  𝑡 > 0 
(11) 

Taking the Fourier transform of 𝑅(𝑡) and by the Wiener–Khinchin theorem, the power 

spectrum of a filtered renewal process is given by (Banta, 1964): 

 
𝑃(𝜔) = 𝜈𝐺(𝜔) [1 + 𝑅𝑒 {

𝐻(𝜔)

1 − 𝐻(𝜔)
}] , ∀  𝜔 > 0 

(12) 

where 𝐺(𝜔) is the action potential power spectrum, 𝐻(𝜔) is the Fourier transform of the ISI 

pdf, known was the characteristic function. Equation (12) can be extended to a sum of N 

renewal process neurons by including a distribution function (A) to represent the amplitude 

of each neurons contribution (Banta, 1964):  

 
𝑃(𝜔) = 𝑁⟨𝐴2⟩𝜈𝐺(𝜔) [1 + 𝑅𝑒 {

𝐻(𝜔)

1 − 𝐻(𝜔)
}] , ∀  𝜔 > 0 

(13) 

This simple analytical model for predicting the power spectrum of a filtered renewal process 

with changes in the ISI probability function is used in Chapter 4.4 and 4.5 to parametrically 

characterise the MER simulations (details on the method provided in Chapter 4.3.2). An 
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interesting property of Equation (13) is that for a Poisson process the term in the square 

brackets becomes constant for all frequencies. 

 

2.2.3 Renewal models of the subthalamic nucleus 
 
The participants for the deep brain MER recordings are undergoing treatment for a 

pathological state that is treated by altering STN function. This could imply abnormal function 

of the STN relates to a change in the distribution of ISI time (Sarma & al., 2010) and could 

be used to monitor disease. Although neurons are often modelled using Poisson statistics, 

exponentially distributed ISI times, the STN can exhibit a range of different ISI distributions 

(Theodosopoulos, et al., 2004).  A renewal model can still be used by modifying the ISI 

distribution for these different cases, for example bursting fire can be described using a 

stretched exponential distribution and periodic firing can be described by a Rayleigh 

distribution. A parameterized probability distribution that can give these common types of 

behaviour found in STN neurons, such as bursting, Poisson and periodic behaviour, is the 

Weibull distribution (Perkel, et al., 1967) (Perkel, et al., 1967) (McKeegan, 2002) (Li, 2011). 

By fitting parameters of the Weibull distribution, a renewal model could be developed for the 

STN.  

 

Table 1 - THE MEAN FIRING RATE FOR STN CELLS TAKEN FROM MERS (Theodosopoulos, et al., 2004). 

STN Mean Discharge Rate 
(Hz) 

# STN cells recorded 

34 102 

37 248 

39 45 

41 24 

46 213 

33 200 

59-69* 190 

*Rate varied according to firing pattern observed. 
 
One of the first hypothesis to adopt the approach of using the ISI statistics to characterise a 

neurons response was by Adrian and Zotterman (Adrian & Zotterman, 1926), where the first 

statistical moment, the firing rate, was used to characterize neurons activity in the presence 

of different stimuli. The mean firing rate for STN cells is well studied, shown in Table 1 

(Theodosopoulos, et al., 2004). A problem with the rate hypothesis is that the ISI timing can 

vary while the same overall rate is produced. For the STN an example of this is the difference 

between a regular cell and a tremor cell, shown in Figure 14. The spontaneous discharge 
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characteristics for STN neurons change dependant on Parkinsonian state (Kuhn & al., 2009) 

(Theodosopoulos, et al., 2004) (Rubin & Terman, 2004). It has been found that while the 

mean firing rate increases with Parkinson’s disease, the rhythmic and non-rhythmic burst 

firing increased from 69% to 79% of neurons. This means the rate alone cannot be used as 

a measure to always explain the neurons behaviour and more sophisticated coding schemes 

were needed (Stein, et al., 2005). This variability can be characterized using the next 

statistical moment in the form of the coefficient of variation (CoV) defined as the standard 

deviation of the ISI time divided by the mean ISI time (Tuckwell, 1979). The CoV is a 

normalized metric of the spread of neural firing times. The extension of analysis to 

measuring the CoV can describe the variability in ISI times and how they relate to the 

information capacity of a neuron (MacKay & McCulloch, 1952).  

 

 
Figure 14 - The different cell behavior in STN cells.  Standard STN single cell and an STN Tremor cell. 

 

To decide what distribution is best to use for the renewal process used to generate the spike 

timing, the STN firing behaviour needs to be considered. Using the Weibull distribution for 

ISI times can generate common neuron firing behaviour found in the STN. The Weibull 

distribution is characterized by two parameters, the shape parameter and the scale 

parameter. The scale parameter controls the rate of neuron firing, while the shape parameter 

can be tuned to model periodic, burst or Poisson firing statistics. Another consideration for 

using the Weibull distribution is that the coefficient of variation (𝐶𝑣) can also be fully 

described using only the shape parameter: 

 

𝐶𝑣 =  
𝜎

�̅� 
=

√Γ(1+
2

𝑘
)−Γ(1+

1

𝑘
)

2

Γ(1+
1

𝑘
)

, 

 

(14) 

where Γ( ) is the gamma function, 𝑘 is the Weibull shape parameter, �̅� is the mean ISI time 

and 𝜎 is the standard deviation of ISI times. Because the coefficient of variation is a common 

metric for neural recordings and can be entirely described using the Weibull shape 

parameter, the Weibull distribution shape will be used to model the MERs. The shape 
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parameter will also be used to fit MERs to the model, described in Chapter 4.3.2. Using a 

single value to characterize the recording also opens avenues of future research where that 

variable could be used to confirm electrode location, diagnose disease or as a feedback 

state in adaptive DBS. 

 

2.3 Models of the basal ganglia 
 
The basal ganglia (BG) is a closed neural system that has been highly studied with 

applications for the treatment of movement disorders such as Parkinson’s disease (Davie, 

2008). The STN is a functional body of neurons that sits within the BG. In addition to inter-

nucleus connections the neurons are also highly connected to surrounding structures in the 

BG. The anatomy of the BG, highlighting the type of connections neurons in one structure 

have with another, is shown in Figure 15 (Gurney, et al., 2001). This figure shows the 

inhibitory (GABA) projections and excitatory (glutamate) projections of the BG. D1 and D2 

represents the (dopaminergic) cells in the striatum and have afferent excitatory pathways 

from the Cortex. From the straitum, D1 cells inhibit the globus palidus internal (GPi). The D2 

cells inhibit the globul palidus external (GPe), which in turn inhibits the STN. The STN then 

has excitatory projections into the GPi. The GPe has inhibitory projections into the GPi and 

STN. The STN also has excitatory connections into the GPe and GPi. The GPi then projects 

into the thalamus and the brainstem. This seemingly simple model is successful at 

describing the pathophysiological processes, such as those involved in Parkinson’s Disease 

(Albada & Robinson, 2009) (Albada & Robinson, 2009) (Liu, et al., 2017). 
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Figure 15 – Anatomy of the Basal Ganglia (a) The internal connections of the basal ganglia. (b) the external connections of the 
basal ganglia. From (Gurney, et al., 2001). 

To appropriately model the STN firing times under different conditions, the STN connections 

within the BG and afferent connections to the BG need be modeled. The set of dynamical 

models presented in Chapter 2.1 can be extended to model the BG by including individual 

neurons simulated in the multiple structures. All the neuron models are then coupled to each 

other to represent the physical axonal connections between the different structures. This 

increases the computational time of the models significantly, as a large number of neurons 

are required for each structure involved. Because of this restriction in computational time, 

these types of models won’t be considered.  

 

The connectivity of the neurons within the BG leads to an extremely large number of states 

to model, O(104) – O(108) when considering neurons can have O(104) connections to other 

neurons. This is a problem when modelling parts of the brain as a dynamical system. When 

modelling these complex system, to reduce the size of this state space, a neural field model 

can be used (Albada & Robinson, 2009). These models borrow from the often-used mean 

field theory of physics to reduce a highly-interconnected structure of the brain down to the 

time evolution of the distribution of firing times throughout the structure. This reduces a 

many-problem body down to a one-body problem. These field models are often expanded 

into the distribution’s moments, giving a second order ordinary differential equation for each 

moment (Albada & Robinson, 2009). Basal ganglia field models of the first moment, the 

mean firing rate, have been developed and are known as neural mass models (Albada & 

Robinson, 2009) (Albada, et al., 2009) (Liu, et al., 2017). These models have been used 

with great success for analysis of movement disorders that are treated with DBS. The 
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advantage of these models is to reduce the high dimensionality of the state space down to 

two states per brain structure, firing rate and change in firing rate. 

 

To get a clearer understanding of how these models work the states of a neuron that 

describe its behaviour have to be established. Consider each neuron has a state x that 

describes the important variable of a neurons dynamics, such as the membrane potential 

(V), the membrane currents (I) and any other variable required: 

𝑥 = {𝑉, 𝐼, … }. (15) 

The evolution of the state of a single neuron can then be described using the Langevin 

equation: 

d𝜈 = 𝑓(𝑥, 𝑡)𝑑𝑡 + 2√𝐷(𝑥, 𝑡) 𝑑𝑊, (16) 

where 𝑓() is an arbitrary function and 2√𝐷(𝑥, 𝑡) 𝑑𝑊  represents a stochastic evolution 

following a Weiner process. The function 𝑓() can be non-linear and the evolution of 𝑣 is not 

deterministic. For this type of stochastic evolution the probability distribution of the possible 

states, 𝑝(𝑥, 𝑡), can be described exactly using the Fokker-Plank equation: 

𝑑𝑝(𝑥, 𝑡)

𝑑𝑡
= −

∂

∂𝑥 
(f(𝑥, t)p(ν, t) − D

∂p(𝑥, t)

∂𝑥
) 

(17) 

 

By assuming the afferent currents arriving at neurons have the same statistics the mean 

field approximation can be used to simplify Equation (18). The mean field approximation for 

neurons reduces the set of states to the distribution of membrane voltage (𝑉) and membrane 

current (𝐼 =
𝑑𝑉

𝑑𝑡
),  mean firing rate 𝜈(𝑡) and the variance of the firing rate 𝜎2. Using the 

membrane resistance (𝑅) and the membrane time constant (𝜏) the Langevin equation can 

then be reduced to:  

𝑅𝐼 = 𝜈(𝑡) + 𝜎 √𝜏𝑑𝑊. (18) 

The evolution in time of the neural field distribution can now be describe using: 

𝑑𝑝(𝑥, 𝑡)

𝑑𝑡
=

1

2𝜏
𝜎2

∂2p(𝑥, t)

∂𝑥2
+

∂

∂𝑥
[
𝑥(𝑡) − 𝜈(𝑡)

𝜏
𝑝(𝑥, 𝑡)]. 

(19) 

 

A common simplification of Equation (19) is to consider the distribution of states expanded 

into statistical moments (𝜇𝑖) using basis functions (𝜂𝑖): 

𝑝(𝑥, 𝑡) = ∑ 𝜇𝑖𝜂𝑖

 ∞

𝑖=0

 . 
(20) 
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For neural models, it has been shown that these moments decay exponentially after 

perturbation leaving the zeroth moment, 𝜇0 the mean, also known as the mass. This allows 

description of the system by using a single value rather than a distribution and is known as 

a neural mass model. Performing this first order expansion about the statistical moments, 

resulting in a system of ordinary differential equations which approximately describes the 

average voltage for a body of neurons given by: 

 𝜇�̇� =  𝑦𝑙 (21) 

 
𝑦�̇� = 𝑎𝑏 [∑ 𝛼𝑙𝑘𝜁(𝜇𝑘(𝑡 − 𝜏𝑙𝑘))

𝑘

− (
1

𝑎
+

1

𝑏
) 𝑦𝑙 − (

1

𝑎𝑏
) 𝜇𝑙] 

 

 
(22) 

 
𝜁(𝜇𝑙) =

𝑆𝑚𝑎𝑥

1 + 𝑒𝑘(𝜃−𝜇𝑙)
 

(23) 

where 𝑦𝑙 is the mean membrane current of the target nucleus (𝑙), 𝜇𝑙 is the mean voltage of 

the target nucleus, 𝛼𝑙𝑘 is the strength of coupling from the nuclei 𝑘 to the target 𝑙 and 𝜏𝑙𝑘 is 

the axonal propagation delay, 𝑆𝑚𝑎𝑥 is the maximum firing rate of the target, 𝑎 is the decay 

time constant of the membrane and 𝑏 is the rise time constant (both relate to 𝑅 and 𝜏 in 

Equation (18)), 𝜃 is the potential that gives half the maximum firing rate and 𝑘 controls the 

slope of the sigmoid to give realistic rates for a given input potential. Equation (23) turns the 

mean neuron membrane potential into a mean firing rate and is a common method to 

compensate the model’s inability to couple the mean to higher order moments (Deco, et al., 

2008). This set of differential equations, Equations (21), (22), (23) are the basis for Chapter 

4.5. 

 

The neural mass model only describes the evolution of neural dynamics on a temporal scale. 

The dynamics can be extended to include spatial extent by extending 𝜈(𝑡 ) → 𝜈(𝑡, 𝑥). This 

type of model is particularly important for structures with large spatial extent, such as the 

cortical sheet (Robinson, et al., 1997) (Robinson, et al., 2005). While these methods have 

been successful in describing experimental observations, it is not considered important for 

this study as it has been shown that the structures in the BG can be successfully modelled 

without including spatiotemporal dynamics (Albada & Robinson, 2009) (Albada, et al., 2009). 

 

The neuron models being considered in this study for simulating STN MERs are statistical 

models. This prevents modelling of the BG by including neurons within structures other than 

the STN and conections between them. The BG neural-mass model provides a method for 

describing the behaviour of the BG and providing an instantaneous average firing rate of the 
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STN. For a single neuron this instantaneous firing rate describes the probability density of a 

spike occuring. This probability is distinct from the ISI probability distribution described in 

Chapter 2.2.2. It is however an equivalent probability density to the renewal density function 

in Chapter 2.2.2. To see the equvilance the rate, 𝜈, can be thought of as the change in the 

number of spikes, Nt, in time: 

𝜈 =
𝑑𝑁𝑡

𝑑𝑡
. 

(24) 

 The renewal density function can also be described with the rate by combining equation 

(5), (23) and (24): 

𝑑𝑚(𝑡)

𝑑𝑡
=

𝑑𝔼[𝑁𝑡]

𝑑𝑡
= 𝔼 [

𝑑𝑁𝑡

𝑑𝑡
] =  𝔼[𝜈] = 𝜁(𝜇𝑉). 

(25) 

This motivates fitting a renewal model to MER simulations in Chapter 4.3.2. 

 

By modifying the MER simulations from Chapter 4.2 to have neuron firing times modulated 

by a BG neural-mass model, the validity of using the Weibull distribution to model ISI times 

in a renewal process model can be investigated. The methodology for developing this 

modification is in Chapter 4.5, with the results presented in Chapter 5.3.  

 

2.4 Neuron-Electrode Interaction 
 
The models discussed so far only consider the behaviour of the neurons that contribute to 

the recording but do not consider how the electric field of the neurons interacts with the 

extracellular medium between the neuron cell and the microelectrode. To investigate how 

further neurons could contribute to the background noise of an MER these extracellular 

effects need to be considered. Several studies have looked at the effects of the extracellular 

medium on the electric field produced by a neuron  (Bedard & Destexhe, 2009), (Bedard, et 

al., 2006), (Bedard, et al., 2004), (Buzsaki, et al., 2012), (Gold, et al., 2006). These studies 

involve simulating the neurons at different distances from an electrode and filtering their 

contributions to generate the electrical response at the electrode. 

 

To turn the neuron simulations into an MER the electric field picked up by the electrode 

needs to be developed. The simulations of extracellular recordings of neurons consider how 

neurons located at different positions interact with the electrode. The electrode senses the 

neuron spikes through the electric field that propagates from the neuron. This electric field 

is known as the extracellular action potential (EAP). The EAP is generated by ionic currents 
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around the active neuron that can change as different cellular processes occur (Bedard & 

Destexhe, 2009). As the EAP propagates through the extracellular medium to the electrode 

it will pass through regions with different conductivity and permittivity (Bedard, et al., 2004). 

This will cause filtering effects along with attenuation of the field. This means that the 

electrode will record a different EAP for each neuron depending upon the distance from the 

electrode and the media in between. 

 

The models that are used to generate electrode recordings from this method are only 

performed using tens of neurons. This is due to the type of experiments modelled which 

involve capturing single neuron spike trains. Single unit recordings with multiple electrodes 

have been performed in a small region of a cat parietal cortex, due to the restriction on the 

number of simultaneous recordings, only the activity of tens of neurons is recorded.  

 

The most recent work in propagation of electric fields in the brain made use of boundary 

element methods (Hofmanis & al., 2011). They found that the boundary element method 

was accurate when predicting the field from DBS near the skull, however an analytical dipole 

model with homogenous media for DBS was sufficient in predicting the field power across a 

large frequency range close to the DBS source. As this thesis only involves interactions 

between neurons and electrodes deep inside the brain, far from the skull, it appears suitable 

to use an analytical method for determining the electric fields.  

 

The electrodes used to capture MERs have a 50 µm tip diameter. This tip size is larger than 

electrodes used for single cell recordings (~1 µm) and considerably smaller than the 

implanted electrode (~1 mm). This intermediate size allows the electrode to record high 

frequency electrical activity, associated with the behaviour of single neurons and apply 

electrical stimulation without causing damage to the surrounding tissue. However, a 

consequence of the microelectrode tip size is that it contains a large degree of background 

activity compared to a high impedance single neuron recording electrode (Humphrey & 

Schmidt, 1990). 

 

This process modifies the frequency behaviour recorded by the electrode for that neuron. 

These effects change the power spectra of a neuronal recording and need to be considered 

when producing a model of MER power spectra. Finite element models (FEM) have been 

created to describe the electric field of neurons as it propagates through the extracellular 
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medium (Gold, et al., 2006). The FEM simulations show that the extracellular medium 

causes low pass filtering and attenuation of the potential measured at the electrode, shown 

in Figure 16. The spatial composition of the extracellular medium is required to use these 

methods and these methods are computationally expensive. Complications can be reduced 

by assuming average properties of the extracellular medium (Bedard, et al., 2004). This also 

removes the need to define the exact extra cellular composition for each neuron-electrode 

interface. The average extracellular filtering of the neuronal electric field at the electrode can 

be described by a complex transfer function relating the cellular current to the voltage 

recorded by the electrode, i.e. the impedance of the extracellular material (Bedard & 

Destexhe, 2009) (Bedard, et al., 2004). This assumes the neurons act as a point current 

source and a decoupled magnetic field. However, obtaining the transfer function for the 

extracellular medium is computationally expensive as a numerical integral needs to be 

calculated for each frequency component and for all neuronal positions. 

 

 

Figure 16 - Comparison of calculated EAPs (solid lines) with experimentally measured EAPs (dashed lines). These graphs show 
good agreement between the EAP calculated using Laplace’s equation and that measured. From (Gold, et al., 2006). 

 

A circuit model simplification of this extracellular filtering can be used to find a simplified 

form of the transfer function (James, et al., 2004), (McIntyre, et al., 2004).The effect of the 

radial distance to the electrode for each neuron is reduced to a “seal” resistance. This type 

of model also includes the frequency effects of the electrode geometry with Faradic 

resistance and capacitance. While the extracellular medium is known to be anisotropic over 

a scale of mm3 (McIntyre, et al., 2004) there is currently no data available to model this 

anisotropy at sub-mm levels. Therefore, we assume the extracellular medium between the 

neuron and probe can be treated as isotropic. 
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2.5 Summary 
 
Despite numerous studies that model the brain and electrode recordings, from single neuron 

models to large scale neural field models, and studies on analysis techniques on these same 

scales, from spike sorting to field potentials, there remains a gap: how large numbers of 

spiking neurons, > 𝚶(105), can contribute to an MER. Understanding how large volumes of 

neurons contribute to MERs will fill this gap in current scientific knowledge. The early results 

of Banta in the field of renewal models suggest that the electric field models can relate to 

the statistics of the inter-spike interval times. However, this connection relies on two 

conditions. First, the neuron action potential shape needs to be accurate. The Hodgkin and 

Huxley equation can generate an accurate action potential. This action potential could then 

be combined with the renewal model to represent the individual neuron behaviour. Second, 

the neuron behaviour needs to be well modelled by renewal statistics, where the ISI 

distribution remains stationary in time (time-homogeneous), which may not be the case 

when brain dynamics are considered. By investigating how well renewal models can be used 

to determine underlying dynamics will fill these gaps in scientific knowledge. This thesis 

addresses the deficits in knowledge highlighted above by developing a computationally 

efficient, renewal process model of STN microelectrode recordings and determining the ISI 

distribution by inverting the power spectrum of the electric field parametrically. Simulations 

using the model are tuned and verified using interoperative recordings from patients 

undergoing implantation of deep brain stimulation electrode. This work then investigates 

how modifying the IID properties of the model, by including effects such as synchronization 

and brain dynamics, affect the ability to fit a renewal model to an MER. This will help to 

identify the validity of using the renewal model of STN MER noise as a potential biomarker 

of large scale STN behaviour, an approach that has not previously been done.  
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3 Summary of Papers 
 

Paper A (An efficient stochastic based model for simulating microelectrode recordings of 

the deep brain. (2012), Kristian J. Weegink, John J. Varghese, Paul A. Bellette, Terry Coyne, 

Peter A. Silburn, and Paul A. Meehan, Proceedings of Biosignals 2012, International 

Conference on Bio-Inspired Systems and Signal Processing. 5th International Joint 

Conference on Biomedical Engineering Systems and Technologies (BIOSTEC), Vilamoura, 

Portugal, pp 76-84. 1-4 February 2012.) contains details on a stochastic model for simulating 

STN MER recordings. The model simulates 10000’s of neurons spike patterns as point 

processes using a Weibull distribution to describe the inter-spike interval times. 

 
 

Paper B (Spikes from compound action potentials in simulated microelectrode recordings. 

(2015), Kristian J. Weegink, John J. Varghese, and Andrew P. Bradley, 2015 IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015 

International Conference on Acoustics, Speech and Signal Processing, South Brisbane, 

QLD, Australia, pp 813-816. 19-24 April 2015.) contains an extension of the model 

presented in Paper A to account for synchronisation between neurons. The synchronisation 

is added stochastically using two different methods. The first method gives every neuron an 

equal probability of firing when a neuron fires. The second method uses a spatially weighted 

probability of firing when a neuron fires. It is found that the synchronisation doesn’t affect 

the statistics found using the stationary model of this thesis. The other result is that the 

synchronisation can cause the field contribution from multiple neurons to build up creating 

a compound action potential (CAP). It is then investigated using spike sorting how the two 

different methods affect the number of CAPs can be disambiguated. 

 

Paper C (A Parametric Simulation of Neuronal Noise from Microelectrode Recordings. 

(2016), Kristian J. Weegink, Paul A. Bellette, John J. Varghese, Peter A. Silburn, Paul A. 

Meehan and Andrew P. Bradley, IEEE Transactions on Transactions on Neural Systems 

and Rehabilitation Engineering, Vol 25, no. 1, pp 4-13, Jan. 2017.) the results from Paper 

A are extended to validate the STN MER model against patient recordings. The number of 

neurons simulated for the simulation to match the patient recording was found to be ~10,000. 

The Weibull shape parameter used to best describe the patient data was 0.8. This simple 

model with a large number of neurons was successful in describing the voltage amplitude 
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distributions, power spectral density estimates and phase synchrony of patient data while 

varying only one free parameter (The Weibull shape of the inter-spike interval distribution). 

 

Paper D (Bayesian Approach for Stationary Analysis of Microelectrode Recordings Using a 

Neural Mass Model of the Basal Ganglia. (2017), Kristian J. Weegink, Paul A. Bellette, John 

J. Varghese, Andrew P. Bradley and Paul A. Meehan, submitted to IEEE Transactions on 

Biomedical Engineering, 2017.) the model from Paper C are extended to include the 

dynamics of the basal ganglia. A neural mass model is modified to include only first order 

effects from the time delays between BG structures. The STN dynamics from the neural 

mass model are then used to drive the MER model. The MER simulations are analysed 

using the inverse method that assumes stationary statistics. Using this method, it is found 

that depending on the cortical behaviour, the stationary assumption can be used to 

successfully analyse the recordings and calculate some properties of the neural mass 

model.  
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4 Methodology 
 
Within this chapter the details of the methods used for modelling and analysing MER 

recordings are given, organized into six sections. Section 4.1, Patient data, contains the 

patient information and the measurement method used to obtain the microelectrode 

recordings of the STN during surgery. Section 4.2, Microelectrode model, describes how 

combining a renewal process for the STN neurons firing with electrical models for the 

coupling of the neuron to the recording equipment can be used to simulate STN MERs. 

Analysis methods used for experimental and simulated MERs are presented in 4.3 

Validation and Analysis. Section 4.4, Neuron synchronisation, contains modifications to the 

model from section 4.2 to include synchronisation between neurons. Section 4.5, Brain 

dynamics, extends the neuron model from section 4.2 by introducing dynamics to the neuron 

firing times through a neural mass model that simulates the connectivity of the Basal 

Ganglia, driving the firing times of the STN via different cortical inputs. The final section, 4.6 

Summary, provides a summary of the methodology for the investigation using firing time 

renewal processes for modelling and analysis of single point microelectrode recordings of 

the subthalamic nucleus. 

 

4.1 Patient Data 
 
Patient data is required to validate the model and for use in case study analysis. Due to the 

limited availability of deep brain recordings all the data used in this thesis has been acquired 

from patients undergoing surgical implantation of a DBS stimulator for the treatment of PD. 

The data used in this thesis was obtained through a collaboration across a large 

multidisciplinary team. The experiments were designed and performed for a separate study, 

after the completion of which the data sets were made available for this study. This 

prevented acquisition of new data sets to allow exploration beyond the initial results. 

 

Nine participants (five male, four female) with idiopathic PD who were considered suitable 

for the implantation of bilateral permanent stimulator in the STN were included in this study. 

The patient age was 67 ± 5 years, with disease duration of 14 ± 6 years. Participants were 

all right handed and had no further neurological impairment. The participants had undergone 

psychiatric screening prior to DBS surgery. A summary of the patients is given in Table 2. 
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The dorsolateral aspect of the STN was targeted using a Cosman-Roberts-Wells frame-

based stereotactic frame with coordinates based on CT images fused with 3T MRI t1 and 

FLAIR sequences. The electrode placement was confirmed inter-operatively by an MER. 

The surgical procedure is described in detail in (Coyne, et al., 2006). Tungsten 

microTargeting electrodes (model mTDWAR, FHC, Bowdoinham, ME) with a tip diameter of 

less than 50𝜇𝑚 were used for the MER acquisition. The electrodes had a typical impedance 

of 0.5 ± 0.15 𝑀Ω at 1kHz. A LeadPoint© system (Medtronic Inc., Minneapolis, MN) was used 

to record the signals at a sampling rate of 24kHz. Three filters were applied (high 

pass:500Hz first order, low pass:5kHz first order and anti-aliasing:5kHz fourth order) as 

recommended by Medtronic. After the targeting electrode was inserted into the patient, they 

were examined for the stimulation effect on clinical signs (dyskinesia, tremor, rigidity, 

bradykinesia) and absence of adverse effects. To reduce patient variability if significant 

clinical symptoms were present, judged by the neurologist, data capture was not performed. 

After confirmation of the target the MERs were recorded. To further control for the variability 

in patient physiology and pathology each MER was recorded during resting phases, when 

the participant was lying still and not performing any cognitive or movement tasks. 

Recordings that contained movement artefacts and recordings from patients whose reaction 

time was less than a threshold were discarded. 

 

Table 2 - SUMMARY OF PARTICIPANTS FOR WHOM MER RECORDINGS WERE USED FOR THE VALIDATION OF THE MODEL 

Participant Age Gender Education Handedness Disease 

Duration 

Severity 

(H&Y) 

UPDRS 

III score 

Side of MER 

32 73 M 14 Right 8 NA NA Left 

38 58 M  11 Right 11 2 3 Bilateral 

53 71 M 13 Right 16 4 20 Bilateral 

61 71 F 10  Right 17 3 17 Bilateral 

69 66 F 14 Right 22 NA NA Bilateral 

74 65 F 7 Right 15 2 11 Bilateral 

103 62 M 9 Right 20 2 8 Right 

104 71 M 10 Right 3 NA NA Bilateral 

Note: H&Y = Hoehn and Yahr; UPDRS = Unified Parkinson’s Disease Rating Scale; NA not available. 
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4.2 Microelectrode Model 
 

This section describes how each part of this model is created to simulate MERs and is based 

on Papers A & C. The STN MER simulations created as part of this thesis involves reducing 

the individual neurons to renewal processes, where the ISI times are drawn randomly and 

are independent and identically distributed (IID). The spike trains of tens of thousands of 

neurons can be generated using this method. The neurons are then distributed around the 

electrode tip. The shape of the action potential shape is super imposed at the spike times 

and biological filtering affects are applied based on the distance from the neuron to the 

electrode. The signals from all the neurons are combined, along with noise, and the effects 

of the recording equipment are applied. A summary of the MER model is provided in Figure 

17 and the details are provided in the following sections. 

 

 

Figure 17 - Flow diagram summarizing how the MER simulations are performed. Neurons are generated around the electrode at 
different distances. (A) The spike times of the neurons is then generated by drawing the ISI times from randomly from a 
distribution function. (B) The effect of the electric field travelling through the extracellular medium is applied to each neuron 
individually. (C) The signal from each neuron is combined, and (D) then the filters used in the experimental acquisition are 
applied. 

 

4.2.1 Neuron spike current 
 

The STN firing times are modelled by assuming the ISI times form a random variable drawn 

from a Weibull distribution, Figure 17 (A), in time: 

 
𝑃(𝑡) = (

𝑡 − 𝑡𝑟

𝜆
)

𝑐−1 𝑐

𝜆
 𝑒−(

𝑡−𝑡𝑟
𝜆 

)
𝑐

    𝑓𝑜𝑟  𝑡 > 𝑡𝑟 
(26) 

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑃(𝑡) = 0, (27) 
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where 𝑃(𝑡) is the probability density function for the ISIs and 𝜆 is the scale parameter that 

controls the firing rate. The shape parameter c controls the neuronal behaviour; with 𝑐 < 1 

generating burst firing, 𝑐 = 1 Poisson statistics and 𝑐 > 2 firing times with a common mode, 

as shown in Figure 18. In the limit of 𝑐 → ∞ periodic behavior emerges. The parameter 𝑡𝑟 

controls the refractory time of the neuron, preventing another action potential occurring 

within this period. 

 

Figure 18 - Examples of how the shape parameter, c, modifies Weibull distributed ISI times. Example ISI distributions that 
describe (a) burst firing, (b) Poisson firing and (c) periodic firing. 

 

The neuron spike timing consists of a time series of Kronecker-delta pulses which are first 

created by drawing the ISI times from the Weibull distribution. Shape parameter, c, values 

of 0.5, 0.8, 1, 10 and 100 are used to validate the model against patient data. The scale 

parameter used corresponds to a firing rate of 30Hz and a refractory time of 9ms was used 

based on (Theodosopoulos, et al., 2004). The spike timing is converted to a neuronal current 

time series by convolving the Kronecker-delta pulses with the action potential shape. This 

process is used by all the neurons simulated. 

 

4.2.2 Action potential shape 
 

To apply the extracellular filtering affects, Figure 17 (B), the shape of the action potential at 

the neuron is required. The action potential shape is generated by numerically solving a 

Hodgkin and Huxley model using a variable order solver. The Hodgkin and Huxley model 

parameters used were for the medium spiny neuron based on (Terman, et al., 2002):  
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𝐶𝑚 =

𝑑𝑉

𝑑𝑡
 

(28) 

 𝐶𝑚 = −𝑔𝐿(𝑉 − 𝑣𝐿) − 𝑔𝐾𝑛4(𝑉 − 𝑣𝐾) − 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝑣𝑁𝑎) − 

𝐺𝑇𝑎3𝑏2(𝑉 − 𝑣𝐶𝑎) − 𝑔𝐶𝑎𝑠2(𝑉 − 𝑣𝐶𝑎) 

(29) 

where 𝐶𝑚 is the membrane capacitance (1pF/𝜇𝑚2); 𝑔𝐿, 𝑣𝐿 are the leak conductance and 

reversal potential (2.25nS/𝜇𝑚2 and -60.0mV respectively); 𝑔𝐾, 𝑣𝐾 are the 𝐾+ conductance 

and equilibrium potential (45nS/𝜇𝑚2 and -80.0mV respectively); 𝑔𝑁𝑎, 𝑣𝑁𝑎 are the 𝑁𝑎+ 

conductance and equilibrium potential (37.5nS/𝜇𝑚2 and 55.0mV respectively); 𝑔𝑇 is a low-

threshold T-type 𝐶𝑎2+ conductance (0.5nS/𝜇𝑚2); and 𝑔𝐶𝑎, 𝑣𝐶𝑎 are a high-threshold 𝐶𝑎2+ 

conductance and a 𝐶𝑎2+ equilibrium potential (0.5nS/𝜇𝑚2  and 140.0mV respectively). The 

gating variables n, m, h, a and b follow the ODE given in Equation (30), the physical 

parameters used are summarized in Table 3 (Terman, et al., 2002). The action potential 

produced is resampled at 24kHz to match the sample rate of the recording equipment. 

 �̇� = 𝛼𝑥(𝑉)(1 − 𝑥) − 𝛽𝑥(𝑉)𝑥. (30) 

   

Table 3 - SIMULATION PARAMETERS FOR THE HODGKIN AND HUXLEY MODEL OF THE STN. 

Parameter Value 

𝐶𝑚 1 𝑝𝐹 𝜇𝑚⁄  

𝑔𝐿 2.25 𝑛𝑆/𝑚2  
𝑣𝐿  −60.0 𝑚𝑉 

𝑔𝐾 45 𝑛𝑆/𝑚2 

𝑣𝐾   −80.0 𝑚𝑉 

𝑔𝑁𝑎 37.5 𝑛𝑆/𝑚2 

𝑣𝑁𝑎 55.0 𝑚𝑉 

𝑔𝑇 0.5 𝑛𝑆/𝑚2 

𝑔𝐶𝑎 0.5 𝑛𝑆/𝑚2 

𝑣𝑐𝑎 140.0 𝑚𝑉 
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4.2.3 Neuron-Electrode interaction 

 

Figure 19 - Circuit diagram of the electrical model used for MER simulations. The cell membrane is treated as a signal generator 
that is coupled to the extracellular medium through a capacitor (Cl). Rl represents the resistance of the extracellular medium 
between the neuron and electrode. RL and Cb model the leakage resistance and capacitance of the body. The electrode is 
modeled with faradic coupling, Rf and Cf, and a resistance Re.    

 
To couple each neuron to the electrode, Figure 17 (B), the extracellular effects need to be 

considered. To do this each neuron is modelled as a point source, by assuming the current 

is being generated from only the axon hillock and it is small (~1𝜇𝑚) compared to the 

electrode tip (~50𝜇𝑚). The current time series is then filtered using an impedance based on 

the distance of the neuron from the electrode to find the potential contributed by each 

neuron. This model assumes a far-field approximation to the electric field incident on the 

electrode. This allows us to sum the voltages linearly after they are found through the 

relation:  

 𝑉𝜔(𝑟) = 𝐼𝜔 𝑍𝜔(𝑟) (31) 

where 𝐼𝜔 is the frequency components of the current at the neuron. The impedance filter 𝑍𝜔 

is found by determining the transfer function 
𝐼𝜔

𝑉𝜔
 for the circuit model for the neuron-electrode 

interaction, shown in Figure 19. This circuit model evaluates the propagation of the electric 

field through the extracellular medium, and is not an actual electron current. Circuit element 

values in this model depend on the radial distance between the electrode and neuron, the 

size of the electrode tip and the impedance of the electrode, where 𝐶𝑙 is the membrane-

electrolyte interface capacitance, 𝑅𝐿 is the body resistance to ground (the spread of the field 

from the neuron), 𝐶𝑏 is the body's capacitance, 𝑅𝑙 is the resistance between the cell and the 

electrode (seal of the electric field by the neuron to the electrode (James, et al., 2004) 

(McIntyre, et al., 2004)), 𝑅𝑓 and 𝐶𝑓 are the electrode Faradic resistance and capacitance 
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and 𝑅𝑒 is the electrode resistive load. The voltage for the recording, 𝑉𝜔, is taken across the 

load resistance (𝑅𝑒). 

 

The neuron radial distribution, 𝑁(𝑟) where r is the distance from the electrode, is randomly 

generated using a uniform spatial distribution with density, 𝜌 = 105𝑐𝑚−3 (Theodosopoulos, 

et al., 2004). 

 𝑁(𝑟) = 4𝜋 𝑟2𝜌 (32) 

The complete time series from all neurons are then summed together linearly to create the 

potential across the electrode, Figure 17 (C). Thermal white noise (Johnson-Nyquist noise) 

is added to the electrode to match experimental conditions. The statistics of the noise are 

described by: 

 ⟨𝑉⟩ = 0,   ⟨𝑉2⟩ = 4𝑘𝐵𝑇𝑅(𝑓)Δ𝑓 (33) 

where 𝑘𝐵 is Boltzmann's constant, T is the temperature (assumed to be average body 

temperature 37𝑜𝐶, 𝑅(𝑓) is the electrode resistance, Δ𝑓 is the bandwidth of the recording and 

⟨… ⟩ represents the time average. The product 𝑅(𝑓)Δ𝑓 is calculated by integrating the 

product of 𝑅(𝑓) with the gain function 𝐺(𝑓) of the equipment over frequency: 

 
𝑅(𝑓)Δ𝑓 = ∫ 𝑅(𝑓)𝐺(𝑓) 𝑑𝑓

∞

0

 
(34) 

To match simulations to the surgical conditions, Figure 17 (D), the simulated voltage time 

series is passed through three filters described in section 4.1. The filters are models of the 

two software filters with a 500Hz first order high pass, 5kHz first order low pass and the 

hardware 5kHz fourth order anti-aliasing filter. 𝐺(𝑓) is found by multiplying a flat unity power 

spectrum, 𝑃(𝑓) = 1, by the filter gains. 

 

4.3 Validation and Analysis 
 
This section contains the methods used to validate the MER model by comparing features 

to what is seen in the patient recordings and contains the work in Paper C. The MER model 

is a top-down model, where details are added to the model so that it can reproduce features 

found in experimental data. Section 4.3.1 contains the validation methods used to determine 

what features of the patient data the model can reproduce. Section 4.3.2 has the details on 

how to fit the model to an MER, used to test how well the renewal model matches simulations 

where the IID assumption is relaxed in Paper B and Paper D. 
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4.3.1 Validation of modelled MERs using patient recordings 
 
The validation of the model is broken into three sub sections. The sub-sections look at the 

distribution of signal amplitude in the time domain, linear fits of the modelled power spectral 

estimate to patient power spectral estimates and comparisons of synchronous phase 

components of the modelled MER to patient MERs. These tests assess how well the model 

describes the first order statistics of the patient recordings, the distribution of amplitudes in 

the time and frequency domain as well as the phase distributions in the frequency domain. 

  

For the analysis in this section the tests are averaged over multiple recordings from the 

same patient and the two separate patient sides (left, right) were analysed separately. 

Patient recordings that contained movement artefacts, defined by amplitude > 10 mV, or 

had recording times less than 1s were removed from the analysis. After this removal 

process, 84 MERs from 14 patient-hemispheres are left. 

4.3.1.1 Test of Voltage Distributions 

 
In time, MERs are stochastic in nature, meaning two signals in the time domain cannot be 

compared by correlation of how their voltage changes in time. To perform a comparison in 

the time domain the distribution of voltages observed can be used. A two-sided Kolmogorov-

Smirnov (KS) test is used on the distribution of the voltages in time. The KS test produces 

a p-value that the amplitudes for the patient recordings are drawn from the same distribution 

as the simulated MERs. The statistic is found by taking the supremum (maximum) of the 

distance between empirical cumulative distribution functions, 𝐹𝑖(𝑥), for the two distributions: 

 𝐷 = sup
x

|𝐹𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑥) − 𝐹𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑥)| (35) 

This test is symmetric for patient data compared to simulation, versus simulation compared 

to patient data. It is used as a goodness of fit for the simulation data fitting the patient data. 

4.3.1.2 Power Spectrum Comparisons 

 
Power spectra for the patient and simulated recordings are calculated using Welch’s 

overlapping segment method with a Hamming window (Welch, 1967). The power spectra 

are estimated for five different simulation parameters, c = [0.5, 0.8, 1, 10, 100], and 

compared to the 14 patient-hemisphere recordings using linear regression. The linear 
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regression is performed between patient power spectral estimate, 𝑃𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝜔), against the 

simulated power spectral estimate for each frequency:  

 𝑃𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝜔𝑖) = 𝑎 𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝜔𝑖)  ∀ 𝜔𝑖 . (36) 

The correlation coefficient, R2, was used to assess the goodness of fit for the simulation data 

fitting the patient data.  

 

4.3.1.3 Phase comparisons 

 

To compare the phase components, and to complete a comparison of the first order statistics 

of the patient and simulation MERs, the component synchrony measure (CSM), (Fridman, 

et al., 1984), is used: 

 𝐶𝑆𝑀(𝜔)  =  1 − 𝑣𝑎𝑟{𝜑(𝜔)}. (37) 

The individual recordings are divided into 100ms non-overlapping sections. The variance of 

the phase for each frequency for each section can be found using:  

 

𝑣𝑎𝑟{𝜑(𝜔)} =  1 − [
1

𝑁
 ∑ cos 𝜑𝑖 (𝜔)

𝑁

𝑖=1

]

2

 − [
1

𝑁
 ∑ sin 𝜑𝑖 (𝜔)

𝑁

𝑖=1

]

2

 

(38) 

where 𝜑𝑖(𝜔) is the phase of the signal at frequency 𝜔 for signal segment i. The phase is 

found by taking the Fourier transform (𝐹[ ](𝜔)) of the signal segment (𝑥(𝑡)) and taking the 

inverse tangent of the ratio of the imaginary to real component, as,  

 
𝜑𝑖(𝜔) = tan−1

𝐼𝑚{𝐹[𝑥(𝑡)](𝜔)}

𝑅𝑒{𝐹[𝑥(𝑡)](𝜔)}
 . 

(39) 

A KS test is then used between the distribution of CSM across all the patient recordings 

versus the distribution over an equal number of simulations to determine the goodness of 

fit.  

  

4.3.2 Fitting the Model to an MER 
  

To analyse the signals generated by the MER simulations we model the spike trains 

generated as renewal processes. For a renewal process the ISI times are independently 

drawn from a single probability distribution that does not change in time. Modelling the ISI 

times (t) as independent events drawn from a Weibull distribution, shown in Equation (40) 

(where 𝑘 is the shape parameter and 𝜆 is the scale), allows a parametric method of fitting 

the model. 
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𝑓(𝑡; 𝜆, 𝑘) =

𝑘

𝜆
(

𝑡

𝜆
)

𝑘−1

𝑒−(
𝑡

𝜆
)

𝑘

  , ∀  𝑡 > 0 
(40) 

To differentiate between the Weibull shape parameter used for simulations, c, when the 

renewal model is being fitted to an MER, k, will be used for the shape parameter. 

 

To find the shape parameter power spectral estimates of the simulated MER using Welch’s 

method with five non-overlapping square windows are used. The inverse gain of the 

recording device is applied, using a regularization term that offsets the minimum gain to 

prevent amplification of noise. The power spectral estimate is then fit using least squares to 

the predicted power spectrum using the Marquardt-Levenberg algorithm. The predicted 

power spectrum of a renewal process (𝑃(𝜔)) is given by (Banta, 1964): 

 
𝑃(𝜔) = 𝐴 ∙ 𝐺(𝜔) [1 + 𝑅𝑒 {

𝐻(𝜔, 𝑘)

1 − 𝐻(𝜔, 𝑘)
}] , ∀  𝜔 > 0 

 

(41) 

where 𝐺(𝜔) is the action potential power spectrum (found using the HH model presented in 

4.2.2), 𝐻(𝜔, 𝑘) is the characteristic function of the Weibull distribution for shape parameter 

𝑘, and A is a scaling factor that accounts for the rate, the number of neurons contributing to 

the signal, and the distance of the neurons to the electrode. Details on the derivation of 

Equation (41) is given in Chapter 2.2.2. The factor A creates a degeneracy between the 

rate, neuron distance and neuron number. This degeneracy means the rate parameter found 

with the least squares fit is unable to uniquely determine the rate used for the simulation. 

However, as the literature review showed, the coefficient of variation, an important metric in 

neural coding, is defined in terms of only the shape parameter. The rate parameter may not 

be important in characterizing the ISI distribution for the neural signals analysed and is thus 

ignored.   

 

4.4 Neuron Synchronisation 
 
To determine if synchronised firing between neurons affects the ability to fit the renewal 

model to the recordings, two methods of including synchronisation between neurons are 

added to the model from 4.24.2. This work is presented in Paper B. 

 

A subset of synchronized neurons is defined at random during the initialization of the 

simulation. The neural spike times are generated following the same procedure as section 

4.2. An additional renewal time series is generated using the same ISI distribution. At the 
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spike times of this additional time series a spike is added to the subset of neurons selected 

to be synchronized. If a neuron fires as part of a synchronized subset, the next firing time is 

reset and redrawn from the single neuron ISI distribution. The MER simulation is then 

completed using the methods in section 4.2. 

 

To generate multiple synchronized sets of neurons, the process described above is repeated 

with a different group of neurons selected and a separate probability distribution for 

synchronized timing events generated. Neurons that synchronize in one group can still 

synchronize in another group. For spatial localization of groups, the neurons are selected 

using a Gaussian distribution in space, centred with a random distance from the electrode 

and a standard deviation that increases with the distance from the electrode, shown in 

Figure 20. 

 

Figure 20 - Spatial distributions of the likelihood of neurons firing when another neuron fires. The top three lines represent the 
probability distribution function of a neuron coupling with equal likelihood to any other neuron. The bottom lines represent the 
probability distribution of a neuron coupling to neurons that are spatially close.  

 

Previous analysis of STN recordings by Moran et al., which looked at the differentiation of 

spiking activity and background spike activity, could not be used for this study due to the 

differences in impedance of the electrodes used and the acquisition hardware settings 

(Moran, et al., 2008). This difference in electrode required development of a study specific 

analysis method. The signal to noise ratio (SNR) of the spikes is calculated by taking the 

average peak amplitude for a spike above a user set threshold and comparing it to the root 

mean square (RMS) voltage of the noise. The spike sorting analysis of the recordings is 

performed using Osort (Rutishauser, et al., 2006), with compact support bi-orthogonal ‘1.5’ 
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wavelet at individual wavelet scales corresponding to between 0.1 and 1ms. The clustering 

is unsupervised, with cluster validity checked by comparing spike timing to the synchronized 

times in the simulation. 

 

4.5 Brain Dynamics 
 

To investigate if the IID ISI times assumption of renewal processes is suitable for modelling 

of STN MERs the spike timings are generated by using a basal ganglia (BG) neural mass 

model. The microelectrode model from section 4.2 is modified to use these spike timings. 

This work can be found in Paper D. 

 

4.5.1 Basal Ganglia model 
 

For the neural mass model, the classical direct-indirect pathway model of the basal ganglia 

is used (Figure 21) (Albada & Robinson, 2009). This involves modelling the cortex with 

excitatory (Glutamate) projections into the D1 and D2 cells in the striatum. From the straitum 

D1 cells inhibit the globus palidus internal (GPi). The D2 cells inhibit the globul palidus 

external (GPe), which in turn inhibits the STN. The STN then has excitatory projections into 

the GPi. The GPe has inhibitory (GABA) projections into itself and the GPi. The STN also 

has excitatory connections into itself and the GPe. The GPi then projects into the thalamus 

and the brainstem, but this feature is not included in this paper. This seemingly simple model 

is successful at describing the pathophysiological processes, such as those involved in 

Parkinson’s Disease (Albada & Robinson, 2009) (Albada, et al., 2009) (Liu, et al., 2017). 
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Figure 21 - Direct and indirect pathways in the Basal Ganglia. The neural mass model includes the connections of the pathways 
described here. In the Striatum two sets of dopaminergic cell groups are modelled, D1 and D2. The GPi, GPe and STN are 
modelled as single groups of cells. The Cerebral Cortex is the input to the model and several different classes of functions are 
used to see how their properties affect the STN MER.  

A neural mass model involves modelling groups of neurons by using the Fokker-Plank 

equation to describe how the distribution of firing rates for a given group of neurons evolve 

over time and how different groups interact (Deco, et al., 2008). These types of equations 

can be simplified by performing a first order expansion about the statistical moments, 

resulting in a system of ordinary differential equations which describes their average firing 

rate for a group of neurons given by: 

 𝜇�̇� =  𝑦𝑣 (42) 

 
𝑦�̇� = 𝑎𝑏 [∑ 𝛼𝑣𝑘𝜁(𝜇𝑘(𝑡 − 𝜏𝑣𝑘))

𝑘

− (
1

𝑎
+

1

𝑏
) 𝑦𝑣 − (

1

𝑎𝑏
) 𝜇𝑣] 

 

(43) 

 
𝜁(𝜇𝑣) =

𝑆𝑚𝑎𝑥

1 + 𝑒𝑘(𝜃−𝜇𝑣)
 

(44) 

where 𝑦𝑣 is a dummy variable used to represent the second order system as a first order, 

𝜇𝑣 is the mean voltage of the target nuclei, 𝛼𝑣𝑘 is the strength of coupling from the nuclei k 

to the target and 𝜏𝜈𝑘 is the axonal propagation delay, 𝑆𝑚𝑎𝑥 is the maximum firing rate of the 

target, 𝑎 is the decay time constant of the membrane and 𝑏 is the rise time constant, 𝜃 is 

the potential that gives half the maximum firing rate and 𝑘 controls the slope of the sigmoid 
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to give realistic rates for a given input potential. The parameters used for the simulations 

using the neural mass model are listed in Table 4. 

 

Equation (43) introduces the delays caused by axonal propagation between structures, 𝜏. 

The delays increase the time for a numerical solution due to the different time scales 

involved preventing the use of variable time step solvers. When the delays are small 

compared to the characteristic times of the dynamics, the system can be approximated using 

perturbation analysis. All the delays are passed through the sigmoid function; therefore, a 

Taylor expansion of the sigmoid function can be performed, and sufficiently small terms can 

be truncated. The first expansion is performed around 𝑡: 

𝜁(𝜇𝑣(𝑡 − 𝜏)) =  𝜁(𝜇𝑣(𝑡)) + (𝑡 − 𝜏 − 𝑡)
𝑑𝜁(𝜇𝑣(𝑡))

𝑑𝑡

+
(𝑡 − 𝜏 − 𝑡)2

2!
 
𝑑2𝜁(𝜇𝑣(𝑡))

𝑑𝑡2
+ 𝑂(𝜏3)  

 

(45) 

𝜁(𝜇𝑣(𝑡 − 𝜏)) =  𝜁(𝜇𝑣) − 𝜏𝜁′(𝜇𝑣)
𝑑𝜇𝑣

𝑑𝑡
+

𝜏2

2!
 [𝜁′(𝜇𝑣)

𝑑2𝜇𝑣

𝑑𝑡2
+ 𝜁′′(𝜇𝑣) (

𝑑𝜇𝑣

𝑑𝑡
)

2

  ]

+ 𝑂(𝜏3) 

 

 

(46) 

where 𝜁′(𝜇𝑣(𝑡)) denotes the derivative with respect to 𝜇𝑣 and has been introduced into the 

equations using the chain rule and for convenience 𝜇𝑣(𝑡) is written as 𝜇𝑣. Considering the 

faster time constant, the membrane potential gain, is on the order of 2ms, the 𝜏2 term is very 

small (three orders of magnitude) in comparison to the decay and rise times of the 

membranes (a = 160s-1, b = 640s-1).  This allows us to neglect terms 𝑂(𝜏2) and substituting 

into the dynamics for the neural structures yields a nonlinear first order differential equation: 

 
𝑦�̇� = 𝑎𝑏 [∑ 𝛼𝑣𝑘(𝜁(𝜇𝑘) − 𝜏𝑣𝑘𝜁′(𝜇𝑘)𝑦𝑘)

𝑘

− (
1

𝑎
+

1

𝑏
) 𝑦𝑣 − 𝜇𝑣] 

 

(47) 

This linearization decreases the time for a numerical solution which allows large numbers of 

simulations to be performed. The large number of simulations allows production of a large 

sample of the statistics using random processes for cortical simulation. It also allows Monte 

Carlo simulations to be performed for analysis of the system. 
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Table 4 - SIMULATION PARAMETERS FOR THE NEURAL MASS MODEL OF THE BASAL GANGLIA. 

 Cortex D1 D2 GPi GPe STN 

SMax 

(spikes/s) 

- 65 65 250 300 500 

k (mV-1) - 0.3 0.3 0.2 0.2 0.2 

𝜃(mV) - 19 19 10 9 10 

𝛼𝐷1,𝑘 (mV s) 1.0 - - - - - 

𝛼𝐷2,𝑘 (mV s) 0.7 - - - - - 

𝛼𝐺𝑃𝑖,𝑘 (mV s) - -0.1 - - -0.03 0.3 

𝛼𝐺𝑃𝑒,𝑘 (mV s) - - -0.3 - -0.1 0.3 

𝛼𝑆𝑇𝑁,𝑘 (mV s) 0.1 - - - -0.04 - 

𝜏𝐷1,𝑘 

(ms) 

2 - - - - - 

𝜏𝐷2,𝑘 

(ms) 

2 - - - - - 

𝜏𝐺𝑃𝑖,𝑘 (ms) - 1 - - 1 1 

𝜏𝐺𝑃𝑒,𝑘 (ms) - - 1 - 1 1 

𝜏𝑆𝑇𝑁,𝑘 (ms) 1 - - - 1 - 

 
 

4.5.2 Modifications to Microelectrode Model 
 

To integrate the MER model with the neural mass model, the method for generating the 

spike times needs to be modified. The renewal model determines the firing times by drawing 

a random variable that describes the length of time until the neuron fires again. The neural 

mass model describes an instantaneous firing rate of the neural population. The 

instantaneous firing rate, 𝜈, can then be turned into the firing times using an inhomogeneous 

Poisson process. The Poisson process, Equation (48), is a counting process of the 

probability of N spikes, P(N=n), within a time (𝛿𝑡) and results in the firing times of the neurons 

being completely independent of each other, according to,  

𝑃(𝑁 = 𝑛) =  
(𝜈𝛿𝑡)𝑛

𝑛!
𝑒𝜈𝛿𝑡 

(48) 

This results in ISI times of a Poisson process being exponentially distributed (Weibull shape 

parameter of unity). The Poisson process can be extended to have a rate parameter as a 



70 

 

function of time (𝜈(𝑡)). This type of Poisson process is an inhomogeneous Poisson process. 

One example of an inhomogeneous Poisson process is the Cox process where the rate 

parameter is itself a stochastic variable. The importance of the Cox process for this study is 

that it has been shown that the firing times of the Cox process can be modelled using a 

Weibull distribution for the ISI times and it motivates fitting the neural mass simulations using 

the renewal model. 

 

To calculate the firing times, the simulation is divided into times equal to the sample rate of 

the equipment, 24kHz. The instantaneous Poisson firing rates of the neurons in the STN (𝜈) 

are determined from the neural mass model at each time sample. Equation (49) is used to 

determine if there is at least one spike in the sampling time (𝛿𝑡 =
1

24000
𝑠).  

 𝑃(𝑁 ≥ 1) = 1 − 𝑃(𝑁 = 0) = 1 − 𝑒𝜈𝛿𝑡 (49) 

After the firing times are determined the MER simulation is then completed using the 

methods in section 4.2. 

 

4.5.3 Simulations 
 
To simulate MER recordings, the cortical input to the model is required. The cortical input 

for the BG model can vary depending upon the patient state and task being performed. 

Although there are numerical models to simulate this, due to the ability of this input to change 

in a non-deterministic way (Brittain & Brown, 2014) (Kuhn, et al., 2008) (Marreiros, et al., 

2013), it is more useful for this study  to look at how the renewal model fits specific classes 

of cortical input functions. The four different cortical inputs (𝜇𝑐𝑡𝑥(𝑡), shown in Figure 22) are: 

sinusoidal (𝜇𝑐𝑡𝑥(𝑡) = 𝐶 + 𝐵[sin(𝐷𝑡)]), where B and D are varied, a Weiner process (
𝑑𝜇𝑐𝑡𝑥

𝑑𝑡
=

𝐷𝑊𝑡), where D is varied and an Ornstein–Uhlenbeck (OU) process (
𝑑𝜇𝑐𝑡𝑥

𝑑𝑡
= −

1

𝜏
 𝜇𝑐𝑡𝑥 + 𝐷𝑊𝑡) 

where 𝜏 is varied. These functions are chosen as they represent a deterministic process, a 

Gaussian process, and a Gauss-Markov process respectively. 
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Figure 22 - Example rate evolution using different cortical inputs a) Varying the sinusoidal frequency, b) Varying the sinusoidal 
amplitude to the point that the non-linearities begin to affect the system c) varying the Diffusion constant of a Weiner process 
and d) varying the correlation time of a damped weiner process. 

 
 

4.6 Summary 
 
The methodology outlined here provides the necessary tools to investigate microelectrode 

recordings of the subthalamic nucleus using firing time renewal processes for modelling and 

analysis. The primary model developed, an outline of which is presented in Figure 17, uses 

a point process model where the ISI times are drawn from a Weibull distribution. A field of 

10000 neurons is generated homogenously distributed around the electrode tip. The spike 

times for the neurons are convolved with an action potential shape which includes 

extracellular filtering effects based on the neurons distance to the electrode. All the neurons 

electrical signals picked up by the electrode are combined and recording equipment effects 

are added.  

 

The point process model is a renewal process and hence assumes the neurons have IID ISI 

times. To investigate the effects these assumptions could have on a time homogeneous 

analysis of MERs the model is first extended to include synchronisation between different 

neurons, and second the firing times are generated using a neural mass model to simulate 

the dynamics of the BG. The synchronisation is included using two statistical models for 

neuron interaction shown in Figure 20. The models include a uniform probability of neurons 
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coupling and a spatially weighted probability of neurons coupling. The dynamics of the BG 

are modelled using a neural mass model which reduces the different brain components 

involved into an average firing rate of all the neurons within the structure. Three 

mathematically interesting cortical firing rate patterns are used to investigate potential 

changes in MERs; the cortical inputs include sinusoidal changes in the rate, the firing rate 

evolving as a Weiner process and as an OU process. 

 

The theoretical models and experimental validation developed can provided new insights 

into the potential use of MERs in diagnosis of disease and brain machine interfaces such as 

adaptive DBS. In particular the model will help determine any neuronal sources that 

contribute to the high frequency background noise of MERs. Also, an investigation of fitting 

the renewal STN MER model to more complicated models will motivate further work into 

uses as a biomarker. The results of these investigations are presented in the following 

chapter. 
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5 Results 
 
The important results of the methodology described in Chapter 4 to investigate 

microelectrode recordings of the subthalamic nucleus using renewal processes are 

contained within this chapter. The results and conclusions are presented in three sections. 

The first section, 5.1 Microelectrode Model, contains results from tuning of the MER 

simulations using the point process model combined with the electrical model of the neuron 

electrode interactions. Section 5.2, Neuron synchronisation, demonstrates the effects of the 

synchronisation models on MERs along with analysis of these effects. The next section, 5.3 

Brain dynamics, presents verification of the reduced model. The final section, 5.4, contains 

a summary of the important results relevant to using renewal processes for investigating 

MERs and the novel contributions of these results. 

 

5.1 Microelectrode Model 
 
This section describes the results that relate to the selection of the MER model parameters, 

benchmarking the simulations and then validation of the simulations against patient MERs. 

Results from this section are from Paper A and Paper C. The results are presented in two 

sections, 5.1.1 Simulations contains the parameter selection, qualitative results from 

simulations and benchmarking the simulation performance. Section 5.1.2 has the 

quantitative comparison of the simulated MERs to the patient MERs. 

 

5.1.1 Simulations 
 

This section contains the results used to select model parameters, a qualitative look at the 

results of the simulations and benchmarking the time performance of the simulations. A 

discussion on the interpretation of the results is also provided. 
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Figure 23 -The extracellular current used for each neuron generated using the Hodgkin and Huxley model of the STN pyramidal 
neurons in Equation (29) described in Chapter 4.2.2. 

 

To be able to simulate the MERs the shape of the extracellular action potential (EAP) is 

required. A Hodgkin-Huxley type model was used to generate the EAP (see Figure 23) for 

a STN cell, based on the parameters outlined in the methodology. The equations were 

solved until the EAP settled to 0 nA and re-sampled to 24kHz. Figure 23 shows the waveform 

convolved with the spike times to produce the neuron currents. 

 

Figure 24 - Comparison of the simulation action potential current and the average spike detected in the patient MER. 

Validation of the action potential current for the patients is not possible, due to the inability 

to do in-vivo recordings of the current. The shape of the action potential can be compared 

to the shape of the action potential detected at the microelectrode, Figure 24. The AP 
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detected by the microelectrode has a slower oscillation than the current waveform due to 

the filtering effects of the extracellular medium and the electronic equipment. The filtering 

effects make it difficult to make a quantitative assessment, however qualitative agreement 

for the timing and number of peaks is present. 

 

 
Figure 25 - A histogram of the neurons distance from the electrode used for the simulation. As the number of neurons is 
increased they are added further away from the electrode, increasing the volume simulated. 

To determine the number of neurons required for the simulation to match patient recordings, 

30s simulations are produced with different neuron numbers. Figure 25 shows the 

distribution of neurons around the electrode for a simulation. As neurons are added following 

Equation (7) using a constant density, they are placed further from the electrode. This means 

that the volume simulated is increased as neurons are added. Figure 26 shows how the root 

mean square (RMS) value of the simulated MERs changes as the neuron number is 

changed. Above 3,000 neurons the RMS value plateaus. The peak RMS value approaches 

49𝜇𝑉. This is within one standard deviation of the mean RMS value for all the patient 

recordings of 56 ± 12𝜇𝑉. These results correspond to a simulation volume of approximately 

1mm3, agreeing with the result found by (Camunas-Mesa & Quiroga, 2013). 
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Figure 26 - The effect of changing the number of neurons simulated on the RMS value of the MER. The dashed lines represent 
the mean RMS (dark line) of patient recordings and one standard deviation (light line). The corner of the plateau corresponds to 
between 3,000-10,000 neurons, equivalent to ~1mm3. 

 

The change in RMS voltage, shown numerically in Figure 26, plateaus with a corner at 3,000 

neurons. The variance in the RMS voltage is within one standard deviation of the 

experimental data above 10,000 neurons. Neurons added to the simulation over the 10,000 

mark do not contribute significant energy to the recording. Additional neurons do not have a 

significant contribution to the model due the extracellular filtering effects. When the distance 

becomes too large their electric fields do not contribute to the recordings.  

 

A homogenous cell distribution on the scale of the recordings, ~1mm3, is used based on 

physiological studies of the STN (Israel, 2003). The physiology of the STN has a hard 

boundary of approximately 6.5 x 7.8 x 9 (W x L x D) mm, requiring simulations to only an 

appropriate distance from the STN edge. When a simulation approaches the edge of the 

STN the number of neurons contributing to the MER decreases, an example is shown in 

Figure 27. The curve characterizing the number of STN neurons captured by the electrode 

as it approaches the edge can be seen in Figure 28. Based on the Figure 28 curve the MER 

simulations, assuming homogenous cell distribution within the STN, are valid up to 0.15mm 

by maintaining the 3,000 neurons closest to the electrode. The reduced number of neurons 

simulated will increase the variance of the RMS Voltage as previously shown in Figure 26. 
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Figure 27 - The different volumes of neurons detected by the microelectrode when the electrode is placed into the bulk of the 
STN (dots) versus electrode placement 0.15mm from the edge of the STN (circles). 

 
Figure 28 - Total number of neurons detected as a recording electrode approaches the edge of the STN. 

Figure 29 shows comparisons of the patient DBS MER to a simulation with a Weibull shape 

parameter of 0.8 using 10,000 neurons. This comparison visually shows the difficulty to 

compare the simulation and patient recordings as a time series. A clearer comparison of 

how well the parametric MER simulation models the patient data PSD is shown in Figure 

30. 
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Figure 29 - Examples of a patient recording (top) and a simulated recording (bottom) with a simulation parameter c=0.8. It can 
be seen that the voltage time signals are stochastic in nature, making a direct comparison using these signals unfeasible.  

 

 

Figure 30 - Examples of the spectral estimates for P32L with 95% confidence interval (dashed) and a simulation with c=0.8 (Dark 
line). The shape of the power in the frequency domain can be used to verify the simulated MERs against patient data. The 
stochastic nature of the signals can be seen as noise. 

 

To illustrate the speed advantages of the summed FPP model over a deterministic HH 

model, a comparison of the time required to compute an MER using the proposed electrode 

model and a coupled HH network is shown in Figure 31. The points are averaged over three 

data samples. The dashed line is a line with a slope of 1 to show that the computational 

order of the summed FPP is approximately O(N), where N is the number of neurons. Due to 
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the long computation time, no simulations of the Hodgkin and Huxley network with over 

1,000 neurons were performed. The comparison of the computational time compared to 

neuron number shows that the FPP model is significantly (100x) faster than the equivalent 

Hodgkin and Huxley network model. 

 

 

Figure 31 - The computational time to simulate an MER using the method presented in this paper (solid), a Hodgkin and Huxley 
neural network (dot dash). A line with slope one (dashed) is layered on top to indicate O(N). 

The computational time of the FPP model diverges from O(N) at low neuron number seen 

in Figure 31. This divergence from O(N) is due to the minimum time to initialize the 

simulation. 

 

Other dynamic models of neurons, which reduce the complexity of the differential equations 

of the Hodgkin and Huxley model were not used to compare the computational time to this 

model. Computationally efficient spiking neuron (leaky integrate and fire and Izhikevich) 

models cannot produce accurate enough action potential shapes and are generally only 

used to produce the correct spike timing (Izhikevich, 2007). Because the PSD in the 

frequency range of interest has a contribution from the shape of the action potential these 

models were not considered. The model we have presented is a linear top-down model to 

analyse patient data via synthesis, where the complexity of spike timing is buried in the 

stochastic process. A similar `cut and paste' method for the spike shape can be used in the 

previous dynamical models where the spike timing is determined by the nonlinear dynamics. 
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However, using these models for parametric fitting to patient data, without pre-calculating 

accurate waveforms or ISI timings, would be a significant and computationally intensive task. 

This is because the dynamics of each neuron cannot be modelled individually since the 

network activity and neuron to neuron coupling is required to produce the individual neuron 

dynamics. 

 

The time series data for three different simulation settings is presented in Figure 32, with a 

comparison to a real recording. From this it can be seen that c=1 appears to produce a MER 

most similar to the real recording. The windowed PSD for all three simulations and the 

patient recordings, seen in Figure 33, have three main regions. The first region is the filter 

drop off above 5 kHz. This feature is present in all four PSDs with good agreement between 

patient data and simulations.  

 

 
Figure 32 – Visual comparison of a) Patient MER to simulations with: b) c=1 displays a very similar appearance to the patient 
data, with no distinct pattern, c) c≪1 shows a decrease in the signal size, and several bursting events begin to emerge and d) 
c≫1 shows a periodic structure emerging in the spike occurrence. 

 

The second region of interest in the power spectra is the behaviour at high frequencies (100-

5000 Hz). The two simulations with 𝑐 ≤ 1 have good agreement with patient data in this 

region shown in Figure 33. The simulation with 𝑐 ≫ 1 has structure in this region that can be 

explained as harmonics of features in the low frequency region. The overall shape in this 

region is dominated by the waveform of the EAP. 
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The final region of interest is in the region below 100 Hz. This region is thought to contain 

information of the Local field potential (LFP). Experimentally this region has an electronic 

filter, with a slow drop off.  For 𝑐 ≫ 1 this region has a sharp peak at 10 Hz, the simulated 

spike rate, and then has peaks at the harmonic frequencies of 10n Hz, where n is an integer. 

The other two cases have anomalous peaks in this region similar to the 20 Hz peak in the 

patient data. This beta band peak (12-30 Hz) has been seen in PD MER recordings 

previously and has been implicated in the pathological state (Eusebio & Brown, 2009). The 

model developed is an attempt to synthesise the experimental data using a top down 

approach, as such it does not intrinsically contain a biological mechanism that presents PD. 

Since the experimental data is from PD patients, the features produced in the simulations 

will be tuned for a PD state. 

 

 

Figure 33 - Overlap of the real patient windowed PSD over the windowed PSD of the simulation for 𝒄 = 𝟏. Overlap of the real 
patient windowed PSD over the windowed PSD of the simulation for 𝒄 ≫ 𝟏. Overlap of the real patient windowed PSD over the 
windowed PSD of the simulation for 𝒄 ≪ 𝟏. 

 

The thermal noise term added is white noise and as such adds the same power to every 

frequency, shifting the PSD up. This effect is removed by normalizing the power spectrum 

to integrate to unity. The other electrical effects; high and low pass filtering; do however alter 

the normalized power spectrum, seen by the sharp falloff in power in this region. 
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The power spectra appear qualitatively similar between 100-5000 Hz with differences in their 

structure below 100 Hz. The model is efficient at simulating the power spectrum of MERs in 

the band pass region. Figure 34 demonstrates how the power spectrum changes with the 

Weibull shape parameter. For the same recording length c=0.5 (small dotted line) shows the 

least power density across the frequency band of interest in the patient recordings (unfiltered 

region, 500 Hz < 𝜔 < 5000 Hz). At the other extreme of c=100 (dashed line) shows harmonic 

spikes. For c=0.8 the PSD has a more spread out frequency distribution compared to the 

other simulations. The PSD for c=1 follows the action potential power spectrum as expected 

from Carson's theorem for a Poisson process. Although c=0.8 and c=1 have a very similar 

shape of their ISI times distribution (exponential), they display different distributions of their 

power spectral estimates.  

 

Figure 34 – Power spectral estimates for the simulations using c=0.5(dots) a decrease in overall power, c=1(solid), 
c=100(dashed) harmonics appearing and c=0.8 (dot dash) a shift in the distribution of power across the frequencies. 

 

Another method to qualitatively examine the spectral properties of a MER is to look at the 

spectrogram, Figure 35, and to observe changes in the power spectrum over time. From the 

spectrogram for the typical patient MER recording the PSD changes in time. These 

recordings show the feature in the beta band appearing and disappearing through the 

spectrogram. This behaviour can be seen for some of the simulations except for 𝑐 ≫ 1, the 

spectrogram appears periodic. 
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Figure 35 - Spectrograms with the region displaying beta band behavior boxed in red, a) patient MER showing transient beta 
band behavior, b) simulations 𝒄 ≪ 𝟏 showing transient beta band behavior, c) 𝒄 = 𝟏 showing transient beta band behaviour and 
d) 𝒄 ≫ 𝟏 showing periodic behavior. 

 

This qualitative analysis suggests that 𝑐 ≅ 1 represents the patient data the best. This 

supports the idea that spiking behaviour in a large network appears Poisson like (Cateua & 

Reyes, 2006). The model proposed in this section only produces the timing and shape of 

action potentials. The model does not account for any of the oscillations in electrical activity 

below threshold before activation of the spike. This type of activity, called sub-threshold 

oscillations, are typically low frequency (1-100Hz). Slow oscillations are not clearly seen in 

the patient recordings due to the shape of the electrode (50𝜇𝑚 tip) and the high pass filter 

at 500Hz. Although it was found that 𝑐 ≤  1 best represents the human data for patients with 

PD, in the current model it does not have a biological connection. The relationship between 

the non-stationary beta band behaviour (𝑐 ≤ 1) and the brain dynamics will be discussed in 

section 4.3. 

 

5.1.2 Validation 
 

To perform a quantitative comparison and validation, of the simulated to patient MERs three 

different methods were used. These methods were used to build a comprehensive 

comparison between the patient and simulated recordings. The first order analysis, using 
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the voltage distribution, demonstrates matching behaviour of the probability distribution of 

voltage levels. The second order analysis, using the PSD, allows the correlation properties 

of the model and patient recordings to be analysed using different inter-spike interval 

statistics. The phase properties are used to verify the random phase assumption of a 

stochastic process. 

 

Figure 36 shows a box-plot of p-values from the KS test on the voltage distributions of the 

14 hemisphere recordings against simulation parameters c=0.5 to c=100. Using the KS test 

as a distance measure, the closest simulated amplitude distribution to the patient recordings 

is c=0.8 with a 0.97 mean correlation factor of simulations with patient data. There is also 

strong correlation with c=100. Simulations with other shape values, [0.5, 1, 10], also have a 

high correlation above 0.5.  

 

 

Figure 36 - Box plot of the KS test p-value of each patient voltage distribution matching the simulation distribution for each 
shape parameter. The Box represents the 25 and 75 percentiles, the lines represent the maximum and minimum values, the mid 
line represents the median value and the ‘+’ represents outliers. 

 

Linear regression of the simulated power spectral estimates against the patient MER PSD 

was used to assess the model fit to the patient recordings. Figure 37 shows a box plot of 

the correlation coefficient for the linear fit for the 14 patient-hemisphere recordings. The 

outlier point is patient 61 right side for all values of c. This figure also shows that the R2 value 

is greater than 0.89 for all values of the shape parameter. 
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Figure 37 - Box plot of the R2 value from fitting each patient spectrum to the simulated spectrums for different c values. The Box 
represents the 25 and 75 percentiles, the lines represent the maximum and minimum values, the mid line represents the median 
value and the ‘+’ represents outliers. 

 

The linear regression of patient and simulated power spectral estimates, with Weibull shape 

factor, c, ranges from 0.8 to 100 produces correlations with the patient recordings of better 

than 0.9 for all patients, except one (the + in Figure 37). Assuming constant action potential 

shape between patients, the changes in inter-patient PSD estimates are indicative of 

changes in the ISI statistics. Qualitatively it was shown in Figure 33 that simulations with 

c=0.8 have the most similar PSD to a patient recording. The 95% confidence interval is also 

plotted for five repeated recordings from the same patient. Figure 38 shows the linear 

regression of the PSD estimates for simulations using c=0.8 against two different patients. 

This demonstrates the variation in patient recordings. For comparison, Figure 39 shows the 

regression of a patient PSD against white noise with equipment filtering effects. This 

regression has a low correlation coefficient, R2=0.0306, indicating that the noise of the 

patient recordings contains structure not adequately modelled by filtered white noise. 
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Figure 38 - Example of linear fits of the patient frequency power versus simulation frequency power for P32L (light) and P61R 
(dark). This shows a good correlation between the model and the patient data. However, the slope of the fit changes indicating 
the model parameters may need to be fitted to individual patients. 

 

Figure 39 - Linear regression of the PSD of the P61R with white noise passed through the equipment filters. The regression line 
has the form y = -0.0182x - 14.4920 with a correlation coefficient R2=0.0306. This shows that the correlations in the patient data 
and simulations is not due to the filtering due to the equipment. 

 

The tuning of the simulation shape parameters was performed by taking the average of the 

correlation tests for each patient. The other simulation parameters, including the electrode 

properties, the number of and distribution of neurons and the extracellular properties were 

not varied between patient comparisons.  Some variation in fits between the different patient 
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data sets can be explained by these parameters, particularly the fact that an average 

electrode impedance of 0.5 𝑀Ω at 1kHz was used for the model. The electrode impedance 

is different for each patient (Medtronic, n.d.). This model could be improved for individual 

patients by measuring the electrode impedance. 

 

The component synchrony measure (CSM) was used to see if there are any features in the 

phase spectrum of the recordings. The amplitude of the largest peak in each CSM spectrum 

is shown in Figure 40 for both simulation and patient data.  

 

Figure 40 - Box plot of the amplitudes of the highest peak from each CSM spectra. The Box represents the 25 and 75 percentiles, 
the lines represent the maximum and minimum values, the mid line represents the median value and the ‘+’ represents outliers. 

 

Since a stochastic process in time will have random phase, the phase information should 

show no synchrony between any frequency components. CSM values above 0.5 show a 

significant amount of phase synchrony across the recordings at a specific frequency 

(Fridman, et al., 1984). Figure 40 shows there are no peaks above 0.3 in the CSM spectra 

for the patients or simulations, with patients being slightly more variable. This indicates that 

there is no phase synchrony present in either the model or patient recordings verifying the 

stochastic assumption for MERs. Using the KS test as a goodness of fit between the 

simulated CSM peaks and the patient CSM peaks gives a value of 0.73. This means they 

have similar distributions, but there is a difference in the distributions. 

 

The difference in the distribution of CSM peaks in the model can be explained by an 

additional white noise source in the patient recordings that hasn't been modelled. A white 
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noise source would not affect the spectral colour, as it would add equal power across all 

frequencies, however it can add noise to the phase spectrum. This noise has a variance that 

scales with the amplitude of the source (Fridman, et al., 1984). This could increase the CSM 

peaks that are not above the significance of 0.5 and would be spread across a wider 

frequency range than the simulation currently displayed. 

 

To see how the renewal model can be used to fit MERs the effects of the ISI statistics on 

the power spectrum were produced for a changing Weibull shape parameter. Figure 41 

shows the frequency behaviour of Equation (41) for different values of 𝑐, if the aggregate 

renewal statistics (the ISI statistics averaged over all the neurons) follow a Weibull 

distribution for ISI times. 

 

 

Figure 41 - a) The expected filter function of the extracellular medium taken over a population of 10,000 neurons. Inserts b)-d) 
show the comparison of the power spectrum of the EAP with the MER power spectrum from the analytical model, b) the MER 
PSD for 𝒄 = 𝟏 modelled by equation (9), it can be seen that for this distribution the results of the MER and EAP PSDs are in 
agreement, c) the MER PSD for 𝒄 ≫ 𝟏 modelled by equation (9), d) the MER PSD 𝒄 ≪ 𝟏 modelled by equation (9). 

 

For 𝑐 ≫ 1 and 𝑐 = 1 the frequency filtering effects due to the spiking statistics are minimal 

and will not add noticeable features in the power spectra at high frequencies. For 𝑐 ≫ 1 the 

10 Hz peak with harmonic peaks in the numerical simulation can be seen in the frequency 

effects from the renewal statistics on the power spectra.  
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This analytical model doesn’t consider the frequency filtering effects of neurons by the 

extracellular medium. These filtering affects need to be accounted for when fitting the 

renewal statistics. Figure 41 a) shows how the extracellular medium model acts as a low 

pass filter with this expected filter function. The shape of this extracellular filtering changes 

with distance to the electrode. To find the average contribution of a neuron, 𝐺(𝜔), to the 

MER the expected neuron distance for each frequency is found by taking the expectation 

value of the neuron distance, di, weighted by the extracellular filtering normalized to one, 

𝑍(𝜔). 

 
𝐺(𝜔) = 𝑍 (

1

𝑁
∑  𝑑𝑖𝑍(𝑑𝑖, 𝜔)

𝑁

𝑖

) 
 

(50) 

 

To fit the shape parameter, many spikes need to have occurred to build up a representative 

sample of the ISI distribution. This means that the recordings need to run for a certain length 

before there are enough spike intervals to build up an estimate of the statistics. To determine 

what length of simulation is required, and hence what length of patient recording would be 

needed, simulations were produced drawing the firing times from Weibull distributions. The 

simulations used the neural shape and filtering effects for the STN MERs. The shape 

parameter was then determined from the simulations using 𝐺(𝜔) from Equation (50) and 

fitting the Weibull shape parameter. This was repeated 1000 times for 13 shape parameters. 

Figure 42 shows that over the expected range of shape values, 0.5 to 10, that a 3-10s 

recording is needed to obtain an error of estimated shape less than 10%. For the rest of the 

study 5s recordings are simulated to allow a large range of valid shape parameters.  



90 

 

 

Figure 42 - Accuracy of Weibull shape prediction from 1000 MER simulations of varying time length. The blue dashed line 
corresponds to perfect prediction of the shape parameter, the red dashed lines are the upper and lower bounds of 10% accuracy. 
Simulations 1s and longer can predict the shape parameters larger than 0.6 and higher with greater than 10% accuracy. 

 

5.2 Neuron Synchronisation 
 

MER simulations were performed using each Weibull shape parameter for the ISI 

distributions in Figure 43 and Figure 44 for uniform and localized synchronisation 

respectively to investigate how well the renewal model can fit when the IID assumption is 

not valid. These figures show for 20 simulations of 2s what the ratio of the fitted shape 

parameter to the parameter used for the simulation. A kernel density estimate (KDE) is used 

to smooth the results.  
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Figure 43 - Fitting accuracy of shape parameter to simulations using uniform synchronization. The width of the blue area 
represents kernel density estimates of the count distribution of predicted shape values. For 0.9 and 1 the variance is significantly 
larger than the other simulations. The reason for this increase is due to estimation noise from the small number of experiments. 
Their variance was still below 10%, indicating that uniform synchronization did not affect the ability to fit the renewal model.   

 

 

Figure 44 - Fitting accuracy of shape parameter to simulations using localized synchronization. The width of the blue area 
represents kernel density estimates of the count distribution of predicted shape values. For 1.5 the variance is larger than the 
other simulations. The reason for this increase is due to estimation noise from the small number of experiments. Their variance 
was still below 10%, indicating that localized synchronization did not affect the ability to fit the renewal model 

 

For both forms of synchronisation, the fitted statistics match the statistics used for the 

generation of the simulation to within the accuracy of fitting the ideal simulations of a given 

time length (Figure 42). The distributions of fitted shape parameters are not all Gaussian 

distributed, and the variance changes significantly for the different shape parameters. These 

effects do not have a trend related to the shape parameter or synchronisation type, 

indicating that their cause is due to a small number of samples used to produce the figures. 

Because the values are bounded to within 10% of the simulation shape parameters, except 

for three values larger (~20%) there was no need to run more simulations. These results 

show that in the presence of synchronisation, causing the ISI times to no longer be 
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independent and identically distributed, the Weibull renewal model can be used to fit the 

MER. 

 

An effect the synchronisation had on the MER simulation was to increase the apparent 

signal to noise ratio of the larger spikes. A raster plot, Figure 45, of the simulated neuron 

firings shows how the synchronized firing times correspond to a spike (compound action 

potential, CAP) with a large signal to noise ratio. In the raster plot two separate synchronized 

subsets can be seen. Although there are two subsets with the same percentage of total 

neurons synchronized, their spatial arrangement around the electrode are different. The 

effects of this spatial arrangement can be seen in the MER time series, where two different 

amplitude spike shapes are present. 

 

Figure 45 - Raster plot of active neurons with the electrode recording simulation generated using two groups of synchronized 
neurons. The top plot is a raster plot of spike times, where each dot represents a spike for a neuron at that time. The zoomed in 
section shows five synchronized firing events. The bottom plot is the voltage time signal recorded by the simulated 
microelectrode. Marked on it are the root mean squared level to indicate noise, and indicators of spikes from cluster 1 and 
cluster 2. 

To test quantitatively the effect of synchronisation on the signal to noise ratio, 20 simulations 

were performed for different synchronisation percentages. As the number of neurons that 

are synchronized increases Figure 46 shows a linear increase of the mean peak amplitude 
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of the CAP spike, averaged over 20 simulations. The variance of the peak amplitude also 

increases significantly, depending on the spatial distribution of the sub-set of synchronized 

neurons, i.e. as more neurons are synchronized they are more likely to come from a wide 

spread of locations. Figure 46 shows synchronization over the biologically plausible range 

of 0-0.30 for the STN (Theodosopoulos, et al., 2004). For synchronization above 0.5 the 

mean peak signal amplitude becomes constant at 8.1 ± 0.5𝑚𝑉, with variance decreasing to 

zero when all neurons are synchronized. 

 

 

Figure 46 - Mean peak signal amplitude as the fraction of neurons in the synchronized sub-set changes. The mean is taken over 
20 simulations and the error bars are one standard deviation. The dashed line represents the average RMS value of the 
recordings, shown in Figure 45. 

Figure 46 shows that for no synchronization the simulations can have a peak signal 

amplitude above the RMS noise. For these cases, a neuron current source is located close 

enough to the electrode tip for its action potential to be significantly larger than the 

background noise and thus appear as a spike. In interoperative MERs this is often the case 

since the surgeon can adjust the electrode position until there is a strong spiking signal. This 

shows There are two methods to produce visible spikes in the MER simulations; it is possible 

for DBS MER spikes to represent single neuron activity or CAPs. The first method involves 

a neuron very close to the electrode (where the current source is adjacent to the tip of the 

electrode). The second method is to introduce synchronization and produce a CAP. For DBS 

MERs the spikes are often thought to be APs produced by single neurons. This work shows 

that even with extracellular filtering, CAPs could also cause spikes in the MERs. 
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To determine how different CAPs from different groups could be differentiated, spike sorting 

was used. Figure 46 shows when two sub-sets of synchronized neurons differ substantially 

in their spatial distribution, spike sorting can be successfully achieved. This occurs more 

often when the neurons are spatially localized, however it can occur when the two sub-sets 

are uniformly distributed, Figure 48. 

 

Figure 47 - Comparison of two CAPs after spike sorting from a simulation with synchronization percentage of 25% total 
synchronization. For this simulation, there were two synchronized subsets of neurons with each subset uniformly distributed 
across all the neurons and 12.5% of neurons in each set 

Spike sorting techniques (outlined in Chapter 4.4), based on shape, amplitude and rate, 

were used to determine if the MER spikes all correspond to the same group, or multiple 

groups of neurons firing at different times (Rutishauser, et al., 2006). Figure 48 shows that 

when the synchronization of six neural subsets is changed from uniform across space, to 

spatially localized, the spike sorting algorithm can distinguish more clusters. For the uniform 

distribution only two to three clusters are found 50% of the time. For the spatially localized 

neural subsets more than four clusters are found 75% of the time. 
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Figure 48 - The number of groups clustered for six spatially localized and six uniformly distributed subsets of synchronized 
groups of neurons over 100 simulations. The sticks represent the maximum and the minimum number of groups, the box 
represents the 25th and 75th percentile and the notch is the mean. 

 

When synchronization was uniformly spread through the STN the spike sorting of different 

failed to produce the number of clusters that were simulated. This is due to the effective 

shape of the CAP produced by a subset of synchronized neurons either being too similar, 

or too small (cannot be differentiated from the background noise). The spike shape is an 

average effect of the action potentials, including extracellular filtering, from each neuron that 

is synchronized. As the distribution of the synchronized subsets has a uniform probability of 

selecting any neuron, the average spike shape for each subset is on average the same 

causing CAPs from different groups to be too similar to separate with spike sorting. On 

average neurons that are further away are more likely to be selected because the number 

of neurons increases with the square of the radial distance from the electrode, r2. The further 

the neuron is from the electrode, the more the electric field is filtered by the extracellular 

medium, with an amplitude decay larger than 
1

𝑟2. This means the CAP shape is dominated 

by the closest neurons to the electrode. Therefore, the main difference between the two 

CAPs produced by a subset of synchronized neurons will be the total number of closer 

neurons, which will change the amplitude of the spike, as seen in the example in Figure 47. 
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When the synchronized subsets are defined to be spatially localized, rather than across all 

the STN, the compound action potentials are no longer dominated by the closest neurons. 

Rather they reflect the average AP at the mean spatial location of the cluster. This increases 

the success of the spike sorting because each CAP not only differs in amplitude but also in 

shape due to extracellular filtering. The cluster number from spike sorting still does not 

always match the number of synchronised groups simulated. This is due to the second 

effect, where the sum of the synchronised APs is less than the noise level of the simulation. 

 

A point to note from Figure 48 is that the spike sorting never overestimates the number of 

synchronized subsets. This is due to the low likelihood of one or more neurons being 

initialised in the simulation close to the electrode tip. This is a limitation of this model since 

there is a minimum distance a neuron can be generated at. In practice, there is no limit to 

the neuron-electrode distance, and often the electrodes are moved into a position to allow 

distinct spikes to be seen above the RMS. 

 

Applying spike sorting to the experimental MERs showed a mean firing rate of all patients 

34.92±20.53 and CoV of 0.98±0.28 with an average of 3 clusters. Recordings with less than 

15 spikes were discarded to produce an accurate estimate of the mean and CoV. A summary 

of spike sorting on the experimental data is presented in Table 5. 

 

Table 5 - RESULTS FROM SPIKE DETECTION AND SORTING ON PATIENT DATA SHOWING MEAN FIRING RATE (HZ), 
COEFFICIENT OF VARIATION (COV) AND THE NUMBER OF CLUSTERS DETECTED. 

Recording Number of 

MERs 

Mean firing rate Mean CoV Clusters 

10 115 35.77±11.63 1±0.32 2 

11 191 48.17±9.96 0.88±0.16 3 

14 175 40.25±16.13 0.89±0.20 3 

16 169 29.19±7.67 0.95±0.25 3 

18 143 29.32±8.91 0.87±0.17 3 

2 141 26.50±8.69 0.89±0.17 2 

 

Using a single tip electrode, CAPs and close neurons cannot be differentiated. By using 

multiple MERs differences between CAPs and close neurons could be seen. This would be 

due to the different neuron-electrode distance, but a similar group-electrode distance. 

However, simultaneous MERs cannot be obtained in a target structure during current DBS 

surgery and the exact location of neurons around the electrode is also currently 

unmeasurable. These limitations, along with the spike mechanisms presented in this paper, 
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mean that it would be unlikely to differentiate between APs, a single synchronous neuronal 

subset and multiple uniformly distributed synchronous neuronal subsets. Due to this 

complication, DBS MER spikes are most sensibly considered as an indication of the target 

structures overall activity. 

 

It is noted that the method used for adding the synchronization uniformly in this paper is 

artificial and not based on a biological mechanism. This was chosen only to demonstrate 

that with synchronization, the renewal model using Weibull ISI distributions can be fit to the 

simulations. It also demonstrated that sortable spikes can emerge from CAPs in MERs. The 

model was extended to include spatially localized synchronization to improve biological 

plausibility and making the CAPs differ in amplitude and shape. This distribution relates to 

the idea of somatotopy maps of the STN, which show that there is localized organization in 

the STN related to different movement tasks (Theodosopoulos, et al., 2004).  

 

 

 

5.3 Brain Dynamics 
 
In this section, we present the results from fitting the renewal model with ISI times following 

a Weibull distribution to different numerical simulations of MERs generated using the 

dynamics of the Basal Ganglia (BG). The linearized form of the BG model is validated and 

benchmarked against the complete model. The method for fitting the Weibull statistics is first 

tested using a Cox process, the results of which have been shown analytically in (Yannaros, 

1994). Four different cortical inputs are then tested along with a discussion of the results 

from these experiments. 

 

The linearized delay for the BG model (details in Chapter 4.5.1) was numerically solved for 

5 s simulations, using a fixed time step (0.001 s) and a random cortical input. This decreased 

the solver time to 3.7±0.4 s from 51±11s for the BG model with axonal delays, Table 6. 

Solving the model with no delays had no significant speed increase (to within their 

measurement tolerance) over the linearized model, with an increase in the percentage error. 
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Table 6 - TIME PERFORMANCE AND ERROR USING THE FULL BG MODEL, ZEROTH ORDER AND FIRST ORDER 
APPROXIMATIONS. 

Model Solver time (s) Maximum Error (fraction) 

With delays 51±11 0 

Without delays 3.1±0.5 0.18 

Linearized delay 3.7±0.4 0.07 

 

The decreased computational time is only advantageous if the numerical solution is still 

accurate (within 10%). Comparing the solution of this to the solution without delays allows 

accuracy of the linearized approximations of the model to be validated. Figure 49 shows the 

absolute error for the simulations using zero-time delay and the first order approximation. 

The maximum error fraction, |𝑦(𝑡) − 𝑦0,1(𝑡)| where 𝑦 is the numerical solution and y0,1 

indicate the zeroth and first order approximations, for the zeroth order (no delays) was 

0.0018 and using the first order approximation the error reduced to 2.677e-4. The error level 

for the first order approximation is acceptable for simulating the MER, while significantly 

decreasing the time needed for a simulation. 

 

 

Figure 49 - Absolute error compared to the full model without delays for 0th and 1st order delay approximations for a) sinusoidal 
cortical input, B) linearly increasing cortical input. 

 

To look at how an MER generated from a dynamical system (changing in time) can be 

modelled using the renewal model for an MER (time homogenous Weibull ISI distribution), 
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MERs were first simulated using a Cox process (doubly stochastic) to generate ISI times. 

By fitting the expected power spectrum of a renewal process MER with Weibull ISI statistics 

to the power spectrum of the simulation, it was found that as the Cox parameter is increased 

the average value of the Weibull shape parameter increased, as shown in Figure 50. This 

figure also shows the variance of the fit, over 300 simulations, increased with increasing Cox 

parameter. 

 

Figure 50 - Distribution of Fitted shape parameters over 100 Simulations for different Cox process intensity parameters. The 
width of the blue area represents kernel density estimates of the count distribution of predicted shape values. As the intensity 
parameter increases the shape parameter increases. The variance in fitting the shape parameter also increases. 

The results show that the Cox process rate parameter is correlated with the shape 

parameter determined from the power spectrum. This result is expected based on the results 

of (Yannaros, 1994) and along with Figure 42 (renewal fitting against recording time) 

validates the method for finding the shape parameter. Based on Figure 42, a simulation time 

was chosen that would result in approximately 10% variance in the Weibull shape 

parameter, however when the Cox parameter was increased past 0.1 the variance of the fit 

increased beyond 10%. This result indicates that the non-stationary nature of the Cox 

process over the time length of the simulation is introducing variance of the shape parameter 

that cannot be accounted for using a stationary model. 

 

For the neural mass model, the cortical input was first modelled using a continuous time 

stochastic process; the Weiner process. The Weiner process is a stationary Gaussian, 

meaning the random variable is drawn from a normal distribution that doesn’t change in 

time. It can be seen in Figure 51 that the diffusion parameter has no effect on the expected 
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shape parameter. There was an increase in the variance of the fitted shape value as the 

diffusion parameter increased. Adding in a correlation time to the Weiner process creates 

an Ornstein–Uhlenbeck (OU) process. Using a fixed diffusion parameter of 30, the variance 

decreases as the correlation parameter (the inverse of the correlation time) is increased, 

see Figure 52. 

 

Figure 51 - Distribution of fitted shape parameters over 300 simulations for different diffusion parameters in a Weiner process. 
The width of the blue area represents kernel density estimates of the count distribution of predicted shape values. As the 
diffusion parameter increases there is no affect on the shape parameter. The variance increases significantly as the diffusion 
parameter is increased. 

 

 

 

Figure 52 - Distribution of fitted shape parameters over 300 simulations for different correlation parameter for an Ornstein–
Uhlenbeck process. The width of the blue area represents kernel density estimates of the count distribution of predicted shape 
values. The variance is large for small correlation parameters and reduces as the parameter is increased. 
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The cortical input was then changed to a sinusoid to mimic the oscillations common in the 

cortex. The frequency of oscillations was varied with a fixed amplitude of 1 spike/s and an 

offset of 14 spikes/s. Figure 53 shows that varying the frequency has no effect on the 

predicted shape parameter. Next, by fixing the frequency at 20 Hz and varying the amplitude 

has no effect on the predicted shape parameter, as seen in Figure 54. 

 

 

 

Figure 53 - Distribution of fitted shape parameters over 300 simulations for different frequency sinusoidal cortical inputs. The 
width of the blue area represents kernel density estimates of the count distribution of predicted shape values. There is no 
significant change in the shape parameter or variance of the fits. 
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Figure 54 - Distribution of fitted shape parameters over 300 simulations for different amplitude sinusoidal cortical inputs. The 
width of the blue area represents kernel density estimates of the count distribution of predicted shape values. There is no 
significant change in the shape parameter or variance of the fits. 

A spectral property that is of interest with regards to MERs from PD patients is beta band 

behaviour (Brown, 2009). The spectrograms of the simulations found that beta band 

behaviour similar to patient recordings was found when 𝑐 ≤ 1.  In the previous section, the 

shape parameter had no connection to biological properties as the model was developed 

from a top down perspective. With the added brain dynamics, it can now be seen that the 

beta band behaviour could be related to the underlying functions of the cortex. The two 

random processes, Weiner and OU, can both exhibit statistics that are described using 𝑐 ≤

1. A change from the random cortical input to a deterministic process would cause the beta 

band behaviour to persist. This type of behaviour could be used as a biomarker for PD and 

warrants further study, discussed briefly in Chapter 6.3. 

 

To determine the usefulness of the renewal model analysis using Weibull ISI statistics we 

have two criteria to determine. First, does the fitted Weibull shape parameter vary over 

repeated simulations for the same input parameter. Second, can the Weibull shape 

parameter be used as a predictor of the input parameter. We will look at the first criterion 

and determine how well the stationary approximation is for the non-stationary MER 

simulations. 

 

For every parameter for both sinusoidal inputs the variance in the fit of the shape parameter 

was less than 10%. This level of variance can be explained by the finite length of the 
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recordings simulated. This shows that the renewal model can describe the ISI times 

generated given a sinusoidal input. However, the mean value and variance of the shape 

parameter does not change when varying the input parameters. This prevents the shape 

parameter from being used as a predictor of sinusoidal cortical input parameters. 

 

In both the Weiner and OU simulations the variance of the shape parameter increased more 

than can be explained due to the finite length or the recording. This result indicates that 

different realizations of the simulation using the same input produces different distributions 

of ISI times. Although the first criteria of describing the simulation outputs using a stationary 

distribution fails for certain parameter values, it does not prevent the fits from being used as 

a predictor of the input. 

 

To look at how the shape parameter could be used to characterize the cortical input we can 

look at the OU processes. From the simulations, we can construct a 2D histogram of Weibull 

shape given a specific cortical parameter. Figure 55 shows an example of this for the OU 

process using the logarithm of the correlation parameter. This distribution of counts is 

equivalent to the probability of measuring a shape parameter giving a correlation parameter, 

𝑃(𝜆| log 𝜏−1). If we assume a priori knowledge that the cortical input follows an OU process, 

then we can use Bayes Theorem to determine the correlation parameter given a 

measurement of the shape parameter using: 

 
𝑃(log 𝜏−1 |𝜆)  =

𝑃(𝜆| log 𝜏−1)𝑃(log 𝜏−1)

𝑃(𝜆)
 

 

 

(51) 

To use this formula 𝑃(𝜆) and 𝑃(log 𝜏−1) are required. 𝑃(𝜆) can be estimated from the 

simulations by summing over the correlation parameter to get the total number of counts for 

a given 𝜆 and dividing by the total number of simulations. Without experiments to determine 

𝑃(log 𝜏−1) an uninformative prior, where the probability does not favour any value, can be 

used. Assuming some form of exponentially distributed parameter, one such uninformative 

prior that can be used is Jeffery’s prior, which gives a uniform distribution when normalized 

for 𝑃(log 𝜏−1) over a constrained range. For an example if we assume the logarithm of 

correlation parameter is uniformly distributed between -1 and 1 we can produce Figure 56 

using Equation (51). 
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Figure 55 - Probability of finding a specific Weibull shape parameter when given an OU process cortical input with a given 
correlation parameter. 

 

 

 

Figure 56 - Probability of a cortical input with a given correlation parameter given a measured Weibull shape parameter. 

We can apply the methods presented here to the result from the patient data. In the 

validation of the model it was found that using a renewal model with a Weibull shape 

parameter of 0.8 best fit the interoperative patient recordings in a resting state. Using the 

analysis method presented above we can calculate the posteri estimate, ℒ(𝑥; 𝜆 = 0.8), for 

the different types of cortical parameters we have modeled. By calculating  𝑃(𝑥|𝜆 = 0.8) for 

each of the cortical inputs and finding the maximum gives ℒ(𝑥; 𝜆 = 0.8). For the Wiener and 

OU processes 𝑃(𝑥|𝜆 = 0.8) was found, giving Figure 57. The maximum of the posteri 

estimate for the Diffusion parameter is ℒ(𝐷; 𝜆 = 0.8) = 101.6 = 39.81𝑠−1 and for the 

correlation parameter ℒ(𝜏−1; 𝜆 = 0.8) = 10−1 = 0.1𝑠−1. 
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Figure 57 - Probability of a cortical parameter using a measured Weibull shape parameter of 0.8. (a) 𝑷(𝒍𝒐𝒈𝑫|𝝀 = 𝟎. 𝟖) and (b) 

𝑷(𝒍𝒐𝒈𝝉−𝟏|𝝀 = 𝟎. 𝟖). 

 

The sinusoidal inputs produce no variation in 𝜆 which means the parameters for them cannot 

be estimated. To demonstrate this, the results from varying the frequency parameter to 

produce the 2D histogram of Weibull shape and cortical frequency, Figure 58, are used. 

Using Jeffry’s prior again, where a prior knowledge on the bounds of the frequency and 

values between these bounds are equally likely, Equation (51) can again be used to 

calculate 𝑃(log 𝜔|𝜆). Figure 59 shows the results from this calculation, with the likelihood of 

most frequencies being flat. The problem with this naïve probability calculation is the effect 

of noise, specifically low counts of rare events on the edges. Regularization can be used to 

correct this problem. By considering the probability range where the frequency parameter is 

1.3, gives values of 0-0.001. Because of the finite number of events used to generate the 

histogram, the probabilities are discretised into steps of 0.00025. By assuming now that 

there is some finite probability of any combination of shape parameter and frequency 

parameter occurring, the minimum step in probability is added to all the bins. Calculating 

𝑃(log 𝜔|𝜆) now gives Figure 60. This represents an approximately uniform distribution, 

indicating that a maximum posteri estimate cannot be made to determine the frequency of 

the cortical input to the BG. 
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Figure 58 - 2D histogram of measured Weibull shape parameter given a frequency parameter. 

 

 

Figure 59 – Unsmoothed probability of a frequency given a Weibull shape parameter. 
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Figure 60 - Regularized probability of a frequency given a Weibull shape parameter. 

 

Other forms of regularization could be used to assist in the calculation of the conditional 

probabilities of the cortical parameters. By taking a larger number of samples, the noise in 

the counts would reduce. If getting a large data set is a restriction, another method would 

be to use a kernel density estimate (KDE) on the histograms. This would be done by taking 

rows and using a 1D KDE, since the rows are independent using a 2D KDE would not be 

valid. This method could still have problems when the smoothed estimate has regions of 0 

probability and the finite valued probability offset used above may also be necessary.  

 

The estimate of the cortical parameters (𝑥) can be improved by using multiple independent 

measurements of 𝜆, and applying the Bayes Theorem recursively:  

 
𝑃(𝑥|𝜆1, … , 𝜆𝑁−1, 𝜆𝑁)  =

𝑃(𝜆𝑁|𝑥)𝑃(𝑥|𝜆1, … , 𝜆𝑁−1)

𝑃(𝜆𝑁)
 

 

(52) 

This analysis involves assumptions on the dynamics of the cortical input to constrain the 

probability distributions. The assumptions used are not necessarily realistic but have been 

chosen arbitrarily for an example of how estimation of the input parameter would be 

performed. To extend this work for practical applications, such as feedback control, 

investigating different models of cortical input by either including the dynamics of interactions 

between the motor cortex and the thalamus, or recording activity from patients performing 

different tasks could be used. 
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5.4 Summary 
 
 The results for the renewal process MER model best fits the patient data with a Weibull 

shape parameter of 0.8 and it was found that simulation of a neuron volume of ~1mm3, 

corresponding to ~10,000 neurons, was required. Introducing two different synchronisation 

methods to the model did not affect using the assumptions of the renewal theory (IID) to 

determine the ISI distribution, with the firing time statistics used for the simulations found by 

inverting their power spectra. The time-homogenous assumption of the renewal model could 

also be used to provide a description of the behaviour of the neural mass model of the BG 

to generate the spike times used to simulate STN MERs, as well as demonstrating under 

certain conditions it is possible to use the shape parameter of the Weibull distribution to 

predict changes of the cortical firing rate. These findings motivate further investigation into 

using renewal process models of STN MERs as biomarkers in feedback control of DBS and 

as a possible identifier of disease. 
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6 Conclusion 
 
This thesis contains a novel approach to modelling and analysing microelectrode recordings 

of the subthalamic nucleus. Simplifications to an intractably complex physical system have 

been made to allow the model to be evaluated efficiently while still reproducing key features. 

The main underlying assumptions of the model are: 

• A homogeneous population of independent neurons, where all neurons fire with the 

same waveform, firing times with the same statistics and are treated as point sources. 

This means we only consider their far-field and do not consider their spatial 

morphology.  

• Isotropic filtering with distance, where the extracellular medium between the neurons 

and electrode has no spatial changes other than their radial distance to the electrode. 

• A fixed number of neurons contribute to the recordings.  

• Independent, identically distributed (IID) inter-spike interval times for all the neurons, 

characterized by the Weibull distribution. 

 

The simplifications allow simulations to be computed for large numbers of neurons very 

quickly. Using this the volume of neurons, ~1mm3 (10,000 neurons), that contribute to the 

background noise of STN MERs was calculated. The speed of generating simulations also 

allows investigations using thousands of repeated trials, for example fitting the Weibull 

distribution to the STN MER generated using basal ganglia dynamics (Chapter 5.3).  These 

simplifications are also used to make the inverse problem mathematically tractable, allowing 

a microelectrode recording to be described using two variables; the Weibull shape 

parameter and the scale parameters. Opening avenues of further research into using these 

parameters as biomarkers for electrode location, disease state or in brain machine 

interfaces such as adaptive DBS. 

 

Applying the renewal process assumptions to more complicated models where the IID 

assumption is no longer valid, shows that the inverse method could be used to find a time-

homogeneous Weibull distribution that described the recording consistently in Chapter 4.3.2 

(the variance of the Weibull parameters over 100 simulations was less than or equal to the 

variance of fitting an IID simulation). Fitting the Weibull parameters to the data also allowed 
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calculations on the probability of different cortical inputs driving the basal ganglia model for 

simulation of the STN MER. 

 

Chapter 4.3 shows that the simplification of the modelled system by assuming a renewal 

model and parametrization of the ISI times improves the computational efficiency in 

simulating an MER but decreases the realistic features seen and the biological plausibility. 

This decrease in computational time needed for a solution allows this model to be used in 

studies where parameters can be varied and a large result set can be produced allowing 

analysis techniques such as Monte-Carlo methods. 

 

These findings answered the two questions of this thesis proposed in the introduction:  

1. What range do the neurons further from the electrode contribute to the MER 

background noise? It was found that modelling a volume of ~1mm3 of STN neurons 

produced simulations that had the best agreement with patient data. This volume 

corresponds to ~10,000 neurons. 

2. Can fitting the inter-spike interval probability distribution of renewal models to STN 

MERs be used as a potential biomarker? This was tested by modifying the STN MER 

model to include biologically realistic affects that break the assumptions of the 

renewal model. The renewal model could still be used to fit these models with varying 

degrees of accuracy, high fidelity when synchronization was added and an indication 

that it could predict some cortical dynamics using the basal ganglia model. Potential 

use of the renewal model as a biomarker for cortical behavior was presented in 

Chapter 5.3. 

 

The rest of this chapter first outlines the contributions of the work performed. Next is details 

on the limitations of this research including alternative approaches and technical limitations. 

Finally, suggestions for further research arising from this thesis are presented.  

 

6.1 Thesis contributions 
 
The following results from this thesis are significant and novel contributions: 

• A novel, computationally fast (ability to simulate 1s of model time in less than 1s wall 

time) model for subthalamic nucleus microelectrode recordings, containing 

contributions from 10000’s of neurons and extracellular filtering, using a renewal 



111 

 

model for the neuron spike timings, Papers A and C. The model has been produced 

using a top down approach to recreate interoperative patient recordings and 

demonstrated that volumes of ~1mm3 contribute to the high frequency noise seen in 

an STN MER. 

• A method of fitting the model to recordings by inverting the power spectrum using 

non-linear least squares to determine the inter-spike interval probability density 

function. The ISI PDF is found parametrically using the Weibull distribution, because 

it reproduces common firing patterns found in neurons, Paper D. 

• An analysis of fitting the renewal MER model to simulations where the IID assumption 

relaxed by addition of synchronisation between neurons. This demonstrated that the 

MER model from Papers A and C is suitable for fitting patient recordings if 

synchronisation is present. 

• Elucidation of how synchronisation can contribute to decreasing the signal to noise 

ratio of spikes found in MERs, and demonstration of the degeneracy between the 

number of neurons synchronised and their distance from the electrode as shown in 

Paper B. 

• An analytical linearization of the axonal delays present in the neural mass model of 

the BG, with validation of the result and benchmarking the speed gains in numerically 

solving the system of PDEs. 

• An analysis of fitting the renewal MER model to simulations where the IID assumption 

relaxed by using a neural mass model of the BG to generate the STN spike timings, 

Paper D. This demonstrated that the MER model from Papers A and C can be used 

to fit patient recordings for different classes of cortical behaviour; deterministic, 

Gaussian and Gauss-Markov processes.   

• A novel method for determining parameters, such as the function of the cortical firing 

rate, of BG neural mass models, from Paper D, from STN MERs using Bayes Rule 

and fitting simulations using the model from Paper C.   

 

6.2 Limitations 
 

Specific models and assumptions on neuron behaviour were chosen for this research. 

These choices have technical limitations on what they can predict and simulate. The 

limitations of the work that has been presented in this thesis are listed below: 
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• A major limitation of the approach of fitting a Weibull distribution renewal model for 

use as a biomarker is the inability to replicate multimodal ISI distributions. There has 

been evidence that STN neurons exhibiting tremor behaviour can have multimodal 

ISI distributions. 

• An assumption is that modulation of the power spectrum is only due to the renewal 

statistics of the neurons firing times. The model is also limited in the low frequency 

behaviour that is picked up by the electrode. Neurons can exhibit sub-threshold 

oscillations, slow exchanges of ions in and out of the cell which do not build up 

enough potential to trigger an action potential. These frequency components of these 

oscillations are low compared to the action potential. These oscillations could affect 

the method used to fit the model to the patient recordings, due to their contribution to 

the power spectrum of the MER. In the work for this thesis it was assumed that 

because these oscillations can be cause by action potentials arriving from afferent 

neurons, they would display the low frequency behaviour of the firing statistics of 

these neurons. This however has not been tested or modelled. This is a crucial 

assumption which requires further work to validate through modelling. 

• The model used for this research assumes every action potential had the same shape 

and amplitude for a given neuron. However, neurons can exhibit a rate dependant 

shape change. This is where the shape of the action potential (both amplitude and 

frequency components) can change with the rate that the neurons fire. This is a 

feature that is found at high firing rates, and by assuming the mean firing rate is small 

compared to the maximum firing rate this effect can be ignored, for example the STN 

maximum firing rate is ~500 Hz, while the average firing rate is ~100 Hz. 

• STN neurons can also exhibit different ISI statistics between different locations. The 

ability to fit the model using the inverse methods discussed in this thesis could also 

be investigated under this condition of different ISI statistics for different neurons. It 

was not considered in this study because there is evidence that the STN neurons are 

grouped into somatotopy regions (Theodosopoulos, et al., 2004), meaning within the 

size of the field of neurons seen by the electrode all the neurons exhibit the same 

behaviour. However, if the electrode is near the border of regions, it could pick up the 

electric field generated by multiple groups of neurons with different spiking statistics. 

The neural mass model only describes the average firing rate of the STN and this 

rate is applied to all the neurons in the simulation. If the neurons have different firing 
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rates (similar to the previous point on varying ISI distributions), but the correct 

average firing rate, the analysis here may not hold. 

• The model in paper D did not include the effects of dopamine (DA) depletion on the 

neural pathways of the basal ganglia. DA levels are affected by the progression of 

PD and medication for treatment of PD symptoms is used to control the levels of DA 

in patients.   

 

 

6.3 Suggestions for further research 
 
The work in this thesis has opened avenues for potential research that can test the 

limitations outlined in 6.2 and provide directions to continue research. Due to time limitations 

and data availability these research directions were not pursued in this thesis. Some 

suggestions for further research are listed below: 

• An extension to this work, by development of a parametric method of representing a 

more generic distribution than is possible with the Weibull distribution, can address 

the limitation of fitting multimodal ISI distributions. 

• Extending the model to include a process that simulates sub-threshold oscillations, 

and a comparison by fitting the renewal model, would address the limitation of this 

work as to whether it is suitable to assume that modulation of the power spectrum is 

only due to the renewal statistics of the neurons firing times. 

• Include somatotopic groups (Theodosopoulos, et al., 2004) of neurons when 

simulating the STN MER. This would include a study of the effects of neurons 

following different ISI distributions on fitting the renewal model for the MER using the 

IID assumptions.  

• Since the neural mass model is a moment expansion of the Fokker-Plank equation, 

higher order moments could be added to the model to see how different distributions 

of firing rates would change the analysis presented in this thesis. 

• By repeating the simulations with different DA levels, the usefulness of the model for 

predicting disease and its potential use in adaptive DBS can be determined.  

• An example of future work would be to use cortical inputs recorded from patients 

performing different tasks. The renewal model with the IID assumption can also be 

used to investigate patient dopamine levels, or correlation of interoperative MERs 

with UPDRS scores. The Bayesian method of analysis used in the results of this 
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thesis could then be used to determine the values of these by the using the model 

and the inverse method of fitting the Weibull distribution. This work would require a 

larger patient data set than was available during this thesis. 

• Acquisition of EEG recordings of the cortex can be used with the neural mass model 

to generate STN MERs. With enough recordings the Bayesian analysis, using the 

Weibull shape parameter, presented in this thesis can be used to see if the model 

can be used to predict the behaviour of the cortex.  

• After validation of the Bayesian analysis using EEG recordings a potential closed loop 

stimulation scheme could be developed. The work presented in this thesis presents 

a method for estimating the cortical state in terms of a rate. Comparing the rate 

estimate from to a cortical measurement or a desired rate would produce an error 

magnitude that could be used for modifying the stimulation frequency or amplitude. 

• Further experimental studies acquiring more patient recordings can allow an 

investigation on fitting the model to patient recordings under movement tasks. The 

STN, and BG on a whole, is involved in motor coordination and control. By finding 

the effects of movement on the STN, this model could assist in development towards 

adaptive DBS. 

• Developing the model parameters for MERs from other deep brain structures where 

interoperative patient recordings can be obtained for validation of the simulations. For 

example, during implantation in the STN the microelectrode passes through the 

thalamus, the Zona Incerta, the second field of Forel and it can go past the STN into 

the substantia nigra. 

• Determine the observability and controllability of the basal ganglia neural mass model 

using measurements of the STN state using the inverse method of fitting the renewal 

model presented in this paper. This would give an indication on the usefulness of the 

model in this paper in an adaptive DBS controller. 
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Paper A - An efficient stochastic based 

model for simulating microelectrode 

recordings of the deep brain 

K. J. Weegink, J. J. Varghese, P.A. Bellette, T. Coyne, P.A. Silburn and P.A. Meehan 

ABSTRACT 

We have developed a computationally efficient stochastic model for simulating 

microelectrode recordings, including electronic noise and neuronal noise from the local field 

of 3000 neurons. From this we have shown that for a neuron network model spiking with a 

stationary Weibull distribution the power spectrum can change from exhibiting periodic 

behaviour to non-stationary behaviour as the distribution shape is changed. It is shown that 

the windowed power spectrum of the model follows an analytical result prediction in the 

range of 100-5000 Hz. The analysis of the simulation is compared to the analysis of real 

patient interoperative sub-thalamic nucleus microelectrode recordings. The model runs 

approximately 200 times faster compared to existing models that can reproduce power 

spectral behaviour. The results indicate that a spectrogram of the real patient recordings 

can exhibit non-stationary behaviour that can be re-created using this efficient model in real 

time. 

1 INTRODUCTION 

For the treatment of progressed movement disorders, such as Parkinson’s disease (PD), 

deep brain stimulation (DBS) may be used. This treatment involves locating a target deep 

brain structure, such as the sub-thalamic nucleus (STN), inserting an electrode to within 1 

mm accuracy, and then applying a pulsed electric field to the area. One of the tools used to 

locate the correct nucleus structure is a microelectrode recording (MER). 
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MERs are performed by insterting a recording electrode, with a diameter around 50 um, into 

the nucleus structure (figure 1) located via MRI and CT scans.  

To confirm the correct location of the implanted DBS electrodes, patients are awake to 

perform neurological tests. This gives an opportunity to monitor the candidate nucleus, for 

stimulation, while the patients perform tasks. Recent work has shown that with the correct 

measure, correlations between MER recordings and patient response to symantic tests has 

been demonstrated (P. A. Meehan & Bellette, 2009; Paul A. Meehan et al., 2011; Varghese 

et al., 2011).  

 

Currently there has also been work on developing a bi-directional brain-machine interface 

for DBS treatment (Rouse et al., 2011). To further develop these research paths appropriate 

methods for efficient real time simulations to estimate neural network behaviour are 

required. For instance developing a metric that can characterise the underlying neural 

behaviour from a MER, a better understanding of the process in DBS could be made.  

Current MER models only consider the behaviour of the closest neuron and reduce the 

further neurons to a local field noise (Santaniello, Fiengo, Glielmo, & Catapano, 2008). For 

feedback control of DBS the behaviour of the neural network needs to be modelled,  as it 

has been shown that analysis of the closest neuron to the electrode is insufficient (Rouse, 

et al., 2011). Using the current non-linear neuron models of DBS (Rubin & Terman, 2004) 

 

Figure 1: The micro-electrode recordings (MER) are acquired by inserting an electrode into a deep 
brain structure. The electrical activity of the neurons surrounding the electrode can couple to it 
producing a voltage time series.  
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for this type of feedback controller would be too computationally intensive, for this reason 

models that can take into account a large number of neurons and display markers of 

pathalogical states efficiently are needed.  

In this paper we develop numerical probabilistic models, using a point process (PP) in order 

to create a much more computationally efficient model of networked neurons. Each neuron 

is coupled to the electrode, using a non-homogenous model for the extracellular medium, 

via a filter function derived from a conductance based model for the STN extacellular current 

during an action potential (AP). We use the model to compare with real patient MERs and 

an analytical model using frequency based analysis. This type of numerical model could 

potentially be used in a clinical setting as part of a feedback controller for DBS, alleviating 

the clinical load of optimizing the device settings.    

2 Methods 

There are several aspects to modelling and analysing deep brain signals. The system is a 

complicated system with many levels of dynamics required to create a MER. Section 2.1 

contains the procedure used to acquire patient MERs. The factors that contribute to 

modelling a MER; modelling the behaviour of a single neuron, the network behaviour, the 

neuron electrode interaction and the electrical equipment processing the signal are detailed 

in the section 2.2. A simple analytical model is presented in 2.3 for comparison to the 

numerical model and to provide more insight into how the statistical distribution influences 

the expected power spectrum. The methods of the comparative analysis are then 

summarized in 2.4. 

2.1 Experimental Procedure - Patient MER Acquisition 

MERs are acquired from participants with idiopathic PD who were considered suitable for 

the implantation of bilateral permanent stimulators in the STN. Fused MRI and stereotactic 

CT images and direct visualisation of FLAIR (Fluid-attenuated inversion recovery) MRI 

images displayed by Stealthstation (Medtronic Inc., Minneapolis, MN) were used to target 

the STN. 



128 

 

During surgery characteristic STN firing patterns were used to confirm the STN location by 

the neurologist and neurosurgeon. More details of the surgical procedure are reported in 

Coyne et al. (Coyne et al., 2006). 

MERs were acquired with a Tungsten microTargeting electrode (model mTDWAR, FHC, 

Bowdoinham, ME) with a tip diameter of less than 50µm and impedance of approximately 

0.5 MΩ (± 30%) at 1 kHz. MERs were filtered (500-5000 Hz) and recorded at a sampling 

rate of 24 kHz from LeadPoint (Medtronic Inc., Minneapolis, MN). 

2.2 Numerical Modelling of Micro-Electrode Recordings 

A MER is created by the activity of the neurons around the recording electrode. The neurons 

generate currents and hence electric fields that propagate through the different structures 

of the brain tissue, which can attenuate and filter the signal (Garonzik, Ohara, Hua, & Lenz, 

2004). Finally the field incident on the electrode is processed by the electrical equipment to 

produce the recording. 

Models of MERs have been developed that consider single unit recordings, made from a 

stochastic single neuron with random noise (Santaniello, et al., 2008) and local field 

potentials (LFP) created using the spike trains of simultaneously recorded in-vivo cells 

(Bedard & Destexhe, 2009). However neither of these models allow for real time simulations 

with dynamically altering network behaviour. 

To effectively model a MER which would allow real time simulations, there are several 

different stages that need to be taken into consideration. The four separate areas we are to 

model are the behaviour of the neural network, the electrical dynamics of individual neurons, 

the coupling of the electric fields from a neuron to the electrode and the processing of the 

signal by the electronics. 

2.2.1 Neural Networks 
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For a MER a large number of neurons in the structure surrounding the electrode contribute 

to the signal. Dynamic models of neurons and neural networks are common for simulating 

brain structures(Feng, Shea-Brown, Greenwald, Kosut, & Rabitz, 2007; Izhikevich, 2007a, 

2007b; Rubin & Terman, 2004; Terman, Rubin, Yew, & Wilson, 2002). These types of 

models, using synaptic connections between neurons with dynamical neuron models, can 

be very computationally intensive (Long & Fang, 2010). To reduce the computational burden 

of modelling individual neurons with synaptic connections, the firing times of each neuron 

can be characterized by a stochastic variable. This variable is produced from a probability 

distribution that depends upon the behaviour of the network. This type of model is a point 

process (Perkel, Gerstein, & Moore, 1967a, 1967b). 

For single neurons the spiking statistics are often modelled by a Poisson distribution of inter 

spike interval (ISI) times. The participants for the deep brain MER recordings are undergoing 

treatment for a pathological state that is treated by altering STN function. This could imply 

abnormal function of the STN where the firing is not best described by a Poisson distribution 

in ISIs. 

A probability distribution that can give the common types of behaviour found in neurons, 

such as bursting, Poisson and periodic behaviour, is the Weibull distribution (Li, 2011; 

McKeegan, 2002; Perkel, et al., 1967a, 1967b). This type of distribution can reduce to a 

Poisson distribution if the shape parameter is equal to one, takes the form of a Rayleigh 

distribution if the shape parameter is larger than two and burst fire behaviour is produced as 

it goes below one. 

The point process simulation is performed using MATLAB 7.12.0 (R2011a) on a PC with a 

quad core 1.73GHz processor and 8.0 GB of RAM. A spatial distribution of 3000 neurons is 

randomly generated, shown in figure 2, that follows the radial density of neurons (𝑁(𝑟)) 

given in equation (1) using a spatial neuron density of 𝜌 = 105𝑐𝑚−3. 

𝑁(𝑟) = 4𝜋𝑟2𝜌. (1) 
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Figure 2: The radial distribution of neurons used for simulations. The volume of tissue for 

the simulation depends on the number of neurons simulated. 

All simulations are performed over a three second period. Time series of Dirac pulses are 

created for each neuron by drawing interval times for spike occurrences from a probability 

distribution. Weibull distributions are used to generate the ISIs given by 

𝑃(𝑡) = {(
𝑡−𝑡𝑟

𝜆
)

𝑐−1 𝑐

𝜆
 𝑒−(

𝑡−𝑡𝑟
𝜆

)
𝑐

   𝑥 > 𝑡𝑟

                    0                  𝑥 ≤ 𝑡𝑟

, (2) 

𝜆 is the scale parameter that controls the rate and is set to 10 Hz. The shape parameter c is 

varied to control the neuron behaviour; with 𝑐 ≪ 1 generating bursting, 𝑐 = 1 Poissonian and 

𝑐 ≫ 1 periodic behaviour. The parameter 𝑡𝑟 controls the refractory time of the neuron and 

set to 5 ms, preventing another action potential occurring for the same neuron in this period. 

The first spike for each neuron uses 𝑐 = 1 with 𝑡𝑟=0. Each time series is convolved with the 

EAP for an STN neuron by taking the product in the frequency domain. The time series data 

for each neuron are then superimposed to create the voltage at the electrode. 

2.2.2 Neuron Dynamics 

Using a PP model for the neural network, the dynamics of each neuron have been reduced 

to an ‘on’ or ‘off’ state. To develop the correct response for a neuron when in the ‘on’ state, 

conductance models such as the Hodgkin and Huxley (HH) model can be used to generate 

the behaviour of the individual neuron, when an action potential occurs. 
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The HH model can calculate the extracellular currents around a neuron which is required for 

determining the voltage seen by an electrode. It has previously been demonstrated STN 

cells can be simulated effectively using this type of model (Terman, et al., 2002). More 

computationally efficient mathematical models of neurons are not considered since these 

types of models cannot always reproduce the correct shape of the action potential 

waveform, and this feature is important when considering the windowed power spectrum. 

 

Figure 3: The extracellular current used for each neuron generated using equation (3). 

The STN cell is modelled using a single compartment conductance based model described 

by a modified version of the HH equation, based on (Feng, et al., 2007; Rubin & Terman, 

2004; Terman, et al., 2002):  

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝑣𝐿) − 𝑔𝐾𝑛4(𝑉 − 𝑣𝐾) − 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝑣𝑁𝑎) −

𝑔𝑇𝑎3𝑏2(𝑉 − 𝑣𝐶𝑎) − 𝑔𝐶𝑎𝑠2(𝑉 − 𝑣𝐶𝑎), 
(3) 

where 𝐶𝑚 is the membrane capacitance and set to 1 𝑝𝐹 𝜇𝑚⁄ ; 𝑔𝐿 , 𝑣𝐿 are the leak conductance 

and reversal potential (2.25 𝑛𝑆/𝑚2 and −60.0 𝑚𝑉 respectively); 𝑔𝐾, 𝑣𝐾  are the 𝐾+ 

conductance and equilibrium potential (45 𝑛𝑆/𝑚2 and −80.0 𝑚𝑉 respectively); 𝑔𝑁𝑎, 𝑣𝑁𝑎 are 

the 𝑁𝑎+ conductance and equilibrium potential (37.5 𝑛𝑆/𝑚2 and 55.0 𝑚𝑉 respectively); 𝑔𝑇 

is a low-threshold T-type Ca2+  conductance (0.5 𝑛𝑆/𝑚2); and 𝑔𝐶𝑎, 𝑣𝑐𝑎 are a high-threshold 

Ca2+ conductance and a Ca2+ equilibrium potential (0.5 𝑛𝑆/𝑚2 and 140.0 𝑚𝑉 respectively). 

The gating variables 𝑛, 𝑚, ℎ, 𝑎 and 𝑏 follow the differential equations given in (Terman, et 

al., 2002) using the parameters given in their table 1. The dynamics of a single neuron are 
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modelled in NEURON (Hines & Carnevale, 1997) using equation (3) to generate the 

extracellular current during an action potential, shown in figure 3.  

2.2.3 Neuron/Electrode Interaction 

The electrode senses the neuron dynamics through the electric field that propagates from 

the neuron. This electric field is known as the extracellular action potential (EAP). The EAP 

is generated by ionic currents around the active neuron. As the EAP propagates through the 

extracellular space to the electrode it will pass through regions of space with different 

conductivity and permittivity. This will cause filtering effects along with attenuation of the 

field. This means that the electrode will record a different EAP for each neuron depending 

upon the distance from the electrode and the media in between. 

The complex impedance (𝑍𝜔(𝑟)) for the interaction of each neuron with the electrode over 

the range of radii is calculated by (Bedard, Kroger, & Destexhe, 2004), 

𝑍𝜔(𝑟) =
1

4𝜋𝜎(𝑅)
∫

1

𝑟′2

𝜎(𝑅)+𝑖𝜔𝜖(𝑅)

𝜎(𝑟′)+𝑖𝜔𝜖(𝑟′)
𝑑𝑟′

∞

𝑟
, (4) 

where 𝜎 is the conductivity in the extracellular medium, 𝜖 is the permittivity in the extracellular 

medium and R is the spherical radial size of each neuron. An exponentially decaying 

conductance  

𝜎(𝑟) = 𝜎(𝑅) (𝜎0 + (1 − 𝜎0)e
( −

𝑟−𝑅

𝜆
)
), 

(5) 

with a space constant 𝜆 = 500 𝜇𝑚, cell radius 𝑅 = 10 𝜇𝑚, conductivity at the cell 𝜎(𝑅) =

1.5 𝑆/𝑚 and a normalized low amplitude conductivity 𝜎0 = 2 × 10−9 ; and a constant 

normalized permittivity 𝜖 = 10−11𝐹/𝑚 were used following Bedard (2004). The EAP 

waveform in the frequency domain for each neuron is calculated using the complex 

impedance and the FFT of the extracellular current. 
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The voltage (𝑉𝜔), in terms of the frequency components, at the electrode caused by a neuron 

is then calculated using Ohm’s law (Bedard, et al., 2004), 

𝑉𝜔(𝑟) = 𝐼𝜔𝑍𝜔(𝑟), (6) 

where 𝐼𝜔 is the frequency component of the current at the neuron. 

2.2.4 Electrical Processing 

To properly analyse a MER the effects of the electrical equipment, on the recording, need 

to be included. These effects include the introduction of noise, such as that due to sampling 

rate, clock stability and thermal noise, and any filtering that occurs. These issues could 

greatly affect the ability of a measure to differentiate the neuronal behaviour from the 

electrical effects.  

The first such noise source is the noise present from thermal fluctuation of electrons in the 

microelectrode (Akingba, Wang, Chen, Neves, & Montemago, 2003). This type of noise is 

known as Johnson-Nyquist noise and is characterized by having zero mean voltage and a 

variance dependant on the temperature, resistance and frequency bandwidth.  

The phase noise is not considered in this analysis due to the stability of the 10 MHz clock 

typically used and the comparatively small sample rate of 24 kHz. Digitization noise can be 

accounted for by producing the final MER of the simulation with the same time step that the 

patient data is recorded at. Finally any filters can be added using the filter transfer function 

in the post processing of the MER simulation. 

Thermal noise on the electrode is added as white noise using 

〈𝑉〉 = 0, (7) 

〈𝑉2〉 = 4𝑘𝐵𝑇𝑅Δ𝑓, (8) 
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where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature, 𝑅 is the resistance, Δ𝑓 is the 

bandwidth and 〈 〉 is the time average, it is found that for a 0.5 MΩ resistor at body 

temperature (37oC) the thermal noise can be between 10-30% of the size of the neural 

signal. 

 The recording is filtered with a 6th order low pass Butterworth filter with a corner frequency 

of 5 kHz and a 3rd order high pass filter with a corner frequency of 500 Hz. The final MER 

from the simulation is produced with a sample rate of 24 kHz to create the same digitization 

effects as present in the patient data. 

2.3 Simplified Analytical Model of Micro-Electrode Recordings 

The MER may be analytically modelled by a superposition of independent spike trains, 

equivalent to the numerical model using a point process. The PSD for a PP model will be a 

filtered version of the PSD for the EAP waveform. For independent overlapping pulse trains, 

with the same shape waveform for each pulse, it has been shown (Banta, 1964) that the 

power spectrum (𝐺0(𝜔)) for the MER can be written as 

𝐺0(𝜔) =
𝜈𝐺(𝜔)

2𝜋
[𝑎2̅̅ ̅ − 2�̅�2𝑅𝑒 {

𝐻(𝜔)

1−𝐻(𝜔)
}], (9) 

where 𝐺(𝜔) is the  PSD of the waveform, 𝐻(𝜔)  is the characteristic function (Fourier 

transform) of the probability distribution for the aggregate spiking statistics, 𝜈 is the number 

of pulses per unit time and 𝑎 is the amplitude of the pulses with ̅  representing the ensemble 

average. 

Although this equation for the PSD takes into account the attenuation caused by the 

extracellular medium on the spike waveform it does not take into account the frequency 

filtering effects. 

This equation can however be used to see expected behaviour of different simulations. The 

bracketed term can be thought of as a filter, which is a function of the spiking probability, 
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applied to the waveform PSD. By looking at this term the filtering effects caused by the 

different probability functions can be examined. 

2.4 Procedure for Comparison of Numerical and Experimental Results 

The most intuitive way to analyse the noise of an MER is to look at the PSD. This was first 

done by in 1979 (McNames, 2004) using a circuit equivalent of a Fourier Transform (FT). In 

recent years analysis of MERs has progressed into the digital domain. The majority of these 

techniques still involve analysis of the PSD. 

Neuron spiking behaviour can be examined through MER PSDs. It was shown how 𝑓−2  

behaviour in the PSD can arise from shot noise type behaviour of neurons spiking (Milstein, 

Mormann, Fried, & Koch, 2009), while 𝑓−1 behaviour may be due to filtering by reactive 

extracellular media, or due to complex self-organized critical phenomena (Bedard & 

Destexhe, 2009).  

Complex measures have been used to look at MERs, and it has been shown that some 

techniques, such as the Non-Markov parameter (NMP) relate to the PSD (Varghese, et al., 

2011). 

The windowed PSD will not capture transient behaviour in the MER. To view this transient 

behaviour a spectrogram can be used. This involves dividing the signal into smaller time 

bins. The PSD is taken for each time bin to see the PSD as a function of time for the MER. 

A windowed PSD is taken of the time series data from the simulation using a Gaussian 

window with an 𝑒−2 width of 1/50th of the signal length. The PSD is then averaged of 5 trials 

of the simulation with the same firing statistics. This is compared to the windowed PSD of a 

three second signal averaged over 5 recordings. 

Spectrograms are produced with the same time intervals used for the windowed PSD. The 

spectrograms consist of a series of instantaneous PSD over each time interval. The 

spectrograms are then used to compare the stationary behaviour of the power spectrum for 

different ISI probability distributions and the patient data. 
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3 Results and Discussion 

The results from the numerical simulations are presented in this section and are then 

compared to the experimental results and analytical predictions. Subsection 3.1 summarises 

the numerical results and provides a comparison with MERs acquired from patients. The 

time series, windowed power spectrum and spectrogram for three different simulation 

parameters are used. Subsection 3.2 includes details of the results from the simple 

analytical model, comparing how the power spectrum of the EAP is modified under the 

different spiking statistics used to produce the MERs from the numerical models. 

3.1 Numerical and Experimental Results Comparison 

The time series of voltage from the simulations has been plotted for three different firing 

probability distributions and compared to a patient recording (Figure 4). For 𝑐 ≅ 1 the time 

series have similar features to the patient data. Differences can only be seen for large 

deviations from 𝑐 = 1. As case examples for their characteristic behaviour extreme cases of 

𝑐 have been used. As 𝑐 ≪ 1, bursting behaviour is visible in the time series and for 𝑐 ≫ 1 

periodic spiking becomes apparent.  

 

Figure 4: Comparison of a) Patient MER to simulations with b) 𝑐 = 1  , c) 𝑐 ≪ 1 and d) 𝑐 ≫ 1. 

The simulations were calculated at a rate of 6 milli seconds per neuron per second of 

computational time, a 200 fold increase on dynamical models that reproduce accurate 

waveform shapes  (Long & Fang, 2010). 



137 

 

 

Figure 5: Overlap of the real patient windowed PSD over the windowed PSD of the simulation for 𝑐 = 1.  

 

Figure 6: Overlap of the real patient windowed PSD over the windowed PSD of the simulation for 𝑐 ≫ 1.  

 

Figure 7: Overlap of the real patient windowed PSD over the windowed PSD of the simulation for 𝑐 ≪ 1. 
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The windowed PSD for all three simulations and the patient recordings, seen in figures 5, 6 

& 7, have three main regions. The first region is the filter drop off above 5 kHz. This feature 

is present in all 4 PSDs with good agreement between patient data and simulations. The 

thermal noise term added is white noise and as such adds the same power to every 

frequency, shifting the PSD up. This effect is removed by normalizing the power spectrum 

to integrate to unity. The other electrical effects; high and low pass filtering; do however alter 

the normalized power spectrum, seen by the sharp falloff in power in this region. 

The second region is the behaviour at high frequencies (100-5000 Hz). The two simulations 

with 𝑐 ≤ 1 have good agreement with patient data in this region shown in figures 5 & 7. The 

simulation with 𝑐 ≫ 1 (figure 6) has structure in this region that can be explained as 

harmonics of features in the low frequency region. The overall shape in this region is 

dominated by the waveform of the EAP. 

The final region of interest is in the region below 100 Hz. This region is thought to contain 

information of the Local field potential (LFP). Experimentally this region has an electronic 

filter, with a slow drop off.  For 𝑐 ≫ 1 this region has a sharp peak at 10 Hz, the simulated 

spike rate, and then has peaks at the harmonic frequencies of n10 Hz, where n is an integer. 

The other two cases have anomalous peaks in this region similar to the 20 Hz peak in the 

patient data. This beta band peak (12-30 Hz) has been seen in PD MER recordings 

previously and has been implicated in the pathological state (Eusebio & Brown, 2009). 

 
 

Figure 8: Spectrograms with the region displaying beta band behaviour boxed in red, a) patient MER 
showing transient beta band behaviour, b) simulations 𝑐 ≪ 1 showing transient beta band behaviour, c) 

𝑐 = 1 showing transient beta band behaviour and d) 𝑐 ≫ 1 showing periodic behaviour. 
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Besides the PSD for 𝑐 ≫ 1, the problem with comparing the average PSD is that they appear 

very similar between 100-5000 Hz with differences below 100 Hz. Another method to 

examine the spectral properties of an MER is to look at the spectrogram, figure 8, and to 

observe changes in the power spectrum over time. 

From the spectrogram for the typical patient MER recording it can be seen that the PSD 

changes in time. These recordings show the feature in the beta band appearing and 

disappearing through the recording. 

When the numerical simulations were performed with 𝑐 ≫ 1, the PSD appears periodic 

stationary. This behaviour can be seen in figure 8 d). When c is set to one or below features 

of the PSD appears to change in time in the beta band. This is similar behaviour to the PSD 

for the patient data. 

This analysis suggests that 𝑐 ≅ 1  qualitatively represents the patient data the best from the 

options tried. This supports the idea that spiking behaviour in a large network appears 

Poisson (Câteau & Reyes, 2006; McNames, 2004; Stevens & Zador, 1998).  

3.2 Analytical Predictions 

The results from equation (5) show the effect of changes in the aggregate probability 

distribution. Equation (5) can be thought of as a spike waveform filter that is dependent on 

the probability distribution through 𝑅𝑒[𝐻(𝜔) (1 − 𝐻(𝜔))⁄ ]. Figure 9 shows the frequency 

behaviour of equation (5) for different values of 𝑐, if the statistics follow a Weibull distribution.  

For 𝑐 ≫ 1 and 𝑐 = 1 figure 9 shows the frequency filtering effects due to the spiking statistics 

are flat and will not add noticeable features in the PSD below 100 Hz. This analytical model 

doesn’t take into account the frequency filtering of more distant neurons by the extracellular 

medium. Figure 9 a) shows how the extracellular medium model acts as a low pass filter. 

For these reasons this model is not sufficient to describe the features seen in the numerical 

simulations below 100 Hz. 
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Figure 9: a) The filter function of the extracellular medium at 0.2𝜇𝑚. Inserts b)-d) show the comparison of the 

power spectrum of the EAP with the MER power spectrum from the analytical model, b) the MER PSD for 𝑐 =

1 modelled by equation (9), it can be seen that for this distribution the results of the MER and EAP PSDs are 

in agreement, c) the MER PSD for 𝑐 ≫ 1 modelled by equation (9), d) the MER PSD 𝑐 ≪ 1 modelled by 

equation (9). 

For 𝑐 ≫ 1 the 10 Hz peak with harmonic peaks in the numerical simulation can be   seen in 

the frequency effects from equation (9), shown in figure 9, if the aggregate probability 

distribution maintains the single neuron ISI probability shape.  

The problem with this analysis is that we have assumed that the distribution controlling the 

ISIs is stationary in time. Equation (9) cannot account for ISI distributions that change in 

time. The non-stationary nature of the real patient PSD could suggest that the probability 

distribution describing the neuron firing may not be stationary. This behaviour can 

alternatively be explained by the probabilistic nature of the simulation and the time period 

the PSD is taken over. This is demonstrated by the simulations using the PP model showing 

similar non stationary behaviour under the same analysis, even though the probability 

distribution of ISIs was stationary in time. 

4 Conclusions 

MERs were efficiently simulated using a PP model with a conductance model for generating 

the EAP, taking into account extracellular frequency filtering and attenuation; and the effects 

of the recording electronics. The simulations perform approximately 200 times faster than 
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using a Hodgkin and Huxley model for all of the neuron dynamics (Long & Fang, 2010). With 

this computationally efficient model very good agreement was achieved when comparing 

the windowed PSD of the simulated MERs with real patient data for frequencies above 100 

Hz. 

Below 100 Hz the PSD of patient MERs are not stationary, which can be reproduced using 

a time stationary probability distribution for the ISI. Since the model is a probabilistic model 

that treats the neurons as point sources rather than a full dynamical model, the neurons are 

either in an ‘on’ or ‘off’ state. This means it cannot produce neural features such as sub-

threshold oscillations and cellular activity such as synaptic currents. These features may be 

critical for describing the features below 100Hz sufficiently. 

The analytical model using the results from Banta (1964) showed features that were present 

in the simulations, such as the harmonic structure present in the windowed PSD for 

simulations with 𝑐 ≫ 1. This type of analysis could allow for characterization of the ISI 

probabilities of patient MERs from the windowed PSD.  

To account for the features in the beta band (10-35 Hz) more complex models; including 

explicit network interactions and full cell dynamics, such as sub-threshold oscillations, may 

be required. 

Future work could include performing the inverse problem of finding the shape and rate 

parameters that best describe a patient MER. The results from this study could be used to 

find markers that may be applicable in the clinical environment for optimising DBS and 

potentially operating in a feedback controller.   

Acknowledgements 

The authors are greatly indebted to PD specialists of St. Andrew’s War Memorial and The 

Wesley Hospitals, Australia for their motivation, guidance, interdisciplinary expertise and 

funding. 

References 



142 

 

Akingba, A. G., Wang, D., Chen, P.-s., Neves, H., & Montemago, C. (2003). Application of 

nanoelectrodes in recording biopotentials. Paper presented at the IEEE-NANO 2003.   

Banta, E. (1964). A note on the correlation function of nonindependent, overlapping pulse 

trains. Information Theory, IEEE Transactions on, 10(2), 160-161.   

Bedard, C., & Destexhe, A. (2009). Macrascopic Models of Local Field Potentials and the 

Apparent 1/f Noise in Brain Activity. Biophysical Journal, 96, 2589-2603. 

Bedard, C., Kroger, H., & Destexhe, A. (2004). Modeling Extracellular Field Potentials and 

the Frequency-Filtering Properties of Extracellular Space. Biophysical Journal, 86, 1829-

1842.   

Câteau, H., & Reyes, A. D. (2006). Relation between Single Neuron and Population Spiking 

Statistics and Effects on Network Activity. Physical Review Letters, 96(5), 058101.   

Coyne, T., Silburn, P. A., Cook, R., Silberstein, P., Mellick, G., Sinclair, F.,& Stowell, P. 

(2006). Rapid subthalamic nucleus deep brain stimulation lead placement utilising CT/MRI 

fusion, microelectrode recording and test stimulation. Acta Neurochirurgica Suppl(99), 49-

50.   

Eusebio, A., & Brown, P. (2009). Synchronisation in the beta frequency-band--the bad boy 

of parkinsonism or an innocent bystander? Experimental Neurology, 217(1), 1-3.   

Feng, X.-J., Shea-Brown, E., Greenwald, B., Kosut, R., & Rabitz, H. (2007). Optimal deep 

brain stimulation of the subthalamic nucleus—a computational study. J. Comput. 

Neurosci.(23), 265–282.   

Garonzik, I. M., Ohara, S., Hua, S. E., & Lenz, F. A. (2004). Microelectrode Techniques: 

Single-Cell and Field Potential Recordings. In Z. Israel & K. J. Burchiel (Eds.), 

Microelectrode recordings in movement disorder surgery (Vol. 1). New York: Thieme 

Medical Publishers, Inc. 

Hines, M. L., & Carnevale, N. T. (1997). The NEURON Simulation Environment. Neural 

Computation, 9(6), 1179-1209. doi: 10.1162/neco.1997.9.6.1179 

Izhikevich, E. M. (2007a). Dynamical Systems in Neuroscience. Cambridge: MIT Press. 

Izhikevich, E. M. (2007b). Solving the distal reward problem through linkage of STDP and 

dopamine signaling. Cerebral Cortex, October(17), 2443-2452. 

Li, C. (2011). A Model of Neuronal Intrinsic Plasticity. Autonomous Mental Development, 

IEEE Transactions on, PP(99), 1-1.   

Long, L. N., & Fang, G. (2010). A Review of Biologically Plausible Neuron Models for Spiking 

Neural Networks. Paper presented at the AIAA InfoTech@Aerospace Conference, Atlanta, 

GA.   



143 

 

McKeegan, D. E. F. (2002). Spontaneous and odour evoked activity in single avian olfactory 

bulb neurones. Brain Research, 929(1), 48-58. doi: 10.1016/s0006-8993(01)03376-5 

McNames, J. (2004). Microelectrode Signal Analysis Techniques for Improved Localization. 

In Z. Israel & K. J. Burchiel (Eds.), Microelectrode recordings in movement disorder surgery 

(Vol. 1). New York: Thieme Medical Publishers, Inc. 

Meehan, P. A., & Bellette, P. A. (2009). Chaotic Signal Analysis of Parkinson's Disease STN 

Brain Signals. Paper presented at the Topics in Chaotic Systems.   

Meehan, P. A., Bellette, P. A., Bradley, A. P., Castner, J. E., Chenery, H. J., Copland, D. 

A.,& Silburn, P. A. (2011). Investigation of the Non-Markovity Spectrum as a Cognitive 

Processing Measure of Deep Brain Microelectrode Recordings. Paper presented at the 

BIOSIGNALS 2011- International Conference on Bio-Inspired Systems and Signal 

Processing, Rome, Italy. 

Milstein, J., Mormann, F., Fried, I., & Koch, C. (2009). Neuronal Shot Noise and Brownian 

1/f^2 Behavior in the Local Field Potential. PLoS One, 4(2), e4338 4331-4335.   

Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967a). Neuronal Spike Trains and Stochastic 

Point Processes I. Biophys J., 7(4), 391–418.   

Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967b). Neuronal Spike Trains and Stochastic 

Point Processes II. Biophys J., 7(4), 419–440.   

Rouse, A. G., Stanslaski, S. R., Cong, P., Jensen, R. M., Afshar, P., Ullestad, D., & Denison, 

T. J. (2011). A Chronic Generalizaed Bi-directional Brain-Machine Interface. J. Neural Eng., 

8(036018).   

Rubin, J. E., & Terman, D. (2004). High Frequency Stimulation of the Subthalamic Nucleus 

Eliminates Pathological Thalamic Rhythmicity in a Computational Model. Journal of 

Computational Neuroscience(16), 211–235.   

Santaniello, S., Fiengo, G., Glielmo, L., & Catapano, G. (2008). A biophysically inspired 

microelectrode recording-based model for the subthalamic nucleus activity in Parkinson’s 

disease. Biomedical Signal Processing and Control(3), 203–211.   

Stevens, C. F., & Zador, A. M. (1998). Input synchrony and the irregular firing of cortical 

neurons. Nature Neuroscience  1, 210 - 217. doi: 10.1038/659 

Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity Patterns in a Model for 

the Subthalamopallidal Network of the Basal Ganglia. The Journal of Neuroscience, 7(22), 

2963–2976.   

Varghese, J. J., Weegink, K. J., Bellette, P. A., Meehan, P. A., Coyne, T., & Silburn, P. A. 

(2011). Theoretical & Experimental Analysis of the Non Markov Parameter to Detect Low 



144 

 

Frequency Synchronisation in Time Series Analysis. Paper presented at the Engineering in 

Medicine and Biology Society, Annual International Conference of the IEEE, Boston 

Massachusetts.   

 

  



145 

 

Paper B -  SPIKES FROM 

COMPOUND ACTION POTENTIALS IN 

SIMULATED MICROELECTRODE 

RECORDINGS 

K. J. Weegink, J. J. Varghese, and A. P. Bradley 

ABSTRACT 

In this paper we demonstrate by simulation, that the spike features apparent in low-

impedance deep brain stimulation (DBS) targeting microelectrode recordings (MER) may 

not reflect the action potentials of individual neurons. Rather, they are more likely to be 

compound action potentials from a synchronized group of neurons local to the electrode.  

Initially we simulate the MER by combining the electric fields from a large number of 

independent neurons surrounding the microelectrode tip. When synchronization is intro- 

duced amongst neurons the resulting discernible spikes in an MER are far more likely to 

relate to compound action potentials from sub-sets of synchronized neurons than individual 

action potentials. Different sub-sets of neurons are then synchronized to see how well a 

conventional spike sorting algorithm can differentiate the compound action potentials from 

different groups of neurons. These simulations offer insight into the clinical interpretation of 

DBS MERs used to target deep brain structures. 

 

1 INTRODUCTION 

During the treatment of Parkinson’s Disease with deep brain stimulation (DBS) a 

microelectrode is used to confirm the target location, e.g. the Subthalamic Nucleus (STN), 

in the brain. This electrode is used to both stimulate and record neuronal activity. A design 
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consequence of using the recording electrode for stimulation is that it has a 50µm tip to 

increase the volume of stimulation and to prevent neuronal damage by minimizing the 

current density around the electrode tip. A typical MER consists of a baseline noise 

component and features, larger in amplitude than the noise, often referred to as spikes. 

These spikes are commonly interpreted as action potentials (APs) from single neurons [1, 

2, 3, 4]. Characteristics of the microelectrode recording (MER), such as an increase in the 

noise amplitude when entering the STN, are used by the surgical team to locate the target 

for stimulation [5, 6]. 

 

Previous work has modeled how an increase in MER noise can be attributed to neural 

structure, showing that the electric field from a large number of neurons, up to 10,000 

neurons, can contribute to the recording [7, 8]. In these models each neuron is simulated as 

a filtered point process with independent identically distributed interspike interval (ISI) times. 

As these neurons are also modelled independent from one another, there is no synchronous 

activity, other than by chance. These models are not representative of the STN. Studies 

have shown that there can be up to 25% of cells are involved in synchronous activity in the 

STN [5]. 

 

In this paper we demonstrate that synchronization of neuronal firing times can produce 

spikes in an MER known as compound action potentials (CAPs). This paper has the 

following structure: The methods section describes how synchronization is added to the 

simulation. The results section details the properties of these spikes under different 

conditions. The discussion section is focused on the analysis of two different synchronization 

mechanisms, their plausibility and the implication of these results to spike sorting of MERs 

from DBS. The final section summarizes the conclusions of this study. 

2 METHODS 

The model used in this paper is an extension of the work presented in [7, 8]. For each neuron 

the ISI times are drawn from the same Weibull distribution, with a shape parameter of 0.8 

and a mean firing rate of 10Hz. These parameters match the values found for a STN given 

in [8]. A subset of synchronized neurons are defined at random during the initialization of 

the simulation. An additional point process time series is generated, using a Poisson 

distribution for ISI of synchronized firing running in parallel. A Poisson distribution is chosen 

so that the synchronized events are independent and evenly distributed in time (it is not 
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biologically based). At the spike times of this second point process a spike is added to the 

subset of neurons selected to be synchronized. If a neuron fires as part of a synchronized 

subset, the next firing time is reset and redrawn from the single neuron ISI distribution. The 

neuronal spike trains produced are coupled to the modeled electrode using the extracellular 

filtering model in [8]. 

 

 

 

Fig. 1. Raster plot of the simulated neuron firing times and the MER time series. The vertical lines of 
increased density in the raster plot correspond to the synchronized firing events, with a fraction of 
0.15 synchronization. There are two synchronized subsets of neurons, giving two different spike 
shapes/amplitudes. 

 

Fig. 2. Comparison of the probability of a neuron belonging to a synchronized subset for uniform distributed 
and spatially localized selections. The three coloured lines represent three different synchronized subsets 
(above the graph uniformly distributed and below spatially localized). 

 

In order to generate another synchronized neural sub-set the same process can be used, 
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with a different group of neurons selected and a separate probability distribution for 

synchronized timing events generated. Neurons that synchronize in one group can still 

synchronize in another group. For spatial localization of groups, the neurons are selected 

using a Gaussian distribution in space centered on the group with a standard deviation based 

on the spatial spread of the desired group as shown in Figure 2. 

 

The signal to noise ratio (SNR) of the spikes is calculated by taking the average maximum 

peak amplitude for a spike and comparing it to the root mean square (RMS) voltage of the 

noise (shown in Figure 1). Spike sorting of the recordings is performed using Osort [9], with 

compact support bi-orthogonal ‘1.5’ wavelet at individual wavelet scales corresponding to 

between 0.1 and 1ms. The clustering is unsupervised, with cluster validity checked by 

comparing s pike timing to the synchronized times in the simulation. 

3 RESULTS 

A raster plot, Figure 1, of the simulated neuron firings shows how the synchronized firing 

times correspond to a spike with a large signal to noise ratio. In the raster plot two separate 

synchronized subsets can be seen. Although there are two subsets with the same 

percentage of total neurons synchronized, their spatial arrangement around the electrode 

are different. The effects of this spatial arrangement can be seen in the MER time series, 

where two different spike shapes are present. 

 

Fig. 3. Mean peak signal amplitude as the fraction of neurons in the synchronized sub-set changes. The mean 
is taken over 20 simulations and the error bars are one standard deviation. The dashed line represents the 
average RMS value of the recordings, shown in Figure 1. 

 



149 

 

As the number of neurons that are synchronized increases Figure 3 shows a linear increase 

of the mean peak amplitude of the CAP spike, averaged over 20 simulations. The variance 

of the peak amplitude also increases significantly, depending on the spatial distribution of 

the sub-set of synchronized neurons, i.e. as more neurons are synchronized they are more 

likely to come from a wide spread of locations. Figure 3 shows synchronization over the 

biologically plausible range of 0-0.30 for the STN [5]. For synchronization above 0.5 the 

mean peak signal amplitude becomes constant at 8.06 ± 0.52 mV, with variance decreasing 

to zero when all neurons are synchronized. 

 

Fig. 4. Comparison of two CAPs after spike sorting from a simulation with synchronization percentage of 25% 
total synchronization. For this simulation there were two synchronized subsets of neurons with each subset 
uniformly distributed across all the neurons and 12.5% of neurons in each set. 

 

Figure 3 shows when two sub-sets of synchronized neurons differ substantially in their 

spatial distribution, spike sorting can be successfully achieved. This occurs more often when 

the neurons are spatially localized, however it can occur when the two sub-sets are uniformly 

distributed as per Figure 2. 
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Fig. 5. The number of groups clustered for six spatially localized and six uniformly distributed subsets of 
synchronized groups of neurons over 100 simulations. The sticks represent the maximum and the minimum 
number of groups, the box represents the 25th and 75th percentile and the notch is the mean. 

Figure 5 shows that when the synchronization of six neural subsets is changed from uniform 

across space, to spatially localized, the spike sorting algorithm can distinguish more clusters. 

For the uniform distribution only two to three clusters are found 50% of the time. For the 

spatially localized neural subsets more than four clusters are found 75% of the time. 

4 DISCUSSION 

Figure 3 shows that for no synchronization there is a chance of having a peak signal 

amplitude two times above the RMS noise. In this case a neuron current source (the axon 

hillock) is located close enough to the electrode tip for its action potential to be significantly 

larger than the background noise and thus appear as a spike. This shows that it is possible 

for DBS MER spikes to represent single neuron activity. However, the likelihood of two or 

more neurons contributing AP spikes in these MER simulations is very low because of their 

spatial distribution. 

 

There are two methods to produce visible spikes in the MER simulations. The first method 

is to place a neuron very close to the electrode (where the current source is adjacent to the 

tip of the electrode). The second method is to introduce synchronization and produce a CAP. 

For DBS MERs the spikes are often thought to be APs produced by single neurons. Spike 

sorting techniques, based on shape, amplitude and rate, are then used to determine if the 

MER spikes all correspond to the same neuron, or multiple neurons firing at different times 

[9]. It can be seen that these spike sorting methods can also be used to sort CAP spikes 

generated by synchronization, depending on the spatial distribution of the synchronization 

within the STN. 

 

When synchronization was uniformly spread through the STN the spike sorting of different 

synchronized subsets failed to produce the correct number of clusters. This is due to the 

effective shape of the CAP produced by a subset of synchronized neurons being too similar. 

Their similarity in shape of the spike is an average effect of the action potentials from each 

neuron that is synchronized. As the distribution of the synchronized subsets has a uniform 

probability of selecting any neuron, the average spike shape for each subset is on average 

the same. In general, the CAP shape is dominated by the closest neurons to the electrode, 

with minimal extracellular filtering. On average neurons that are further away are more likely 
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to be selected because the number of neurons located at a distance depends on the square 

of the radial distance from the electrode, r2. However, the further the neuron is from the 

electrode, the more the electric field is filtered by the extracellular medium [7, 8, 10, 11], with 

an amplitude decay larger than 1/r2. Therefore, the main difference between the two CAPs 

produced by a subset of synchronized neurons will be the total number of closer neurons, 

which will change the amplitude of the spike, as seen in the example in Figure 4. 

 

When the synchronized subsets are defined to be spatially localized, rather than across all 

of the STN, the compound action potentials are no longer dominated by the closest neurons. 

Rather they reflect the average AP at the mean spatial location of the cluster. This increases 

the success of the spike sorting because each CAP not only differs in amplitude but also in 

shape due to extracellular filtering. 

 

A point to note from Figure 5 is that the spike sorting never overestimates the number of 

synchronized subsets. The low likelihood of two neurons producing AP spikes in the 

recording combined with this point would suggest that spatially localized synchronization is 

the most likely explanation for a DBS MER when the spikes can be sorted into multiple 

clusters. A limitation of this model is that the peak amplitude for a single neuron AP is limited 

in size to the minimum distance a neuron can be generated at. In practice there is no limit 

to the neuron-electrode distance, meaning that peak amplitude cannot be used to 

differentiate between spikes from CAPs and very close APs. 

 

Simultaneous MERs cannot be obtained in a target structure during a DBS surgery. The 

exact location of neurons around the electrode is also currently unmeasurable. These 

limitations, along with the spike mechanisms presented in this paper, mean that it would be 

unlikely to differentiate between APs, a single synchronous neuronal subset and multiple 

uniformly distributed synchronous neuronal subsets. Due to this complication, DBS MER 

spikes are most sensibly considered as an indication of the target structures overall activity. 

If the spikes can be sorted into multiple clusters, it indicates that there is most likely spatially 

localized synchronized neuronal subsets. Alternatively, the spikes can be sorted into a single 

group to obtain a measure of overall activity. 

 

The method used for adding the synchronization uniformly in this paper is artificial and not 

based on a biological mechanism. This was chosen only to demonstrate that with 
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synchronization, sortable spikes can emerge from the CAPs in MERs. The model was 

extended to include spatially localized synchronization to improve biological plausibility and 

making the CAPs differ in amplitude and shape. This distribution relates to the idea of 

somatotropic maps of the STN, which show that there is localized organization in the STN 

related to different movement tasks [5]. 

 

Future work will focus on increasing the biological plausibility of this model, structures 

external to the STN, such as the entire Basal Ganglia, can be included. These external 

structures can be used to control the amount of synchronization, and the statistics of the 

synchronized spikes. Controlling the ISI times using an external structure allows for non-

stationary ISI statistics, which could be used to analyze MERs when patients are performing 

transient tasks. 

5 CONCLUSION 

This work shows that synchronized firing between different neurons located near a 

microelectrode can produce what appears to be a single neuron action potential but is 

actually more likely to be a compound action potential. As the number of synchronized 

neurons, within a biologically plausible range, increases the signal to noise ratio for these 

spikes increases. Standard spike sorting methods cannot appropriately cluster spikes which 

occur when the neuronal synchronization is uniformly distributed. The spike sorting methods 

perform better when the synchronized groups are spatially localized. 
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Paper C - A Parametric Simulation of 

Neuronal Noise from Microelectrode 

Recordings 

K. J. Weegink, J. J. Varghese, P. A. Bellette, P. A. Silburn, P. A. Meehan and A. P. Bradley 

ABSTRACT 

In this paper we present an efficient model of microelectrode recordings (MER) from the 

subthalamic nucleus acquired during deep brain stimulation surgery. The model shows how 

changes in the “noise” relate to the neuronal spike time statistics. A top-down approach is 

used with analysis by-synthesis of the MER power spectra. The model is built around a sum 

of filtered point processes consisting of thousands of neurons and including extracellular 

filtering. The quality of the model is demonstrated through comparisons to recordings from 

eight individuals (both hemispheres in six) who have undergone DBS implantation for the 

treatment of Parkinson’s disease. The simulated recordings were compared using their 

voltage amplitude distributions, power spectral density estimates and phase synchrony 

while varying only one free parameter (The shape of the inter-spike interval distribution). 

Through this simple model, we show that the noise present in a DBS MER contains 

properties that match that of patient recordings when a Weibull distribution with shape 

parameter of 0.8 is used for the inter-spike interval. 

 

I. INTRODUCTION 
 
Deep brain stimulation (DBS) has become a common treatment for neurological movement 

disorders such as Parkinson’s disease (PD) [1], [2]. DBS involves applying a pulsed electric 

field to a deep brain structure with the electrode positioned to within 1 mm accuracy. DBS 

applies chronic stimulation, using no feedback based on patient state, except for periodic 

clinical adjustment [3]. The subthalamic nucleus (STN) is a common target for the treatment 

of PD [1]. The role of the STN as a DBS target for PD is not fully understood and for this 

reason many models of the brain areas associated with Parkinson’s disease have been 

developed to aid interpretation [4], [5], [6], [7]. 
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To help determine whether the DBS stimulation electrode is implanted at the correct surgical 

target a micro-electrode recording (MER) is used [1], [8]. A typical MER contains baseline 

noise and spikes with a peak amplitude above the background activity [9]. Changes in the 

noise level can be used to confirm electrode placement [8]. This suggests that the “noise” 

component of a DBS MER has a neuronal component. Microelectrodes used in targeting 

during a DBS implantation procedure have a 50µm tip diameter. This tip size is larger than 

electrodes used for single cell recordings (≈ 1 µm) and considerably smaller than the 

implanted electrode (≈1 mm). This intermediate size allows the electrode to record high 

frequency electrical activity, associated with the behaviour of single neurons and apply 

electrical stimulation without causing damage to the surrounding tissue. However, a 

consequence of the microelectrode tip size is that it contains a large degree of background 

activity compared to a high impedance single neuron recording electrode [10]. 

 

Using the same electrode to both stimulate and record electrical activity within a neuronal 

structure would minimize the impact and risks to patients. It could also improve the surgical 

out-come by removing the need to replace the targeting electrode with the permanent 

electrode while ensuring it ends up at the same position. Combined with a top down 

parametric model, this type of electrode would have the potential to aid in the development 

of adaptive stimulation and thus improve the clinical effectiveness of stimulation, reduce 

unwanted side effects and increase the energy efficiency leading to longer battery life. 

 

The aim of this paper is to develop an efficient model capable of modeling the neuronal 

activity in MERs recorded from the STN. This model has the potential to be used as a basis 

for metrics of patient state through analysis by synthesis of the recording, inspired by the 

approaches in speech coding [11]. This method of analysing MERs can provide a 

computationally efficient parametric method for characterizing patient state, thereby 

providing a robust method suitable for use in adaptive feedback control [3]. 

 

The model we demonstrate in this paper is a summed filtered point process model of an 

STN MER. The model is a parametric model with the inter-spike interval statistics adapted 

to reproduce patient data. The model couples the electric field of the neurons to the micro-

electrode with a spatial dependence. We demonstrate that this type of model is significantly 

more computationally efficient than current bottom up modeling techniques. To evaluate the 
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quality of the model, we compare the distribution of recorded amplitudes, linear correlations 

of the modeled power spectrum and the synchronous phase components to patient MER 

signals. 

 

The paper is structured as follows; section one provides the background and motivation for 

the modeling and analysis methods used. Section two outlines the methodology used for 

the simulations, the acquisition of patient recordings and the techniques used to quantify the 

quality of the model reproducing patient data. Section three presents the results of the 

comparison, section four includes a discussion of this work and section five provides the 

conclusions. 

 

A. Adaptive Stimulation 

 

Adaptive stimulation for DBS requires the development of a feedback loop to control the 

behaviour of the electrode stimulation based on the patient state. For DBS there is a single 

system input (the stimulation electrode) that changes the neuronal firing patterns in the 

patient. Measuring the state of every neuron in the patient would be experimentally 

impossible while modelling the state would be a mathematically monumental and 

computationally expensive task which is for all intents and purposes not practicably feasible. 

Instead a single-input single-output model can be developed to reduce the complexity. 

 

A simple parametric model of the STN/electrode system would allow for a single-output 

protocol that could be useful for adaptive stimulation. This type of model needs to be able 

to be computed in real time and change with the patient state in a manner that can be 

compared to a desired reference to produce an appropriate stimulator output. 

 

In this paper we propose the development of a computationally simple parametric model of 

the STN-neuron interaction that fits patient data as a first step towards the type of model 

needed for a feedback control system of DBS. Most importantly this model has minimal free 

parameters, is near on-line efficient and has a conceptual link back to the underlying neuro-

biology. 

 

B. Subthalamic Nucleus Models 
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The types of STN models previously used vary from phase oscillators [7] to conductance 

based spiking neuron models [6]. Current STN models involving a large number of individual 

neurons are computationally intensive [12]. DBS MER models that simulate a single neuron 

with background noise are computationally efficient but may not reflect neuronal noise 

processes. These methods to simulate STN MERs involve a single spiking neuron and 

additive white noise to produce the background activity [7]. These models assume a 

spectrally white background noise, while we show the patient recordings have non-white 

statistics. How neuronal activity changes this type of background activity hasn’t previously 

been modeled. To model the noise with a biologically plausible method a large number of 

individual spiking neurons are required in the simulation. The conductance-based Hodgkin-

Huxley (HH) model used in [4] can be used to simulate individual STN neurons. These types 

of models are computationally intensive and require context (input signals) from the 

surrounding structures in the basal ganglia be modeled to produce correct spike timing [4]. 

To overcome this requirement of a large model we propose using a top-down approach by 

using a filtered point process (FPP) model of the STN firing times where parameters relate 

to biologically important properties, e.g. rate and inter-spike interval (ISI) distribution. 

 

C. Filtered Point Process Models 

 

Filtered point processes are a subset of linear stochastic processes. Stochastic models 

reduce an observable variable of a neuron, such as the timing of spikes, from being 

described by a deterministic equation, e.g. HH, to being randomly drawn from a probability 

distribution. Features like spike timing can be described using only a probability distribution 

[13], [14]. The probability distribution used simplifies the factors that cause a neuron to fire, 

such as the network inputs and noise inputs to a neuron. For our point process model, to 

reduce complexity, each neuron is considered independently. The firing times of the point 

process model are convolved with the neuronal action potential shape. The action potential 

shape acts as a filter to create the current time series for a neuron. 

 

A filtered renewal process is a special type of FPP where the time interval between two 

spikes, the ISI, is drawn from a common distribution not conditional on the previous ISI [15]. 

Each ISI time is assumed independent of any previous spike times satisfying the 

independent identical distribution assumption. The simplification of a filtered renewal 

process allows the neuron time series to be modeled with just the shape of the action 
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potential and the ISI probability distribution [16]. This significantly reduces the complexity as 

compared to other neuronal models such as [6]. 

 

The firing times for neurons are often described by a Poisson process, a special case of the 

renewal process where the ISI distribution is exponential. However, there are many counter 

examples of non-Poisson neuron firing patterns [17], [18]. A Poisson process is described 

by only a single parameter, the rate, where the spikes are uniformly distributed in time. It 

cannot model cell behaviors seen in the STN such as bursting and periodic firing [19]. 

Therefore, we propose that a Weibull distribution is a more suitable ISI distribution for 

reproducing this range of STN behaviors of which Poisson is a special case. 

D. Electric Field Models for Extracellular Recordings 

 

The coupling of each neuron to the micro-electrode is dependent on the distance of that 

neuron to the electrode and the properties of the extracellular media in-between [20]. As the 

electric field from the action potential propagates to the electrode it passes through the 

extracellular space which has varying conductivity and permittivity. This process modifies 

the frequency behaviour recorded by the electrode for that neuron. These effects change 

the power spectra of a neuronal recording and need to be considered when producing a 

model of MER power spectra. Finite element models (FEM) have been created to describe 

the electric field of neurons as it propagates through the extracellular medium [21]. The FEM 

simulations show that the extracellular medium causes low pass filtering and attenuation of 

the potential measured at the electrode. The spatial composition of the extracellular medium 

is required to use these methods and these methods are computationally expensive. 

Complications can be reduced by assuming average properties of the extracellular medium 

[22]. This also removes the need to define the exact extracellular composition for each 

neuron-electrode interface. 

 

The average extracellular filtering of the neuronal electric field at the electrode can be 

described by a complex transfer function relating the cellular current to the voltage recorded 

by the electrode, i.e. the impedance of the extracellular material [20], [22]. This assumes the 

neurons act as a point current source and a decoupled magnetic field. However, obtaining 

the transfer function for the extracellular medium is computationally expensive as a 

numerical integral is calculated for each frequency component and for all neuronal positions. 
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A circuit model simplification of this extracellular filtering can be used to find a simplified 

form of the transfer function [23], [24]. The effect of the radial distance to the electrode for 

each neuron is reduced to a “seal” resistance. This type of model also includes the frequency 

effects of the electrode geometry with Faradic resistance and capacitance. 

E. Analysis of Recordings 

 

The key to the analysis-by-synthesis approach is to measure how closely the proposed top 

down model can synthesis MER data. Here we use three different analysis methods 

common to compare simulations and patient recordings. A standard method for analysing 

an MER is to use spike sorting [19]. In many cases an MER may not contain spikes that can 

be separated from noise. However, by its very nature spike sorting removes the noise and 

thus is unsuitable for analysing the neuronal noise. To compare the simulations including 

noise to the in vivo recordings, time averaged statistical properties need to be used, such 

as the autocorrelation function, power spectrum or equivalent. Using renewal theory [16] it 

has been shown that a filtered renewal process has a closed form power spectral density 

(PSD). The PSD can be written as a function dependent on the impulse filter (the action 

potential) and ISI probability density function. This result shows that as the parameters of 

the ISI distribution change the power spectrum changes for a summed filtered renewal 

process [16]. 

 

Since the MER simulation will be modeled as a stochastic process, the voltage history will 

not be deterministic. Random processes can be compared against their statistical moments, 

such as the mean and variance. In this paper a Kolmogorov-Smirnov test, [25], is used to 

compare the voltage distributions of simulated MERs to patient MERs. 

 

Another feature of a stochastic process is random phase. To look at the phase properties of 

neural signals the component synchrony measure can be used [26]. This measure is also 

used in this paper to determine the quality of the model for simulating patient recordings. 

 
II. METHODS 
 

The methods of this paper are organized into three sections. Section 2.1 contains patient 

information and the surgical method used to obtain the recordings. Section 2.2 describes 
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how the simulations were performed. Section 2.3 contains the analysis methods used to 

compare simulations to patient recordings. 

A. Patient Recordings 

 

Eight participants (five male, three female) with idiopathic PD who were considered suitable 

for the implantation of bilateral permanent stimulator in the STN were included in this study. 

The patient age was 67 ±5 years (none of the patients were “young onset”), with disease 

duration of 14 ±6 years. Participants were all right handed and had no further neurological 

impairment. The participants had undergone psychiatric screening prior to DBS surgery. A 

summary of the patients is given in TABLE I. 

TABLE I - SUMMARY OF PARTICIPANTS FOR WHOM MER RECORDINGS WERE USED FOR THE VALIDATION OF THE MODEL 

Participant Age Gender Education Handedness Disease 

Duration 

Severity 

(H&Y) 

UPDRS 

III score 

Side of MER 

32 73 M 14 Right 8 NA NA Left 

38 58 M  11 Right 11 2 3 Bilateral 

53 71 M 13 Right 16 4 20 Bilateral 

61 71 F 10  Right 17 3 17 Bilateral 

69 66 F 14 Right 22 NA NA Bilateral 

74 65 F 7 Right 15 2 11 Bilateral 

103 62 M 9 Right 20 2 8 Right 

104 71 M 10 Right 3 NA NA Bilateral 

Note: H&Y = Hoehn and Yahr; UPDRS = Unified Parkinson’s Disease Rating Scale; NA not available. 

 

The dorsolateral aspect of the STN was targeted using a Cosman-Roberts-Wells 

stereotactic frame with coordinates based on CT images fused with 3T MRI t1 and FLAIR 

sequences. The electrode placement was confirmed interoperatively by an MER. The 

surgical procedure is described in detail in [1]. Tungsten microTargeting electrodes (model 

mTDWAR, FHC, Bowdoinham, ME) with a tip diameter of less than 50 µm were used for the 

MER acquisition. The electrodes had a typical impedance of 0.5 (±0.15) MΩ at 1kHz. A 

LeadPoint™ system (Medtronic Inc., Minneapolis,MN) was used to record the signals at a 

sampling rate of 24 kHz. Three filters were applied (high pass: 500 Hz first order, low pass: 

5k Hz first order and anti-aliasing: 5 kHz fourth order) as recommended by Medtronic. Each 

MER was recorded during resting phases, when the participant was lying still and not 

performing any cognitive or movement tasks. 
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B. Simulations 

 

The simulation method presented here are an extension of those presented in [27]. A 

summary of the simulation method is given in Figure 1. Simulations were performed for 

10,000 neurons over one second to model the patient recordings. The use of 10,000 

neurons is based on calculations in [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 

1. A summary of the method used for the MER simulations. Spike times for each neuron are produced using 

the ISI probability distribution. The action potential shape is applied, and the spike trains are filtered based on 

their distance from the electrode. The filtered spike trains are then summed together, and noise is added 

before passing the signal through filters based on the equipment used in acquisition. 

 

We validate the number of neurons to use by calculating the RMS value of the MER 

simulations for different numbers of neurons. All steps in the simulation were performed on 

a PC with a quad core 1.73 GHz processor and 8 GB or RAM using 64-bit MATLAB 7.14.0 

(R2012a) [28]. A time step of 1/24,000 s was used to match the sampling rate of the patient 

recordings. 

 

The STN behavior is modeled by assuming the ISI times form a random variable drawn from 

a Weibull distribution in time: 

𝑃(𝑡) = (
𝑡 − 𝑡𝑟

𝜆
)

𝑐−1 𝑐

𝜆
 𝑒−(

𝑡−𝑡𝑟
𝜆 

)
𝑐

    𝑓𝑜𝑟  𝑡 > 𝑡𝑟 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑃(𝑡) = 0, 
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where P(t) is the probability density function for the ISIs and λ is the scale parameter that 

controls the firing rate. The shape parameter c influences the neuronal behavior; with c<1 

generating burst firing, c=1 Poisson statistics and c>2 firing times with a common mode, as 

shown in Figure 2. In the limit as c → ∞ periodic behavior emerges. The parameter tr controls 

the refractory time of the neuron, preventing another action potential occurring within this 

period. The scale, rate and refractory parameters relate to the rate of firing(ν) by: 

ν = (tr +λ Γ(1+1=c)) −1; 

where Γ is the complete gamma function. The point process consists of a time series of 

Kronecker-delta pulses which are first created by drawing the ISI times from the Weibull 

distribution with shape parameter (c) values of 0.5, 0.8, 1, 10 and 100, and a rate parameter 

that corresponds to 30 Hz. A refractory time of 5 ms was used [19]. Neuronal current time 

series are produced by convolving the Kronecker-delta pulses with the action potential 

shape. The time series was generated for each neuron independently. 

 

Fig. 2. Examples of the Weibull distribution. The neuron can exhibit burst firing (a), Poisson statistics (b), or 

semi periodic firing (c) depending upon the shape parameter c. 

 

The action potential shape was generated by numerically solving a Hodgkin and Huxley 

model using a variable order solver (ODE15s [28]). The Hodgkin and Huxley model 

parameters used were for the medium spiny neuron based on [4]: 

𝐶𝑚 =
𝑑𝑉

𝑑𝑡
 

𝐶𝑚 = −𝑔𝐿(𝑉 − 𝑣𝐿) − 𝑔𝐾𝑛4(𝑉 − 𝑣𝐾) − 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝑣𝑁𝑎) − 

𝐺𝑇𝑎3𝑏2(𝑉 − 𝑣𝐶𝑎) − 𝑔𝐶𝑎𝑠2(𝑉 − 𝑣𝐶𝑎) 

 

where Cm is the membrane capacitance (1 pF/µm2); gL, vL are the leak conductance and 

reversal potential (2.25 nS/µm2 and -60.0 mV respectively); gK, vK are the K+ conductance 

and equilibrium potential (45 nS/µm2 and -80.0 mV respectively); gNa, vNa are the Na+ 

       
 

 

 

 

 

 

 

 
   
   
   



163 

 

conductance and equilibrium potential (37.5 nS/µm2 and 55.0 mV respectively); gT is a low-

threshold T-type Ca2+ conductance (0.5 nS/µm2); and gCa, vCa are a high-threshold Ca2+ 

conductance and a Ca2+ equilibrium potential (0.5 nS/µm2 and 140.0 mV respectively). The 

gating variables n, m, h, a and b follow the differential equations and parameters given in 

[4]. This produces the filter function used for each neuron. 

 

Each neuron is modeled as a point source, with the current being generated from the axon 

hillock. The current time series was then filtered using an impedance based on the distance 

of the neuron from the electrode to find the potential contributed by each neuron. This model 

assumes a far-field approximation to the electric field incident on the electrode. This allows 

us to sum the voltages linearly after they are found through the relation: 

𝑉𝜔(𝑟) = 𝐼𝜔 𝑍𝜔(𝑟) 

where Iω is the frequency components of the current at the neuron found by solving eq. 4. 

The impedance filter Zω is found using a symbolic maths package by determining the 

transfer function Iω/Vω for the circuit model of the neuron-electrode interaction, shown in 

Figure 3. 

 

The circuit model used evaluates the propagation of the electric field through the 

extracellular medium and uses circuit element values that depend on the radial distance 

between the electrode and neuron, the size of the electrode tip and the impedance of the 

electrode, where Cl is the membrane-electrolyte interface capacitance (9.38nF), RL is the 

body resistance to ground (the spread of the field from the neuron, 100MΩ), Cb is the body’s 

capacitance (2.22µF), Rl is the resistance between the cell and the electrode (seal of the 

electric field by the neuron to the electrode [23], [24], Rl , Rf and Cf are the electrode Faradic 

resistance (960Ω) and capacitance (1.56µF) of the electrode and Re is the electrode resistive 

load (0.5MΩ). The voltage for the recording, Vω, is taken across the load resistance (Re). 

 

While the extracellular medium is known to be anisotropic over a scale of mm3 [29] there is 

currently no data available to model this anisotropy at sub-mm levels. Therefore, we assume 

the extracellular medium between the neuron and probe can be treated as isotropic. 
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Fig. 3. The circuit configuration used for coupling each neuron to the electrode. 

 

As the distance from the electrode increases the number of neurons contributing to the time-

series follows the neuron radial distribution density N(R) is randomly generated using a 

uniform spatial distribution with density, ρ= 105 cm-3 [19]. 

N(R)= 4πr2ρ. 

The complete time series from all neurons are then summed together linearly to create the 

potential across the electrode. 

 

Thermal white noise (Johnson-Nyquist noise) is added to the electrode to match 

experimental conditions. The statistics of the noise are described by: 

⟨𝑉⟩ = 0,   ⟨𝑉2⟩ = 4𝑘𝐵𝑇𝑅(𝑓)Δ𝑓 

where kB is Boltzmann’s constant, T is the temperature (assumed to be average body 

temperature 310K(37oC)), R(f) is the electrode resistance, ⟨···⟩ represents the time average. 

The product R(f)∆f is the bandwidth and R(f)∆f is calculated by integrating the product of 

R(f) with the gain function G(f) of the equipment over frequency: 

𝑅(𝑓)Δ𝑓 = ∫ 𝑅(𝑓)𝐺(𝑓) 𝑑𝑓
∞

0

 

 

To match simulations to the surgical conditions the simulated voltage time series is passed 

through three filters described in section 2.1. The filters are Butterworth models of the two 

software filters with a 500 Hz first order high pass, 5 kHz first order low pass and the 

hardware 5 kHz fourth order anti-aliasing filter. G(f) is found by multiplying a flat, unity power 

spectra, P(f)= 1, by the filter gains. 

 
C. Comparative analysis of modeled and patient recordings 
 

The quality analysis of the model is broken into three sections. The sections look at the 

distribution of recorded amplitudes in the time domain, linear correlations of the modeled 

PSD estimate to patient PSD estimates and comparisons of synchronous phase 

C l 
C f 

C b 

R f 

R l 

R e R L Cell Membrane 

Electrode tip 
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components. Patient recordings that contained movement artefacts, defined by amplitude 

> 10 mV, or had recording times less than 1 s were removed from the analysis. After this 

removal process, 84 MERs from 14 patient-hemispheres were analysed. 

 

1) Test of Voltage Distribution: The first test performed was a two-sided Kolmogorov-

Smirnov (KS) test on the distribution of the voltages in time. This test was used to check if 

the voltage amplitude distribution for the simulations have a different distribution to the 

voltage amplitude distribution seen in patient recordings. Rather than use the KS test to 

assign statistical significance, we use the p-value from the test as a measure of distance 

between the patient recordings and the modeled results. 

 

2) Power Spectrum Comparisons: PSDs for the recordings and simulations were 

calculated using Welch’s overlapping segment method with a Hamming window [28]. The 

PSDs obtained using the five different simulation parameters were compared to the 14 

patient hemisphere recordings using linear regression. The linear regression used the value 

of the patient PSD against the simulated PSD for each frequency. The correlation coefficient 

(R2) was used to assess the goodness of fit. 

 
 

3) Phase comparisons: The individual recordings are divided into 100 ms non-

overlapping sections. The component synchrony measure (CSM) can be calculated by using 

[26]: 

𝐶𝑆𝑀(𝜔) =  [
1

𝑁
 ∑ cos 𝜑𝑖 (𝜔)

𝑁

𝑖=1

]

2

 − [
1

𝑁
 ∑ sin 𝜑𝑖 (𝜔)

𝑁

𝑖=1

]

2

 

 

where the signal is divided into N non-overlapping segments. ϕi(m) is the phase of the signal 

at frequency m for signal i, where the phase is found by taking the tangent of the real and 

imaginary components of the FFT of the signal. 

 

III. RESULTS 
 

The results are divided as follows; Section 3.1 contains a summary of the computation time 

and features of the MER simulation. Section 3.2 contains the results from the comparison 
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with patient recordings. Section 3.3 contains the results from the parameter estimations of 

the patient recordings. 

A. Simulations 

 

To illustrate the speed advantages of the summed FPP model over a deterministic HH 

model, a comparison of the time required to compute an MER using the proposed electrode 

model and a coupled HH network is shown in Figure 4. The points are averaged over three 

data samples. The dashed line is a line of unity slope, to show that the computational order 

of the summed FPP is approximately O(N), where N is the number of neurons. Due to the 

long computation time, no simulations of the Hodgkin and Huxley network with over 1,000 

neurons were performed. The comparison of the computational time compared to neuron 

number shows that the FPP model is significantly (100x) faster than the equivalent Hodgkin 

and Huxley network model. 

 

 

Fig. 4. The computational time to simulate an MER using the method presented in this paper (solid), a 

Hodgkin and Huxley neural network (dot dash). A line with slope one (dashed) is layered on top to indicate 

O(N). 

 

Figure 5 shows how the RMS value of the simulated MERs changes as the neuron number 

is changed. Above 3,000 neurons the RMS value plateaus. The peak RMS value 

approaches 49 µV. This is within one standard deviation of the mean RMS value for all the 

patient recordings of 56 ±12 µV over. 
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Fig. 5. The effect of changing the number of neurons simulated on the RMS value of the MER. The dashed 

lines represent the mean RMS (dark line) of patient recordings and one standard deviation (light line). 

B. Comparative analysis of modeled and patient recordings 

 

Figure 6 shows comparisons of the patient DBS MER to a simulation with a Weibull shape 

parameter of 0.8. This comparison visually shows the difficulty to compare the simulation 

and patient recordings as a time series. A clearer comparison of how well the parametric 

MER simulation models the patient data PSD is shown in figure 7. 

 

 

Fig. 6. Examples of a patient recording (top) and a simulated recording (bottom) on a fine time scale with a 

simulation parameter c=0.8. 

 

 

Fig. 7. Examples of the spectral estimates for P32L with 95 % confidence interval (dashed) and a simulation 

with c=0.8 (Dark line). 
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1) Test of Voltage Distributions: Figure 8 shows a box-plot of p-values from the KS test 

on the voltage distributions of the 14 hemisphere recordings against simulation parameters 

c = 0.5 to c = 100. As all p-values are above 0.05 we cannot reject the null hypothesis that 

the variables are drawn from the same distribution. Using the KS test as a distance measure, 

it can be seen that the closest simulated amplitude distribution to the patient recordings is c 

= 0.8. 

 

 

Fig. 8. Box plot of the KS test p-value of each patient voltage distribution matching the simulation distribution 

for each shape parameter. The Box represents the 25 and 75 percentiles, the lines represent the maximum 

and minimum values, the mid line represents the median value and the ‘+’ represents outliers. 

 

2) Power Spectrum Comparisons: Linear regression of the simulated PSD against the 

patient MER PSD was used to assess the model fit to the patient recordings. Figure 9 shows 

a box plot of the correlation coefficient for the linear fit for the 14 patient-hemisphere 

recordings. The outlier point is patient 61 right side for all values of c. This figure also shows 

that the R2 value is greater than 0.89 for all values of the shape parameter. 

 

 

Fig. 9. Box plot of the R2 value from fitting each patient spectrum to the simulated spectrums for different c 

values. 

Weibull shape parameter, c 

Weibull shape parameter, c 
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3) Phase Comparisons: The method used to see if there are any features in the phase 

spectrum of the recordings was the component synchrony measure (CSM). The amplitude 

of the largest peak in each CSM spectrum is shown in Figure 10 for both simulation and 

patient data. Figure 10 shows there are no peaks with amplitude above 0.3 in any of the 

recordings or simulations and therefore no significant phase structure. 

 

Fig. 10. Box plot of the amplitudes of the highest peak from each CSM spectra. 

 

IV. DISCUSION 
 
The implications from the model presented in this paper are given in section 4.1. Section 

4.2 looks at the results of the analysis and section 4.3 discusses the assumptions and 

limitations for the model with possible future extensions. Section 4.4 summarizes the 

discussion. 

 

A. Modeling 

 

The computational time of the FPP model diverges from O(N) at low neuron number seen 

in Figure 4. This divergence from O(N) is due to the minimum time to initialize the simulation. 

 

Other dynamic models of neurons, which reduce the complexity of the differential equations 

of the Hodgkin and Huxley model were not used to compare the computational time to this 

model. Computationally efficient spiking neuron (leaky integrate and fire and Izhekivich) 

models cannot produce accurate enough action potential shapes and are generally only 

used to produce the correct spike timing [30]. Because the PSD in the frequency range of 

interest has a contribution from the shape of the action potential these models were not 

considered. The model we have presented is a linear top-down model to analyse patient 

data via synthesis, where the complexity of spike timing is buried in the stochastic process. 
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A similar ‘cut and paste’ method for the spike shape can be used in the previous dynamical 

models where the spike timing is determined by the nonlinear dynamics. However, using 

these models for parametric fitting to patient data, without pre-calculating accurate 

waveforms or ISI timings, would be a significant and computationally intensive task. This is 

because the dynamics of each neuron cannot be modeled individually since the network 

activity and neuron to neuron coupling is required to produce the individual neuron 

dynamics. 

 

The model proposed in this paper only produces the timing and shape of action potentials. 

The model does not account for any of the electrical activity below threshold that activates 

the spike. This type of activity, called subthreshold oscillations, are typically low frequency 

(1-100Hz). Slow oscillations are not clearly seen in the patient recordings due to the shape 

of the electrode (50 µm tip) and the high pass filter at 500Hz. Due to these factors, sub 

threshold oscillations are not required to accurately model a DBS MER. The main feature 

that the model is used to simulate is the power spectrum of MERs. Figure 11 demonstrates 

how the power spectrum changes with the Weibull shape parameter. For the same recording 

length c = 0.5 (small dotted line) shows the least power density across the frequency band 

of interest in the patient recordings (unfiltered region, 500 Hz < ω< 5000 Hz). At the other 

extreme of c = 100 (dashed line) shows harmonic spikes. For c = 0.8 the PSD has a more 

spread out frequency distribution compared to the other simulations. The PSD for c = 1 

follows the action potential power spectrum as expected from Carson’s theorem for a 

Poisson process. Although c=0.8 and c=1 have a very similar shape of their ISI times 

distribution (exponential), they display different distributions of power in their PSD estimates, 

see figure 11. 

 

 

  

Fig. 11. PSD estimates for the simulations using c=0.5(dots), c=1(solid), c= 100(dashed) and c=0.8 (dot 

dash). 
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The change in RMS values in Figure 5 numerically show that when choosing a neuron 

number over 10,000 the extra neurons do not contribute significant power. Additional 

neurons do not have a significant contribution to the model due the extracellular filtering 

effects. Increasing the number of neurons places them further from the electrode. When the 

distance becomes too large their electric fields do not contribute to the recordings. 

 

B. Analysis 

 

Three different methods were used to analyse the MER data. These methods were used to 

build a comprehensive comparison between the patient and simulated recordings. The first 

order analysis, using the voltage distribution, demonstrates matching behavior of the 

probability distribution of voltage levels. The second order analysis, using the PSD, allows 

the correlation properties of the model and patient recordings to be analysed using different 

inter-spike interval statistics. The phase properties are used to verify the random phase 

assumption of a stochastic process. 

 

1) Voltage Distribution: The KS test estimated the p-value for the null-hypothesis that 

voltage for the simulation and patient recordings are drawn from the same distribution. For 

all values of c the test statistic, p, was greater than 0.05. This means that for each c value 

on these series of data we cannot reject the null-hypothesis. However, using the KS test as 

a distance measure, we find that c = 0.8 has the closest distribution of voltage amplitudes 

to the patient data. 

 

2) Power Spectral Comparisons: The linear regression of patient and simulated PSD, 

with Weibull shape factor, c, ranges from 0.8 to 100 give good agreement with the patient 

recordings. Assuming constant action potential shape between patients, the changes in 

inter-patient PSD estimates are indicative of changes in the ISI statistics. Qualitatively it was 

shown in Figure 7 that simulations with c = 0.8 has the most similar PSD to a patient 

recording. The 95% confidence interval is also plotted for five repeated recordings from the 

same patient. Figure 13 shows the linear regression of the PSD estimates for simulations 

using c = 0.8 against two different patients. This demonstrates the variation in patient 

recordings. For comparison, Figure 12 shows the regression of a patient PSD against white 

noise with equipment filtering effects described in section IB. This regression has a low 
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correlation coefficient, R2= 0.0306, indicating that the noise of the patient recordings 

contains structure not adequately modelled by filtered white noise. 

 

 

Fig. 12. Linear regression of the PSD of the P61R with white noise passed through the equipment filters. The 

regression line has the form y=−0.0182x−14.4920 with a correlation coefficient R2=0.0306. 

 

Variation in fits between the different patient’s data sets can be explained by the fact that an 

“average” electrode impedance of 0.5 MΩ at 1kHz was used for the model. The impedance 

changes slightly for each patient [31]. This model could be used to improve the fit to 

individual patients by measuring the electrode impedance prior to recording. 

 

3) Phase Properties: Since a stochastic process in time will have random phase, the 

phase information should show no synchrony between any frequency components. CSM 

values above 0.5 show a significant amount of phase synchrony across the recordings at a 

specific frequency [26]. Figure 10 shows there are no peaks above 0.3 in the CSM spectra 

for the patients or simulations with patients being slightly more variable. This indicates that 

there is no phase synchrony present in either the model or patient recordings verifying the 

stochastic assumption for MERs. 

 

Fig. 13. Example of linear fits of the patient frequency power versus simulation frequency power for P32L 

(light) and P61R (dark). 
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The difference in the distribution of CSM peaks in the model can be explained by an 

additional white noise source in the patient recordings that isn’t modeled. A white noise 

source would not affect the spectral colour, as it would add power across all frequencies, 

however it can add noise to the phase spectrum. This noise has a variance that scales with 

the amplitude of the source [26]. This could increase the CSM peaks that are not above the 

significance of 0.5 and would be spread across a wider frequency range than the simulation 

currently displayed. 

 

C. Limitations and Future Work 

 

Simplifications to an intractably complex physical system have been made to allow the 

model to be evaluated efficiently while still reproducing key features. The main underlying 

assumptions of the model are: 

1) A homogeneous population of independent neurons, where all neurons fire with the same 

waveform, firing times with the same statistics and are treated as point sources. This 

means we only consider their far-field and do not consider their spatial morphology. 

2) Isotropic filtering with distance, where the extracellular medium between the neurons and 

electrode has no spatial changes other than their radial distance to the electrode. 

3) A fixed number of neurons contribute to the recordings. 4) Linear MER-neuron interaction 

dynamics. 

 

These simplifications are used to make the inverse problem mathematically tractable. By 

fixing the number of sources and how they interact with the electrode there are less degrees 

of freedom in the model and hence less measurements are required to fit model parameters. 

 

The simplification of the modeled system by parametrization improves the computational 

efficiency in simulating an MER but decreases the realistic features seen, described by [30] 

and the biological plausibility. One feature that can be seen in neurons that this model fails 

to reproduce is synchronization in the neural network. Although several network features 

can be modeled through the shape of the ISI probability, there is no ability for two or more 

neurons to fire synchronously or to have any firing correlations. 

 

This model assumes a decoupling between the firing statistics and shape. The situation is 

more complicated, with the firing pattern driving changes in the action potential shape. The 



174 

 

prime example of this is a rate dependent action potential shape. This is where the shape 

of the action potential (both amplitude and frequency components) can change with the rate 

that the neurons fire [32]. If the target neuron displays rate dependent action potential shape, 

the model cannot account for this effect. Neurons that do display this behavior usually have 

two distinctive action potential types. One shape when the neuron is firing slowly and a sharp 

change to another other when the neuron is firing near its maximum rate [32]. Assuming the 

neuron only fires in a rate range, the effect of rate dependent action potential shapes can 

be minimized by approximating a single waveform over that range. 

 

Synchrony may be present between neurons, even though both the simulations and patient 

recordings do not indicate any phase synchrony. This type of behavior is not present in the 

model due to the neurons being modeled as independent. The result by Lindner [33] also 

shows that the cross-correlation terms, when summing independent filtered renewal 

processes, do not affect the PSD. This means the relative timing between neurons will not 

affect the PSD. Future work will include neuron synchrony by including synchronous firing 

events as a second process with different statistics to the individual neurons ISI to 

investigate the effects on the time series. The assumption of stationary statistics could be 

replaced with a model of the basal ganglia that produces the instantaneous spike rate for 

the STN. The usefulness of this model in a clinical setting can also be found by finding the 

parameters of the model for patients undergoing different tasks. 

 

To advance the model presented for use in a feedback controller, experiments are required 

that correlate the model parameters with the patient’s physical state and how it changes with 

state. There is also a requirement for the loop to be closed by adapting the stimulation based 

on the parametric state and a reference. Methods such as PID or lead-lag controllers could 

be used in this step. 

 

V. CONCLUSION 
 

In this paper we have proposed an efficient model of an MER acquired from the STN during 

DBS implantation for PD. We have shown, on a set of 84 recordings from 14 patient 

hemispheres, that this MER model simulates recordings from patients, in terms of the 

voltage amplitude distribution, the power spectral estimates and phase synchrony. The 

model uses a top down approach that simulates the neural structure by synthesis of MERs. 
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The results indicate that a large number of neurons may contribute to the MER background 

activity and that there is information in this often-discarded noise. In our simulations 

background activity arises from “competition” between the filtering properties of the 

extracellular medium model and the electrode geometry. This noise was shown to be 

dependent on a model parameter that controlled the “shape” of the ISI time distribution 

(changing the firing patterns). Using values of the ISI times drawn from a Weibull distribution 

with a rate of 30Hz and a shape parameter of 0.8 corresponded to the best agreement with 

the patient data. 
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Paper D - Bayesian Approach for 

Stationary Analysis of Microelectrode 

Recordings Using a Neural Mass Model 

of the Basal Ganglia 

K. J. Weegink, J. J. Varghese, P. A. Bellette, P. A. Meehan and A. P. Bradley 

ABSTRACT 

Analysis methods in electrophysiology typically assume that over a short period of time the 

statistical distribution of inter-spike timing does not change. This assumption can be used 

even if the dynamics of the brain structure are changing in time. In this study, we investigate 

using a stationary distribution for analysis of subthalamic nucleus microelectrode recordings 

while the underlying statistics change. Microelectrode recordings are simulated using a 

neural mass model to generate the statistics. The neural mass model is driven using a 

sinusoidal input, a Weiner process and an Ornstein–Uhlenbeck process and the Weibull 

distribution is used to fit the statistics of the inter-spike intervals. It was found that stationary 

statistics fit the sinusoidal input, but are not predictive of the input. For the Weiner and 

Ornstein-Uhlenbeck processes the variance between repeated measurements of the 

Weibull shape parameter changes with changing parameters. We perform an analysis of 

experimental results to demonstrate the usefulness of these methods. This work shows that 

that properties of microelectrode recordings related to the distribution of inter-spike timing 

can be analyzed using a stationary model. 

INTRODUCTION 

How the neurons in the brain carry and encode information is one of the fundamental 

questions of neuroscience. There are several models how a neuron’s spikes could encode 

information [1]. One approach, temporal encoding, relies on the precise timing of spikes in 

relation to a stimulus or neighboring spike times [1]. This approach has been used 

successfully in Hebbian learning models and models of spike timing dependent 

plasticity{ref}. An alternate approach, developed using concepts from information theory, 
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attempts to characterize the spike train by using the statistical distribution of the time 

between spikes (inter-spike interval, ISI) [1]. One of the first hypotheses to adopt this 

approach was used by Adrian and Zotterman [2], where the first statistical moment, the firing 

rate, was used to characterize neuron activity in the presence of different stimuli. A problem 

with the rate hypothesis is that the ISI timing can vary while the same overall rate is 

produced. This means the rate alone cannot be used as a measure to always explain the 

neurons behavior and more sophisticated coding schemes are needed (R.B., et al., 2005). 

This variability can be characterized using the next statistical moment in the unitless form of 

the coefficient of variation, 𝐶𝑉, defined as the standard deviation of the ISI time divided by 

the mean ISI time [4]. The extension of analysis to measuring the 𝐶𝑉 can describe the 

variability in ISI times and how they relate to the information capacity of a neuron [5]. As the 

understanding of the complexity of the signals increases Information Entropy can be used, 

which encodes all the statistical moments. These approaches where the signal is 

characterized by statistical moments of the ISI times can be described mathematically using 

renewal theory, where a fundamental assumption is that the distribution is stationary in time.  

 

Decoding how neurons carry information is not just a question of philosophical but biological 

importance, as it can be used to create brain interfaces, characterize pathological processes 

or to diagnose disease {ref}. Detecting when a patient enters a diseased state would allow 

treatment to be tuned to when it is needed, a prime example of this is deep brain stimulation 

(DBS) where treatment is moving towards intelligent systems that use adaptive stimulus [6] 

[7] [8] [9]. This type of treatment could reduce side effects and improve the effectiveness of 

the treatment. 

 

The basal ganglia (BG) is a closed neural system that has been highly studied with 

applications for the treatment of movement disorders such as Parkinson’s disease [10]. An 

increase in treatment of Parkinson’s disease using DBS has increased access to electrical 

recordings of neuron activity of the BG and allowed an opportunity to bridge the theories of 

neural coding to application. These in vivo recordings, known as microelectrode recordings 

(MER), contain electrical spikes caused by activation of neurons surrounding the electrode 

tip [10] [11]. These types of recordings can be analyzed by locating the timing of spikes or 

looking at the statistics of their ISI. The ISI statistics of these recordings are fundamentally 

non-stationary due to the dynamic nature of the brain structures involved (Theodosopoulos, 

et al., 2004). For instance, the patient may not be in the same condition while performing 
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the same task for each recording, or the length of the recording may be longer than the time 

for a patient to perform a task (Theodosopoulos, et al., 2004). 

 

To capture the dynamics causing the non-stationary behavior of the statistics, the neural 

structures of the BG are modelled. The subthalamic nucleus (STN), a common structure 

targeted using MERs, has on the order of 105 neurons, where each neuron can be described 

using a multi-variable non-linear partial differential equation (PDE). In addition to inter-

nucleus connections the neurons are also highly connected to surrounding structures in the 

brain. This connectivity leads to an extremely large number of states to model, a problem 

when modelling parts of the brain as a dynamical system. When modelling these complex 

system, to reduce the size of this state space, a neural field model can be used [5]. These 

models reduce a highly-interconnected structure of the brain into the time evolution of the 

distribution of firing times throughout the structure which is described by a non-linear PDE. 

These field models can be expanded into the distribution’s moments, giving a second order 

ordinary differential equation for each moment. Basal ganglia field models of the first 

moment, the mean firing rate, have been developed [5]. These models have been used with 

great success for analysis of movement disorders that are treated with DBS [11] [12] [13]. 

The advantage of these models is to reduce the high dimensionality of the state space down 

to two states per brain structure, the mean firing rate and the rate of change of the firing 

rate. 

 

Previous models have been successful in modelling MERs using stationary statistics and 

renewal theory, with good quantitative agreement to experimental data [6] [7]. In this article, 

we extend these types of MER simulations to include non-stationary behavior by modelling 

the dynamic nature of underlying structures within the brain and their effect on the firing 

statistics. We repeatedly fit a stationary multivariate ISI time distribution, the Weibull 

distribution, to the simulated MERs to determine how well the fundamentally non-stationary 

behavior can be approximated by using renewal theory. This type of approximation is 

explored as it could allow easier analysis of MERs produced by a complex system evolving 

in time, with potential applications in patient monitoring and adaptive DBS. 

METHODS 

The type of MER recordings modeled are interoperative STN recordings taken during 

implantation of a DBS pacemaker to treat Parkinson’s disease as described in [8]. The 

model consists of two parts; a series of differential equations that describes the average 
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rates of the groups of neurons in the different nuclei and a filtered point process to describe 

the electrical output of the STN as measured by the MER. The neural mass model of the 

cortex and basal ganglia derived from [5]. The filtered point process to producing the 

microelectrode recordings follow the methodology in [6]. 

Basal Ganglia model 

For the neural mass model the classical direct-indirect pathway model of the basal ganglia 

is used (Figure 21) [14]. This involves modelling the cortex with excitatory (Glutamate) 

projections into the D1 and D2 cells in the striatum. From the straitum D1 cells inhibit the 

globus palidus internal (GPi). The D2 cells inhibit the globul palidus external (GPe), which 

in turn inhibits the STN. The STN then has excitatory projections into the GPi. The GPe has 

inhibitory (GABA) projections into itself and the GPi. The STN also has excitatory 

connections into itself and the GPe. The GPi then projects into the thalamus and the 

brainstem, but this feature is not included in this paper. This seemingly simple model is 

successful at describing the pathophysiological processes, such as those involved in 

Parkinson’s Disease [14] [15] [16]. 

 

 

Figure 61 - Direct and indirect pathways in the Basal Ganglia 

In the neural field model each of the various nuclei are modelled by using the Fokker-Plank 

equation to describe how the distribution of firing probabilities for a given group of neurons 

and how they evolve over time [15]. These equations can be simplified by performing a first 
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order expansion about the statistical moments, resulting in a system of ordinary differential 

equations which describes their average firing rate for a body of neurons given by: 

 𝜇�̇� =  𝑦𝑣 (53) 

 
𝑦�̇� = 𝑎𝑏 [∑ 𝛼𝑣𝑛𝜁(𝜇𝑛(𝑡 − 𝜏𝑣𝑛))

𝑛

− (
1

𝑎
+

1

𝑏
) 𝑦𝑣 − (

1

𝑎𝑏
) 𝜇𝑣] 

 

 

(54) 

 
𝜁(𝜇𝑣) =

𝑆𝑚𝑎𝑥

1 + 𝑒𝑘(𝜃−𝜇𝑣)
 

(55) 

where 𝑦𝑣 is a dummy variable used to represent the second order system as a first order, 

𝜇𝑣 is the mean voltage of the target nuclei, 𝛼𝑣𝑛 is the strength of coupling from the nuclei n 

to the target and 𝜏𝜈𝑘 is the axonal propagation delay, 𝑆𝑚𝑎𝑥 is the maximum firing rate of the 

target, 𝑎 is the decay time constant of the membrane and 𝑏 is the rise time constant, 𝜃 is 

the potential that gives half the maximum firing rate and 𝑘 controls the slope of the sigmoid 

to give realistic rates for a given input potential.  

 

Equation 2 introduces the delays caused by axonal propagation between structures. The 

delays increase the time for a numerical solution. When the delays are small compared to 

the characteristic times of the dynamics the system can be approximated using perturbation 

analysis. All the delays are passed through the sigmoid function; therefore, we can perform 

a Taylor expansion and truncate insignificant terms. We can first perform an expansion 

around 𝑡: 

𝜁(𝜇𝑣(𝑡 − 𝜏)) =  𝜁(𝜇𝑣(𝑡)) + (𝑡 − 𝜏 − 𝑡)
𝑑𝜁(𝜇𝑣(𝑡))

𝑑𝑡

+
(𝑡 − 𝜏 − 𝑡)2

2!
 
𝑑2𝜁(𝜇𝑣(𝑡))

𝑑𝑡2
+ 𝑂(𝜏3)  

(56) 

𝜁(𝜇𝑣(𝑡 − 𝜏)) =  𝜁(𝜇𝑣) − 𝜏𝜁′(𝜇𝑣)
𝑑𝜇𝑣

𝑑𝑡

+
𝜏2

2!
 [𝜁′(𝜇𝑣)

𝑑2𝜇𝑣

𝑑𝑡2
+ 𝜁′′(𝜇𝑣) (

𝑑𝜇𝑣

𝑑𝑡
)

2

  ] + 𝑂(𝜏3) 

 

 

(57) 

where 𝜁′(𝜇𝑣(𝑡)) denotes the derivative with respect to 𝜇𝑣 and has been introduced into the 

equations using the chain rule and for convenience 𝜇𝑣(𝑡) is written as 𝜇𝑣. Considering the 

faster time constant, membrane potential gain, is on the order of 2 ms, the 𝜏2 term is very 

small in comparison.  This allows us to neglect terms 𝑂(𝜏2) and substituting into the 

dynamics for the neural structures yields a nonlinear first order differential equation: 



 

 183 

 

 
𝑦�̇� = 𝑎𝑏 [∑ 𝛼𝑣𝑛(𝜁(𝜇𝑛) − 𝜏𝑣𝑛𝜁′(𝜇𝑛)𝑦𝑛)

𝑛

− (
1

𝑎
+

1

𝑏
) 𝑦𝑣 − 𝜇𝑣] 

 

(58) 

This linearization decreases the time for a numerical solution which allows large numbers of 

simulations to be performed. The large number of simulations allows production of a large 

sample of the statistics using random processes for cortical simulation. It also allows Monte 

Carlo simulations to be performed for analysis of the system. Using the linearized delay for 

solving the system over 5 s, using a fixed time step (1 ms) and a random cortical input 

decreased the solver time to 3.7±0.4 s from 51±11s for the full system. 

Table 7 - TIME PERFORMANCE AND ERROR USING THE FULL BG MODEL, ZEROTH ORDER AND FIRST ORDER 
APPROXIMATIONS. 

Model Solver time (s) Maximum Error (%) 

With delays 51±11 0 

Without delays 3.1±0.5 0.18 

Linearized delay 3.7±0.4 0.07 

 

The decreased computational time is only advantageous if the numerical solution is 

accurate. Comparing the solution of the linearized delays to the solution without delays 

allows us to validate the accuracy of the linearized approximations of the model. Figure 49 

shows the absolute error for the simulations using zero-time delay and the first order 

approximation. The maximum error fraction compared to the model with full delays for the 

simulation without delays was 1.8e-3 and using the first order approximation the error 

reduced to 2.677e-4. The error level for the first order approximation is acceptable for 

simulating the MER, while significantly increasing the time to for a simulation.  

Microelectrode Model 

The microelectrode recording used to estimate the state of the STN is simulated using 

methods following the models described in [5] [6]. The electrical activity of the STN is 

generated by simulating the firing times for 10000 neurons, distributed homogenously 

around the electrode with a density of neurons in the STN, 105 cm-3, using an 

inhomogeneous Poisson process. The Poisson process is a special type of renewal process 

where the firing times of the neurons are completely independent of each other, resulting in 

ISI times being exponentially distributed. The Poisson process can be extended to have a 

rate parameter as a function of time. This type of Poisson process is an inhomogeneous 

Poisson process. The Cox process, also known as doubly Poisson, is a special type of 

inhomogeneous Poisson process where the rate parameter is stochastically distributed. It 
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has been shown that the firing times of the non-stationary Cox process can also be modelled 

using a stationary Weibull distribution. In [5]  it was found the Weibull distribution could also 

be used to model ISI times of interoperative patient MERs. 

 

The instantaneous Poisson firing rates of the neurons (𝜈) are now drawn from the neural 

mass model rate at each time using equation 8 to determine if there is at least one spike in 

the sampling time. We can consider the probability of N spikes in the time window since 

neurons have a refractory period which prevents them from successive firing in short 

intervals. The basal ganglia model is sampled at 24kHz (𝛿𝑡 = 41.6𝜇𝑠); the recording 

frequency of the MER. The instantaneous rate is then used to determine if a given neuron 

has fired at that time using: 

 
𝑃(𝑁 = 𝑛) =  

(𝜈𝛿𝑡)𝑛

𝑛!
𝑒𝜈𝛿𝑡 

(59) 

 𝑃(𝑁 ≥ 1) = 1 − 𝑃(𝑁 = 0) = 1 − 𝑒𝜈𝛿𝑡 (60) 

As the firing times are generated for each neuron, an action potential wave form is generated 

using the Hodgkin and Huxley model from Rubin et al [7]. To model the extracellular fluid 

the spike trains are filtered according to the distance of each neuron to the electrode [8]. 

The signal generated is then passed through filters to simulate the acquisition hardware, 

with the addition of white noise, to simulate an MER [5]. 

Stationary Analysis 

To analyze the signals generated by the MER simulations we model the spike trains 

generated as renewal processes. For a renewal process the ISI times are independently 

drawn from a single probability distribution that does not change in time.  

 

Figure 62 - absolute error compared to the full model without delays for 0th and 1st order delay approximations for a) sinusoidal 
cortical input, B) linearly increasing cortical input 

We fit the ISI distributions over multiple simulations, with randomized initialization, to see if 

the fitting parameters are reproducible. 
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Modelling the ISI times (t) as independent events drawn from a Weibull distribution, shown 

in equation 9 (where 𝑘 is the shape parameter and 𝜆 is the scale), can capture common 

firing patterns of neurons (ranging from bursting to Poisson to periodic), as shown in [5]. 

 
𝑓(𝑡; 𝜆, 𝑘) =

𝑘

𝜆
(

𝑡

𝜆
)

𝑘−1

𝑒−(
𝑡

𝜆
)

𝑘

  , ∀  𝑡 > 0 
(61) 

The coefficient of variation is a normalized metric of the spread of neural firing times [4]. The 

coefficient of variation (𝐶𝑣) of the Weibull distribution can also be fully described using only 

the shape parameter: 

 

𝐶𝑣 =  
𝜎

�̅� 
=

√Γ(1+
2

𝑘
)−Γ(1+

1

𝑘
)

2

Γ(1+
1

𝑘
)

, 

 

(62) 

where Γ( ) is the gamma function, �̅� is the mean ISI time and 𝜎 is the standard deviation 

of ISI times. Because the coefficient of variation is a common metric for neural recordings 

and can be entirely described using the Weibull shape parameter, we fit the Weibull 

distribution shape parameter to simulated MERs. To find the shape parameter we take the 

power spectral density of the simulated MER using Welch’s method with five non-

overlapping rectangular windows. The power spectral density is then fit to Eqn. 11 using 

least squares to the predicted power spectrum with the Marquardt-Levenberg algorithm. The 

predicted power spectrum of a renewal process (𝑃(𝜔)) is given by [9]: 

 
𝑃(𝜔) = 𝐴 ∙ 𝐺(𝜔) [1 + 𝑅𝑒 {

𝐻(𝜔, 𝑘)

1 − 𝐻(𝜔, 𝑘)
}] , ∀  𝜔 > 0 

 

 

(63) 

where 𝐺(𝜔) is the action potential power spectrum including extracellular filtering, 𝐻(𝜔, 𝑘) 

is the characteristic function of the Weibull distribution for shape parameter 𝑘, and A is a 

scaling factor that accounts for factors that contribute to the total power; the rate of firing, 

the number of neurons contributing to the signal and the distance of the neurons to the 

electrode. The factor A creates a degeneracy between the rate, neuron distance and number 

of neurons. This degeneracy causes the rate parameter found with the least squares fit to 

not accurately represent the rate used for the simulation. However, because the coefficient 

of variation is defined in terms of only the shape parameter the rate parameter may not be 

important in characterizing the ISI distribution for the neural signals analyzed. 

Simulations 

To simulate MER recordings, we need to know the cortical input to the model and what 

length of time is required for the analysis. The cortical input for the BG model can vary 



 

 186 

 

depending upon the patient state and task being performed. Due to the ability of this input 

to change in a non-deterministic way [21] [22] [23], we choose to look at how the model 

responds to specific classes of functions. We explore whether the stationary Weibull 

distribution can be used to consistently numerically characterize fundamentally non-

stationary processes, specifically, four different cortical inputs (𝜇𝑐𝑡𝑥(𝑡), shown in Figure 22) 

are used; sinusoidal (𝜇𝑐𝑡𝑥(𝑡) = 𝐶 + 𝐵[sin(𝐷𝑡)]), where B and D are varied, a Weiner process 

(
𝑑𝜇𝑐𝑡𝑥

𝑑𝑡
= 𝐷𝑊𝑡), where D is varied and an Ornstein–Uhlenbeck (O-U) process (

𝑑𝜇𝑐𝑡𝑥

𝑑𝑡
=

−
1

𝜏
 𝜇𝑐𝑡𝑥 + 𝐷𝑊𝑡) where 𝜏 is varied. These functions are chosen as they represent a 

deterministic process, a Gaussian process, and a Gauss-Markov process respectively. 

 

Figure 63. example STN rate evolution using different cortical inputs a) Varying the sinusoidal frequency, B) Varying the 
sinusoidal amplitude to the point that the non-linearities begin to affect the system C) varying the Diffusion constant of a Weiner 
process and D) varying the correlation time of a damped weiner process. 

To validate the methodology of using the Weibull distribution to characterize the ISI 

distribution for finite time length recordings, small sets of ISI times are generated that make 

different length recordings. The shape parameter is then fitted using the time series and the 

spectral methods described above.  

 

To determine the shape parameter, many spikes need to have occurred to build up a 

representative sample of the ISI distribution. This means that the recordings need to run for 

a certain length before there are enough spikes to build up an  
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Figure 64 - Accuracy of Weibull shape prediction from 1000 MER simulations of varying time length. 

estimate of the statistics. To determine what length of simulation is required, and hence what 

length of patient recording would be needed, simulations were produced drawing the firing 

times from a stationary distribution. The shape parameter was then determined from the 

simulation. This was repeated 1000 times for 13 shape parameters. Figure 42 shows that 

over the expected range of shape values, 0.5 to 10, that a 3-10s recording is needed. For 

the rest of the study 5s recordings are simulated to allow a large range of valid shape 

parameters. 

 

 RESULTS 

In this section, we present the results from fitting stationary statistics for the ISI times to 

different numerical simulations of MERs with time dependent statistics. To validate the 

methods used, we fit MERs that have been generated using a Cox process. The results 

from the four different cortical inputs tested are then shown. 

 

To look at how non-stationary statistics can be modeled using a stationary distribution, 

MERs were simulated using a Cox process to generate ISI times. By fitting the expected 

power spectrum of Weibull ISI statistics to the power spectrum it was found that as the Cox 

parameter is increased, the average value of the Weibull shape parameter increased. It also 

shows the variance of the fit, over 300 simulations, increased with the Cox parameter, Figure 

50 shows these results. 
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Figure 65 - distribution of fitted shape parameters over 100 simulations for different cox process intensity parameters. as the 
intensity parameter increases the shape parameter increases. The variance in fitting the shape parameter also increases. 

For the neural mass model, the cortical input was first modeled using a stochastic input, the 

Weiner process. It can be seen in Figure 51 that the diffusion parameter has no effect on 

the expected shape parameter. There was an increase in the variance of the fitted shape 

value as the diffusion parameter increased. Adding in a correlation time to the Weiner 

process creates an O-U process. Using a fixed diffusion parameter of 30, the variance 

decreases as the correlation parameter is increased, see Figure 52. 

 

The cortical input was then changed to a sinusoid to mimic the oscillations common in the 

cortex. The frequency of oscillations was varied with a fixed rate of 1 Hz and an offset of 14 

Hz. Figure 53 shows that varying the frequency of oscillations has no effect on the predicted 

shape parameter. Next, fixing the frequency at 20 Hz and varying the amplitude has no 

effect on the predicted shape parameter, as seen in Figure 54.  
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Figure 66 distribution of fitted shape parameters over 300 simulations for different diffusion parameters in a weiner process. as 
the diffusion parameter increases there is no affect on the shape parameter. the variance increases significantly as the diffusion 
parameter is increased. 

 

Figure 67 - distribution of fitted shape parameters over 300 simulations for different correlation parameter in a Ornstein–
Uhlenbeck process. the variance is large for small correlation parameters and reduces as the parameter is increased. 

 

Figure 68 - distribution of fitted shape parameters over 300 simulations for different frequency sinusoidal cortical inputs. there 
is no significant change in the shape parameter or variance of the fits. 
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Figure 69 - distribution of fitted shape parameters over 300 simulations for different amplitude sinusoidal cortical inputs. there 
is no significant change in the shape parameter or variance of the fit

 

DISCUSSION 

To determine the usefulness of the stationary analysis presented we have two criteria to 

determine. First, does the fitted Weibull shape parameter vary over repeated simulations for 

the same input parameter. Second, can the Weibull shape parameter be used as a predictor 

of the input parameter. We will look at the first criteria and determine how well the stationary 

approximation is for the non-stationary MER simulations. We then address the second 

criteria by an example using the experimental result from [5]. 

 

The results show that the Cox process rate parameter is correlated with the shape 

parameter determined from the power spectrum. This result is expected based on the results 

of [10] and along with Figure 42 validates the method for finding the shape parameter. Based 

on Figure 42, a simulation time was chosen that would result in approximately 10% variance 

in the Weibull shape parameter, however when the Cox parameter was increased past 0.1 

the variance of the fit increased beyond 10%. This result indicates that the non-stationary 

nature of the Cox process over the time length of the simulation is introducing variance of 

the shape parameter that cannot be accounted for using a stationary model.  

 

For every parameter in both sinusoidal inputs the variance in the fit of the shape parameter 

was less than 10%. This level of variance can be explained by the finite length of the 

recordings simulated. This shows that the stationary model can describe the ISI times 

generated given a sinusoidal input. However, the mean value and variance of the shape 
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parameter does not change when varying the input parameters. This prevents the shape 

parameter from being used as a predictor of sinusoidal cortical input parameters. 

 

In both the Weiner and O-U simulations the variance of the shape parameter increased more 

than can be explained due to the finite length or the recording. This result indicates that 

different realizations of the simulation using the same input produces different distributions 

of ISI times. Although the first criteria, the variance of the fitted shape parameter, of 

describing the simulations using a stationary distribution fails for certain parameter values, 

it does not prevent the fits from being used as a predictor of the cortical state. 

 

To look at how the shape parameter could be used to characterize the cortical input we can 

look at the O-U processes. From the simulations, we can construct a 2D histogram of Weibull 

shape given a specific cortical parameter, Figure 55 shows an example of this for the O-U 

process using the logarithm of the correlation parameter, log 𝜏−1. This distribution of counts 

is equivalent to the probability of measuring a shape parameter, 𝜆, giving a correlation 

parameter, 𝑃(𝜆| log 𝜏−1). If we assume a priori knowledge that the cortical input follows an 

O-U process, then we can use Bayes Theorem to determine the correlation parameter given 

a measurement of the shape parameter using: 

 
𝑃(log 𝜏−1 |𝜆)  =

𝑃(𝜆| log 𝜏−1)𝑃(log 𝜏−1)

𝑃(𝜆)
 

 

 

(64) 

To use this formula 𝑃(𝜆) and 𝑃(log 𝜏−1) are required. 𝑃(𝜆) can be estimated from the 

simulations by summing over the correlation parameter to get the total number of counts for 

a given 𝜆 and dividing by the total number of simulations. Without experiments to determine 

𝑃(log 𝜏−1) an uninformative prior can be used. Assuming some form of exponentially 

distributed parameter, one such uninformative prior that can be used is Jeffery’s prior, which 

gives a uniform distribution when normalized for 𝑃(log 𝜏−1) over a constrained range. For 

an example if we assume the logarithm of correlation parameter is uniformly distributed 

between -1 and 1 we can produce Figure 56 using equation 12. 
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Figure 70 - probability of finding a specific Weibull shape parameter when given an OU process coritcal input with a given 
correlation parameter. 

 

Figure 71 - probability of a cortical input with a given correlation parameter given a measured Weibull shape parameter. 

We can apply the methods presented here to the experimental result given in [5]. It was 

found that a using a renewal model a Weibull shape parameter of 0.8 best fit interoperative 

patient recordings in a resting state. Using the analysis method presented above we can 

calculate the posteri estimate, ℒ(𝑥; 𝜆 = 0.8), for the different types of cortical parameters we 

have modeled. By calculating  𝑃(𝑥|𝜆 = 0.8) for each of the cortical inputs and finding the 

maximum gives ℒ(𝑥; 𝜆 = 0.8). The sinusoidal inputs produce no variation in 𝜆 which means 

the parameters for them cannot be estimated. For the Wiener and O-U processes 

𝑃(𝑥|𝜆 = 0.8) was found, giving Figure 57. The maximum of the posteri estimate for the 

Diffusion parameter is ℒ(𝐷; 𝜆 = 0.8) = 101.6 = 39.81𝑠−1 and for the correlation parameter 

ℒ(𝜏−1; 𝜆 = 0.8) = 10−1 = 0.1𝑠−1. 
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Figure 72 - Probability of a cortical parameter using a measured Weibull shape parameter of 0.8. (a) 

𝑷(𝒍𝒐𝒈𝑫|𝝀 = 𝟎. 𝟖) 𝒂𝒏𝒅 (𝑩) 𝑷(𝒍𝒐𝒈𝝉−𝟏|𝝀 = 𝟎. 𝟖). 

 

The estimate of the cortical parameters (𝑥) can be improved by using multiple independent 

measurements of 𝜆, and applying the Bayes Theorem recursively:  

 
𝑃(𝑥|𝜆1, … , 𝜆𝑁−1, 𝜆𝑁)  =

𝑃(𝜆𝑁|𝑥)𝑃(𝑥|𝜆1, … , 𝜆𝑁−1)

𝑃(𝜆𝑁)
 

 

(65) 

Applications of this to a smart device could also involve improving the state estimate, 𝑃(𝑥), 

by incorporating the measurements into a Kalman filter. 

This analysis involves assumptions on the dynamics of the cortical input to constrain the 

probability distributions. The assumptions used are not necessarily realistic, but have been 

chosen to allow an example of how estimation of the input parameter would be performed.  

 

To extend this work for practical applications, such as feedback control, investigating 

different models of cortical input by either including the dynamics of interactions between 

the motor cortex and the thalamus, or recording activity from patients performing different 

tasks could be used. 

CONCLUSION 

It was found that stationary statistics fit the sinusoidal input, but cannot be used as a 

predictor for the input parameters. For the Weiner and Ornstein-Uhlenbeck processes the 

variance between repeated measurements changes with changing parameters. It was 

shown that this changing variance can be used to predict the most likely values of the input 

parameters. This work shows that that properties of microelectrode recordings related to the 

distribution of inter-spike timing can be analyzed using a stationary model for certain cases 

of time varying dynamics. 
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