225 research outputs found

    Shape analysis of the corpus callosum of autistic and normal subjects in neuroimaging.

    Get PDF
    Early detection of human disease in today’s society can have an enormous impact on the severity of the disease that is manifested. Disease such as Autism and Dyslexia, which have no current cure or proven mechanism as to how they develop, can often have an adverse physical and physiological impact on the lifestyle of a human being. Although these disease are not fully curable, the severity handicaps that accompany them can be significantly reduced with the proper therapy, and thus the earlier that the disease is detected the faster therapy can be administered. The research in this thesis is an attempt at studying discriminatory shape measures of some brain structures that are known to carry changes from autistics to normal individuals. The focus will be on the corpus callosum. There has been considerable research done on the brain scans (MRI, CT) of autistic individuals vs. control (normal) individuals to observe any noticeable discrepancies through statistical analysis. The most common and powerful tool to analyze structures of the brain, once a specific region has been segmented, is using Registration to match like structures and record their error. The ICP algorithm (Iterative Closest Point) is commonly used to accomplish this task. Many techniques such as level sets and statistical methods can be used for segmentation. The Corpus Callosum (CC) and the cortical surface of the brain are currently where most Autism analysis is performed. It has been observed that the gyrification of the cortical surface is different in the two groups, and size as well as shape of the CC. An analysis approach for autism MRI is quite extensive and involves many steps. This thesis is limited to examination of shape measures of the CC that lend discrimination ability to distinguish between normal and autistic individuals from T1-weigheted MRI scans. We will examine two approaches for shape analysis, based on the traditional Fourier Descriptors (FD) method and shape registration (SR) using the procrustes technique. MRI scans of 22 autistic and 16 normal individuals are used to test the approaches developed in this thesis. We show that both FD and SR may be used to extract features to discriminate between the two populations with accuracy levels over 80% up to 100% depending on the technique

    MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves

    Full text link
    This paper studies the problem of finding the smallest nn-simplex enclosing a given nthn^{\text{th}}-degree polynomial curve. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to undesirably conservative results in many applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the nthn^\text{th}-degree polynomial curve with largest convex hull enclosed in a given nn-simplex. Then, we present a formulation that is \emph{independent} of the nn-simplex or nthn^{\text{th}}-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any n∈Nn\in\mathbb{N} and prove numerical global optimality for n=1,2,3n=1,2,3. The results obtained for n=3n=3 show that, for any given 3rd3^{\text{rd}}-degree polynomial curve, the MINVO basis is able to obtain an enclosing simplex whose volume is 2.362.36 and 254.9254.9 times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When n=7n=7, these ratios increase to 902.7902.7 and 2.997⋅10212.997\cdot10^{21}, respectively.Comment: 25 pages, 16 figure

    B-Spline Volumes for Time Dependent Bathymetry Modelling

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und FlĂ€chen, in den meisten FĂ€llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und PrĂ€sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verstĂ€ndliche Visualisierung der Simulationsergebnisse, wĂ€hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschrĂ€nkten HardwareunterstĂŒtzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue FĂ€higkeiten aktueller Grafikkarten aus, um den Stand der Technik bezĂŒglich QualitĂ€t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwĂ€ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-FlĂ€chen und einen interaktiven Ray-Casting-Algorithmus fĂŒr die IsoflĂ€chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz fĂŒr illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation fĂŒr die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten AnsĂ€tze basieren auf rasterisierter Geometrie und sind somit ebenfalls fĂŒr normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen RealitĂ€t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-DatensĂ€tzen durchgefĂŒhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer QualitĂ€t möglich ist. Die EinfĂŒhrung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken fĂŒr die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare fĂŒr die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Multiobjective optimization techniques for the solution of free-boundary plasma equilibrium inverse problems

    Get PDF
    Lo scopo di questo studio ù quello di sviluppare un codice per la soluzione numerica del problema inverso per l’equilibrio di plasmi confinati magneticamente con un approccio di ottimizzazione multiobiettivo e un controllo analitico funzionale della forma del boundary di plasma. Il problema inverso consiste nel determinare i valori ottimali di correnti circolanti nelle bobine attive della macchina tali da mantenere in equilibrio un plasma il cui boundary sia prestabilitoope

    Silhouette-Informed Trajectory Generation Through a Wire Maze for Small UAS

    Get PDF
    Current rapidly-exploring random tree (RRT) algorithms rely on proximity query packages that often include collision checkers, tolerance verification, and distance computation algorithms for the generation of safe paths. In this paper, we broaden the information available to the path-planning algorithm by incorporating silhouette information of nearby obstacles in conflict. A silhouette-informed tree (SIT) is generated through the flight-safe region of a wire maze for a single unmanned aerial system (UAS). The silhouette is used to extract local geometric information of nearby obstacles and provide path alternatives around these obstacles. Thus, focusing the search for the generation of new tree branches near these obstacles, and decreasing the number of samples required to explore the narrow corridors within the wire maze. The SIT is then processed to extract a path that connects the initial location of the UAS with the goal, reduce the number of line segments in this path if possible, and smooth the resulting path using Pythagorean Hodograph Bezier curves. To ensure that the smoothed path remains in the flight-safe region of the configuration space, a tolerance verification algorithm for Bezier curves and convex polytopes in three dimensions is proposed. Lastly, temporal specifications are imposed on the smoothed path in the shape of an arbitrary speed profile

    Airfoil GAN: Encoding and Synthesizing Airfoils forAerodynamic-aware Shape Optimization

    Full text link
    The current design of aerodynamic shapes, like airfoils, involves computationally intensive simulations to explore the possible design space. Usually, such design relies on the prior definition of design parameters and places restrictions on synthesizing novel shapes. In this work, we propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils. The representations are then used in the optimization of synthesized airfoil shapes based on their aerodynamic performance. Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique. Our model can (1) encode the existing airfoil into a latent vector and reconstruct the airfoil from that, (2) generate novel airfoils by randomly sampling the latent vectors and mapping the vectors to the airfoil coordinate domain, and (3) synthesize airfoils with desired aerodynamic properties by optimizing learned features via a genetic algorithm. Our experiments show that the learned features encode shape information thoroughly and comprehensively without predefined design parameters. By interpolating/extrapolating feature vectors or sampling from Gaussian noises, the model can automatically synthesize novel airfoil shapes, some of which possess competitive or even better aerodynamic properties comparing with training airfoils. By optimizing shape on learned features via a genetic algorithm, synthesized airfoils can evolve to have specific aerodynamic properties, which can guide designing aerodynamic products effectively and efficiently

    Exact conversion from BĂ©zier tetrahedra to BĂ©zier hexahedra

    Get PDF
    International audienceModeling and computing of trivariate parametric volumes is an important research topic in the field of three-dimensional isogeo-metric analysis. In this paper, we propose two kinds of exact conversion approaches from BĂ©zier tetrahedra to BĂ©zier hexahedra with the same degree by reparametrization technique. In the first method, a BĂ©zier tetrahedron is converted into a degenerate BĂ©zier hexahedron, and in the second approach, a non-degenerate BĂ©zier tetrahedron is converted into four non-degenerate BĂ©zier hexahedra. For the proposed methods, explicit formulas are given to compute the control points of the resulting tensor-product BĂ©zier hexahedra. Furthermore, in the second method, we prove that tetrahedral spline solids with C k-continuity can be converted into a set of tensor-product BĂ©zier volumes with G k-continuity. The proposed methods can be used for the volumetric data exchange problems between different trivariate spline representations in CAD/CAE. Several experimental results are presented to show the effectiveness of the proposed methods
    • 

    corecore