5,749 research outputs found

    Open Source Tools to Support Teaching Agile Software Development

    Get PDF
    Learning agile software development methodologies are important due to the popularity of agility in software industry. Agile software development has several practices and each practice needs specific tools to work with. Fortunately, there are plenty of open source tools to support working with the agile practices. However, each tool is a separate tool and there is no information about the interrelation of those open source tools. In this paper we propose a set of open source tools to support agile software development course. We start from identifying the principles and practices of agile software development and continue with examining open source tools that fit with agile practices. The relationship between the open source tools is also determined, based on their functionalities

    How do particle physicists learn the programming concepts they need?

    Full text link
    The ability to read, use and develop code efficiently and successfully is a key ingredient in modern particle physics. We report the experience of a training program, identified as "Advanced Programming Concepts", that introduces software concepts, methods and techniques to work effectively on a daily basis in a HEP experiment or other programming intensive fields. This paper illustrates the principles, motivations and methods that shape the "Advanced Computing Concepts" training program, the knowledge base that it conveys, an analysis of the feedback received so far, and the integration of these concepts in the software development process of the experiments as well as its applicability to a wider audience.Comment: 8 pages, 2 figures, CHEP2015 proceeding

    Teaching Software Development to Non-Software Engineering Students

    Get PDF
    This paper argues that although the object-oriented programming (OOP) paradigm is appropriate for students taking programming modules on Higher Education (HE) software engineering course, this paradigm is not as relevant for students from other courses who study programming modules. It is also asserts that adopting another paradigm when teaching programming to non-software engineering students need not prevent the encouragement of good software engineering practices The paper discusses the software development model, procedures, techniques and programming language that the author requires non-software engineering students to employ when developing their software. This discussion also includes consideration of implementation issues in an educational context. The paper concludes that his alternative approach has been successfully implemented, that it requires the student to adopt a rigorous approach to development and that it encourages best software engineering practices. The conclusions also note that delivering this alternative offers the opportunity to include good educational practice, such as role-play

    Tool support for implementation of object-oriented class relationships and patterns

    Get PDF

    An Interactive Web-based Application as Educational Tool for SCM Course by Using FOSS

    Get PDF
    This paper presents the application of free/open source software (FOSS) for teaching and learning one specific topic in Supply Chain Management (SCM) course. In the last few years, there is abundant FOSS for educational tools. However, educator still faces problems to implement such an education FOSS for improving the quality of education i.e. customizing of software function, developing of a specific educational media, and illustrating of a course content. The purpose of this research is to design an educational tool for increasing efficiency in conveying subject matter especially distribution problem. It has a module of real distribution problem in commodity paddy was captured. We crated an interactive Web-based application by using WSDL, PHP and My SQL, and SOAP. The result of the research will be able to improve the pedagogic approach for learning of SCM course. Keywords: Educational tool, FOSS, interactive media, SCM course

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies
    • …
    corecore