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ABSTRACT 
 

Early detection of human disease in today’s society can have an enormous impact 

on the severity of the disease that is manifested.  Disease such as Autism and Dyslexia, 

which have no current cure or proven mechanism as to how they develop, can often have 

an adverse physical and physiological impact on the lifestyle of a human being.  

Although these disease are not fully curable, the severity handicaps that accompany them 

can be significantly reduced with the proper therapy, and thus the earlier that the disease 

is detected the faster therapy can be administered.  The research in this thesis is an 

attempt at studying discriminatory shape measures of some brain structures that are 

known to carry changes from autistics to normal individuals. The focus will be on the 

corpus callosum.  

 There has been considerable research done on the brain scans (MRI, CT) of 

autistic individuals vs. control (normal) individuals to observe any noticeable 

discrepancies through statistical analysis.  The most common and powerful tool to 

analyze structures of the brain, once a specific region has been segmented, is using 

Registration to match like structures and record their error.  The ICP algorithm (Iterative 

Closest Point) is commonly used to accomplish this task.  Many techniques such as level 

sets and statistical methods can be used for segmentation.  The Corpus Callosum (CC) 

and the cortical surface of the brain are currently where most Autism analysis is 

performed. It has been observed that the gyrification of the cortical surface is different in 

the two groups, and size as well as shape of the CC.  

 An analysis approach for autism MRI is quite extensive and involves many steps. 

This thesis is limited to examination of shape measures of the CC that lend discrimination 
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ability to distinguish between normal and autistic individuals from T1-weigheted MRI 

scans. We will examine two approaches for shape analysis, based on the traditional 

Fourier Descriptors (FD) method and shape registration (SR) using the procrustes 

technique.  

MRI scans of 22 autistic and 16 normal individuals are used to test the approaches 

developed in this thesis. We show that both FD and SR may be used to extract features to 

discriminate between the two populations with accuracy levels over 80% up to 100% 

depending on the technique. 
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CHAPTER 1  

 

I�TRODUCTIO� 

 

1.1 Background 
 

 

 Although it was once considered a rare disease, Autism has been shown to affect 

almost 1 in every 150 children [1][2][3].  Autism is a neurological disorder that is 

attributed with the impairment of a human beings social interaction, communication, and 

“typical” behavior.  It generally is fully manifested during the first 3 years of life and 

adversely affects the function of the human brain.   No study has effectively described the 

mechanism of this developmental disorder, and the exact parts of the brain involved are 

not fully understood either [2].  The parts of the brain necessary to understand autism are 

the Cortical Mini-columns, Corpus Callosum (CC), and the White Matter (WM).   

 Mini-columns are vertical iso/neo-cortical organization that link afferent, efferent 

and interneuronal signaling [33].  It  has been theorized that supermumerary minicolumns 

expand the surface of the brain during encephalization (corticalization) while the cortical 

width is relatively unchanged, and that a substantial amount of added brain volume is 

given to minicoumn connectivity during this process with a change in the white/gray 

matter ratio [33].  Many neuroimaging studies have lead to the conclusion that autistic 

brains have a deficiency in the size of the CC and its corresponding regions along with an 

abnormal ratio of white/gray matter.  
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 Autism is a very complex developmental disease that impacts many functions of 

the brain and impairs development on many levels.  The communication of an autistic 

individual (both children and adults) suffers greatly and affects almost every aspect of 

life from learning abilities to physical activities such as leisure sports.  The disease does 

not have a specific ranking system for severity but the most severe conditions are 

complemented with cognitive deficits such as mental retardation, aggressive behavior, 

and self-injury.  These impairments can last over the course of the lifetime of the 

individual and has a great impact on the people and environment that the individual 

interacts with [33].  The best treatment available for autistic individuals are educational, 

behavioral, and skill-oriented therapies that can possibly reduce the current condition, 

and are most effective when started at an early age.  

 Recently the neuropathology of autism has received great attention by the 

scientific community.  Typically patients with autism have significant differences in 

several regions of the brain when compared to developing brains without autism.   Head 

size was noticed as a correlated factor in children with autism, in a study by Kanner [7] 

over 60 years ago.  Further studies have confirmed increased head circumference and 

brain size in autistic children.  In other studies macrocephaly (head circumference larger 

than the 97th percentile of the population) was found in 20% of the autistic patients 

[8][10][11][12][13]. Modern neuroimaging has confirmed increased brain size in young 

autistic children [14][12].  However at the adolescent and adult level there were no 

significant differences in brain volume reported leading researchers to focus on the brain 

during development.  [15][12]). Furthermore, the following specific parts of the brain 
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have been analyzed under great scrutiny to find anomalies with nonautistic brains: the 

cerebellum, the brain stem, the corpus callosum, and the limbic system. 

 

The Cerebellum 

 

The cerebellum is located on the lower rear part of the brain.  It controls the 

integration of different sensory perceptions and motor functions through neural 

connectors with the motor cortex.  

In a study by Courchesne et al. [27] examining MRIs of patients with autism showed 

a reduction in the neocerebellar vermis, which would be consistent with the studies 

reporting reduced Perkinje cell size in autistic patients. MRI studies, as previously 

mentioned have shown an increased volume in brain size.  Particularly notable was 

cerebellar white matter of children with autism, [15]. But, these reports have also found 

that the volume of cerebellar gray matter in autistic children did not differ from control 

subjects.  Surprisingly, this difference was noticed in older patients.  Allen and 

Courchesne have found (using functional MRI studies examining the cerebellum) 

abnormalities in cerebellar development of autistic patients which may create different 

problems for motor and attentional functioning [28].  

A decreased amount of Perkinje cells in the cerebellar hemispheres, vermis, and 

cerebellum were found in almost all neuropathological studies of people with autism.  

This was first reported in Williams et al. [23] in the case of four individuals.  Recently 

Ritvo et al. [24] found a decrease in the number of Perkinje cells in the vermis and 

cerebellar hemisphere in a study with three autistic males.  Further studies by Lee et al. 
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and Bailey et al. have confirmed and provided these same results [25][26]. On the other 

hand reports by Guerin et al. have shown no differences in the cerebellum of autistic 

patients [16].   However, they did find that the corpus collasum tends to be thinner. 

The Corpus Callosum 

 

 

The corpus callosum is the part of the brain which in mammals connects the left and 

the right hemisphere.  It is the largest white matter structure in the brain containing over 

200 million contralateral axona and as previously mentioned has been indentified in 

studies relating to autism. 

 
 

Figure 1: The Corpus Callosum. Adopted from [36]. 

 

 

According to Farag et al. geometric analysis of postmortem normal and autistic 

human subjects reveal distinctions in deformations in the corpus callosum (CC) that may 

be used for image analysis-based studies of autism. Preliminary studies showed that the 
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CC of autistic patients is quite distinct from normal controls [33]. In a study of the 

microstructure of corpus callosum and cortical connectivity differences by Xiaoyan et al. 

has been found between two subjects. These abnormalities revealed “aberrant cortical 

connections between brain regions, which are consistent with the hypothesis of abnormal 

cortical connectivity in autism [35]. 

  
 

 

 

Figure 2: The Corpus Callosum as shown in saggital plane cross section of postmortem 

T1 weighted MRI scans of normal (left) and autistic individuals (right) [30]. 

 

 

Brainstem 

 

As with the cerebellum and Perkinje cells there are inconsistencies between 

pathological findings related to the brainstem in autism. According to a study by Bauman 

et al. [8], neurons in the inferior olive were much larger than normal in younger autistic 

patients, those between 9 and 12 years of age.  But in older cases, 22 years of age and 

older, the neurons were found to be smaller and pale. In a more recent study by Bailey et 

al. they reported also having olivary abnormalities in five autistic patients. The lack of 

consistency between different findings of the pathological neuropathy could be due to 
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these relatively small sample sizes.  But in these studies they did not account for 

significant cofactors such as age, sex, socio-economic status, mental background, which 

could play a factor in these inconsistencies. 

Although no direct correlation exists between the reported structural MRI findings 

and the neuropathological findings in autism, there are consistently replicable results 

which show an elevated brain volume in autism, particularly in younger patients. 

However, the other regions of the brain were identified, although with less certainty as 

being directly related to the abnormal neurological development associated with autism.  

Therefore ultimately what is needed is more studies between neuroimaging and 

the neuropathological research in autism, specifically in the differences in how the brain 

grows and changes from youth to adulthood in patients with autism. Longitudinal studies 

will be necessary to show the path of brain development in people with autism.   It is 

worth noting that autism research may benefit from new imaging modalities such as 

diffusion tensor imaging (DT-MRI). Specifically, this imaging modality offers a better 

ability to learn about the structure of white matter in patients with autism. In fact a study 

by Barnea-Goraly et al. has used DT-MRI to research white matter differences between 

several developmental disorders including.  

An increased in brain size and gyrification are both present in encephalization.  

But, major changes in various key parts of brain structure show that a human being’s 

brain is not just a larger version of an ape’s. Usually increases in brain size related to the 

neocortex, come at the cost of other components.  In a study by Ringo (1991) [32] the 

impossibility of maintaining the same “percent connectedness” with increasing numbers 
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of gray matter neurons was noted. This is likely the result of losing longer corticocortical 

connectionse like the commissural pathways.  So during the process of encephalization, 

cerebral white matter will increases at a faster rate than gray matter.  Meanwhile cross 

sectional measurements of the corpus callosum area fall behind those for overall brain 

size.  This is consistent with the thinner corpus callosum noted by Guerin et al.  Since the 

corpus callosum forms the connection between the two hemispheres the disconnection 

between the hemispheres due to autism may be responsible for the emergence of cerebral 

dominance. This is supported by neuroimaging studies reporting a negative correlation 

between language lateralization and callosal size (Hines et al., 1992) [31].  It is noted that 

when processing of information takes place predominantly in one hemisphere, there is 

less need for interhemispheric information exchange. 

Further research has shown that in patients with autism, there is an age dependent 

increase in brain size.  The maximum growth seems to happen during the first year of 

life.  Studies of brain size in adolescents and adult autistic patients are normal.  Therefore 

autistic people seem to have an excessive brain growth early in life which can be 

followed by the loss of less efficient connections (long association fibers) that are 

constrained by the reduced aperture of the gyral window.  

Subregions of the corpus collasum experiences area changes directly corresponding to 

sites of cortical development during the prenatal period, a process that is associated with 

myelination and fiber diameter expansion instead of the multiplying of fibers.  During 

this time period, postnatal retractive events that cause abnormalities in the maturation of 

the CC and other cortical sturctures may cause the manifestation of autism and the 
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concurrent problems associated with it.  Analysis of early CC lesions and fiber 

reorganization, observed before maturation, may lead to novel acquistition techniques.    

 

Limbic system 

 

The limbic system includes many of the cortical and sub-cortical brain structures. 

This includes the structures that are involved in emotion and memory association with 

emotions. These structures include: the amygdale, the hypothalamus, the orbito-frontal 

cortex, the sub-column, etc.   Bauman and Kemper [9] noted a significant increase in cell 

packing and reduced cell size in the hypocampus, amygdale, subiculum, and other 

structures of the limbic system.  The study was the result of a comparative analysis 

between six autistic cases (9-29 of age) and six age- and sex-matched controls.  

 

 

 

 

 

Figure 3: 

Illustration of the brain limbic system. 

As previously mentioned MRI based studies have reported that the corpus callosum is 

smaller and thinner in autistic subjects [33]. However, it is not clear as of which part of 

the corpus callosum is abnormal. Most of the studies report a reduced posterior corpus 

callosum.  However other studies including the one by Guerin et al. have found that the 
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reduction was only of the anterior segment [33].  A recent MRI study by Vidal et al. [21] 

of 24 boys with autism has shown aberrant connections between cortical regions when 

compared to the controls. The study has also reported reductions in the total colossal area 

and the anterior third of the corpus callosum in autistic patients.   

Unfortunately MRI studies of the hippocampus and the amygdale have reported 

inconsistencies in their findings as well. The volume of the limbic structures either 

increased, decreased, or in autistic patients were similar relative to control cases [22].  

 

1.2 Autism Research at the CVIP Lab 

  

The Computer Vision and Image Processing Laboratory (CVIP Lab) has been 

involved in image analysis reach of autism since 2004 in collaboration with Dr. Manuel 

Casanova, Department of Psychiatry, University of Lousiville. The underlying hypothesis 

of these activities is two fold: a) pathological minicolumns disturbances at the micro level 

are manifested in macroscopic variations in the WM, CC and other brain structures which 

can be observed in high resolution T1-weighted MRI scans; and b) variational image 

modeling and scale space techniques produce robust characterization of  the gyrification 

window and the topology of the corpus callosum and possibly the ventricles and the 

hippocampus, leading to  discriminatory measures of autistic and normal brains. 

A number of techniques for image segmentation and classification have been 

developed (e.g., [33][34]). These approaches were implemented on a postmortum  MRI  

study (T1-weighted) of 22 autistic and 16 normal brains. 
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This thesis is a step along the same directions which focuses on shape analysis of the 

CC.  

 

1.3 Thesis Aims 

 
 

 

The main goal of this thesis is to develop robust discriminatory measures that can 

distinguish the brains of autistic and normal subjects from T1-weighted brain imaging. 

Specifically, the domain of the Autism research at the CVIP Lab includes: 1)  creating a 

standard image representation of T1-weighted MRI scans for the population involved in 

this study;  2) developing a level set approach for simultaneous segmentation and 

registration of the full brain and possibly the cortical surface, corpus callosum, ventricles 

and the hippocampus; and 3) using pattern analysis methodologies, in particular the scale 

space approach,  to extract the most salient and discriminatory features between the 

brains of autistic and normal subjects. 

 Within this framework, a number of tools have been developed over the years which 

serve as kernel or stepping stone for further developments. Therfore, this thesis will build 

upon the tools at the CVIP Lab and will have the following focus: 1) study shape models 

that are suitable for the corpus callsoum; 2) study the features or measures from these 

shape models that lend benfit for discrimination between populations; and 3) test the 

effectivness of these shape measures for discriminating normal and autistic populations 

from  a clinical MRI study. Figure 4 illustrates the flow of steps used in the thesis 

research. 



11 

 The contribution of this thesis is two fold: a) developing a systematic 

approach for shape modeling of the corpus callosum; and b) developing an approach for 

automatic classification of  autistic vs. normal subjects from T1-weighted MRI data. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Block diagram of steps involved in classification of autistic vs. normal subjects 

from MRI data. 

 

1.4 Thesis Outline 

 
 

Chapter 2 examines some of the basic methods for brain imaging analysis.   It 

includes a summary of the major techniques used in this thesis.  Chapter 3 considers two 

approaches for shape respresentation of the CC based on the Fourier Descriptors and the 

Bezier Patches polynomial fitting. Chapter 4 examines the use of the shape representation 

methods in Chapter 3 for study of autism.  Chapter 5 provides a  summary and possible 

extensions of the research in this thesis.  
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CHAPTER 2 

 

 

OVERVIEW OF IMAGE A�ALYSIS FOR AUTISM 

 

This chapter describes typical image analysis steps in the study of autism. As the 

approaches vary based on the data at hand, we will not attempt a comprehensive survey. 

We will limit the study to structural imaging based on T1-weighetd MRI scans. As stated 

in the introduction, the cortical surface and corpus callosum have received particular 

focus in autism research based on neuroimaging. The basic steps on image analysis 

involve image segmentation, registration and classification (Figure 4). At the CVIP Lab, 

statistical and level sets approaches have been used extensively for segmentation of the 

cortical surface and for isolating the corpus callosum (e.g., [33][34]). Similarly, a number 

of approaches have been developed for shape registration which are of particular 

applicability to structures like the corpus callosum (e.g., [33][37][38][40]).  

We will focus our survey here to methods based on level sets; the mathematical 

developments of these approaches are very involved and well described in the PhD 

dissertations of two CVIP Lab graduates, Dr. Hossam Abdemunim and Dr. Rachid Fahmi 

(e.g., [39][41]). The segmentation and the registration approaches of Abdelmunium and 

Farag [38] and Fahmi and Farag [40] have been used in this thesis. We will highlight 

some standard approaches for registration in the computer vision and biomedical imaging 

literature which is of particular interest to the research in this thesis; specifically, the 

Mutual Information approach for intensity registration, ICP algorithm for rigid 

registration and the Procrustus technique for shape registration. 
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2.1 Image Segmentation Using Level Sets 

 

Level set methods were first introduced by Osher and Sethian, 1988 [42] and has found wide 

spread applications in computer vision and biomedical image analysis. The basic idea is to 

represent contours as the zero level set of an implicit function defined in a higher dimension, 

referred to the level set function, and to evolve the level set function according to a partial 

differential equation (PDE). This method presents several advantages (e.g., Sethian, 1999 [43]) 

over the traditional parametric active contours. The contours represented by the level set function 

may break or merge naturally during the evolution, and changes are automatically handled. 

Another advantage is that the level set function always remains a function on a fixed grid, which 

allows efficient numerical schemes. The variational level set methods are more convenient than 

pure PDE driven level set methods because region-based information and shape-prior information 

are directly formulated in the level set domain. Hence, variational level set methods produce more 

robust results. For instance, Chan and Vese, 2001 [44] proposed an active contour model using a 

variational level set formulation. 

 Deformable models have had great success in medical imaging and computer vision. 

However, the disadvantage of this method is that the initial contour should be close to the final 

one. The method has some problems with topological changes of a complex structure (e.g., 

Abdelmunim and Farag, 2005 [45][46]). A signed distance map is used to handle complex rigid 

transformations with different scaling ( )zyx sss ,, , rotation ( )zyx θθθ ,, , and translation ( )zyx ttt ,,  

parameters of the shape registration. 

 The distance maps result in a more adequate energy function that obtains the transformation 

parameters. Also a shape-based PDE approach is included in this method. Hence, we do not need 

to tune the weighting coefficients. The first function is built as a function of the signed distance 
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maps of the training shapes in a form of a parametric shape model. The second one is the 

segmentation of the region of interest based on the color value. The last function represents the 

evolving shape resulting from the combination of the color and the shape information. The energy 

function is obtained to measure the difference between the shape model and the color functions. 

The shape and the pose parameters are required to minimize this energy in a gradient descent 

approach (e.g., Farag and Abdelmunim 2004 [37]). 

Farag and Abdelmunim [45][46] introduced a new level function defined as a vector distance 

rather than a scalar method. The level set function Φ  is used to represent the evolving region. 

These representing shapes are invariant to translation and rotation. Given a curve/surface V that 

represents boundaries of a certain shape, the following level set function can be defined as, 

34: RR →Φ  where ( ) ( ) ( ) ( )[ ]TtXtXtXtX ,,,,,, 321 φφφ=Φ . It is defined as the minimum 

Euclidean distance between the point [ ]TzyxX ,,= and a curve/surfaceV . The evolving region is 

a propagating front embedded as the zero level or a higher dimensional function Φ  [45].  The 

continuous change of the projections of Φ is described as 

   

0=∇+ iii F
dt

d
φφ   .3,2,1=i   (2.1)   

  

where F  is a vector velocity function depending on the local curvature of the front and on the 

external features related to the input image [45]. The parameter Φ  deforms iteratively according 

to F . The position of the front is given at each iteration step by using the following equation: 

                 ( ) 0,,, =Φ tzyx    
                           (2.2) 

 

F can be defined as 

[ ]TkvkvkvF 321 ,, εεε −−−=                (2.3) 
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where 1=v  or 1−=v  for contracting or expanding the front, respectively, ε  is a smoothing 

coefficient smaller or equal to 1, and ik  is the local curvature defined for the corresponding 

projection function iΦ  where .3,2,1=i   

The intensity segmentation is described by the function iΦ  which changes based on (Eq. 

2.1). If the point belongs to the associated object, the front region expands, otherwise it contracts. 

The point classification is based on the Bayesian decision at point at X . The parameter iv  for 

each point is replaced by the function ( )Xvi  can be defined as follow: 
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where π  is the region prior probability, ( ).p  is the probability density function (pdf) for the object 

( )o  and the background ( )b , and I is the image data. Each region is defined by a Gaussian 

distribution with adaptive parameters as follows [45]: 
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where H  is  the Heaviside step function.  

 

  

1Φ , 2Φ , and 3Φ are the projections of the distance in the coordinates directions negative inside 

the curve/surface, positive outside and zero on the boundary ([45][46]). The algorithm can be 

summarized as follows: 

Level Set Image Segmentation Algorithm: Farag-Abdelmunim [46] 
 

Step 1: Manually select the initial seeds inside the region of interest.  

 

Step 2: For the bi-model in this work, assume object and background classes have 

Gaussian distribution.  

 

Step 3: Obtaining edges. 

 

Step 4: Iteratively estimate the mean and standard deviation of the object and background 

(Eqs. 2.5- 2.7).  

 

Step 5: For each pixel do the Bayesian decision (Eq. 2.4) 

 

Step 6: Repeat steps 4 and 5 until the iteration is ended.  
 

 

 

 

 

 

 

 

 

 

2.2 Image Registration 

 

 Image registration is a fundamental step in image analysis; in fact, it the logical 

step behind essentially all pattern recognition and machine learning techniques which 

relates a measurement to a typical reference.  From the mathematical point of view, 
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registration aligns a target (T) to a model (S) such that a certain similarity criterion is 

optimized. Figure 3 illustrates the basic steps in image registration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: General framework for image registration. The Target image T is registered to 

the model image M in accordance to a certain similarity measure. 

 

Among the similarity metrics are the mean square error, the normalized cross 

correlation and the mutual information [47]. The transformation T(p;Θ) that takes the 

target image to the model involves three main components: translation, rotation and 

scaling.  The transform itself may be rigid for non deformable objects or elastic which 

allows a degree of variability in the either the target or the model or both. Optimization 

approaches include brute force search, gradient descent, Levenberg-Marquardt among 

various other numerical approaches. Interpolators include Nearest Neighbor, Bilinear and 

B-Spline [47]. Let model (reference or fixed) image or volume be F(x) and the target 

(moving) image or volume be M(x). Let x be coordinates of the volume, T be 
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transformation from coordinate frame of the fixed volume to moving volume, and  

M(T(x)) be  target pixel (voxel) associated with model pixel (voxel) F(x). We can define 

the following similarity measures: 

Mean square error (MSE): 

  ∑
=

Θ−=Θ
,

i
q

ii

i
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TT   (2.1) 

In carrying out the MSE measure, the mean squared difference over all the pixels in 

an image is calculated, intensities are interpolated for the target image, and for gradient-

based optimization, derivative of metric is also required. This measure is applicable for 

images of same modality (i.e., MRI over MRI, CT over CT, etc.). 

The �ormalized Correlation: 
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This measure is also applicable for registering images/volumes of similar modalities. 

The Mutual Information:  

)))((),(()))((())(()))((),((

)))((),((maxargˆ

xTMxFhxTMhxFhxTMxFI

xTMxFIT
T

−+≡

=
 (2.3) 

Where I(.) is the information and h(.) is entropy. The term h(M(T(x))) encourages 

transformations that project the model (M)  into complex parts of the target (T). The last 

term of MI equation contributes when the model and target are functionally related [48]. 
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Together, the last two terms of MI equation identify transforms that find complexity and 

explain it well. To find maximum of mutual information, we calculate its derivative: 

)))((),((*)))(((*))((*)( xTMxFh
dT

d
xTMh

dT

d
xFh

dT

d
TI

dT

d
−+≈  (2.4) 

The derivative of fixed/model volume F(x) is 0, because it is not a function of T. 

Entropies depend on the covariance of probability density functions, which may be 

estimated numerically using different methods (e.g., the linear model or the Parzen 

window [49]). The overall process of mutual information maximization is illustrated in 

Figure 6.  

The MI-based approach works on multimodal imaging; hence, we may register a 

CT scan to an MRI or an ultrasound scan to a CT or MRI. This measure is also more 

accurate than either the MSE or the normalized correlation approaches. However, it is 

more extensive in terms of computation than other approaches. We will examine below a 

rigid registration approach that is based on distance transformation and we will focus on a 

well-established algorithm for optimization of the distance between the target and model 

images known as the iterative closest point (ICP) algorithm [50]. 

The ICP Algorithm [50]: 

Given a model shape, the maybe represented as: Point Sets, Line Segment Sets, 

Implicit Curves, Parametric Curves, Triangle Sets, Implicit Surfaces, or Parametric 

Surfaces. Given a target or scene shape which is represented as a point set, the target 

shape may correspond to the model shape. It is required to estimate the optimal rotation, 

translation and scaling that aligns or registers the target shape to the model shape.  
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Figure 6: Block diagram of the major steps in image segmentation using maximization of 

the mutual information approach. 

 

  

Figure 7: Illustration of correspondences between model and target (scene) shapes in the 

process of rigid registration.  

 

The ICP algorithm registers the scene to the model shapes by minimizing, iteratively, 

the Euclidian distance between them. The basic steps in obtaining the translation, rotation 

and scaling using the ICIP algorithm are as follows:   
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Basic Steps in the ICP Algorithm 

 

1. Begin with initial rotation, translation and scaling (initial value for registration 

parameters). 

2. Fix the model shape and start moving the scene shape by applying the initial 

registration parameters. i.e. scale, rotate and then translate. 

3. Compute the error metric that reflects the dissimilarity of the scene shape from 

the model shape. 

4. If the error is minimum, we have correctly aligned the scene shape to the model 

shape, return with the aligned scene shape. 

5. Else, calculate the new values for the registration parameters and go back to step 

2 with the new parameter values. 

 

The ICP algorithm does not work properly on intensity representations and it is 

usually very slow especially with large number of points and in higher dimensions.  

 

2.3 Shape Registration by Vector Level Sets  

Abdelmunim and Farag (e.g., [45][46]) introduced a level set-based method for rigid 

and elastic shape registration. The approach will be briefly summarized here. Given two 

shapes represented by the vector functions Ф1 and Ф2. A transformation A with scales, 

rotation and translation is to be calculated to transform the first object to the second. The 

following dissimilarity measure the difference between the vector and the other scaled 

one:  

)()( 21 AXSRr Φ−Φ=     (2.5) 

 

The following energy is formulated as a sum of squared differences 

∫Ω ∈ Ω= rdrE Tδ      (2.6) 
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Where the delta is an indicator function with value 1 inside the shape and zero otherwise. 

The two shapes are aligned by minimizing the energy function using various approaches 

including the gradient dissent method.   

  
 

Figure 8: Results of shape registration on the corpus callosum using the Abdelmunim 

and Farag Algorithm [38]. Rigid registration/alignment on the left and elastic 

registration is on the right. 

 

 

The approach may be used for aligning several shapes with respect to the mean shape as 

illustrated in Figure 9 (e.g., [46]). The training shapes (e.g., segmented corpus callosum) 

are jointly registered with an evolving mean shape to find the corresponding global 

transformations A1,…,An
. 
 The dissimilarity measure is used as follows: 

)( iiMii ASr Φ−Φ=     (2.7) 

The energy function will be: 
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Figure 9: Illustration of group shape registration using vector level set function [38]. 

 

The transformation parameters are calculated using the gradient descent as follows  

(e.g., [39]): 
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The average function will evolve according to the following equation: 
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The shape model is a function of the registered training shapes: 
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The shape parameters w, need also to minimize the energy function to process the 

registration.  

Various implementation details and the use of the shape models for registering 

shapes as well as shape-based segmentation are in [38][40]. Figure 10 shows the global 

registration of a number of corpus callosum shapes.  

  

 

Figure 10: Results of global alignments of a number of corpus callosum using Shape-

based approach (adopted from [38]). 

 

Various approaches may be used for co-registering the corpus callosum  

Contours (e.g., [38-41][51]).  

 

2.4 Shape Registration by the Procrustes Approach 

Figure 11 illustrates the Procrustes distance between two shapes a andb. There are 

several preprocessing steps to determine the Procrustes distance between two shapes 

(e.g., [51]): 

1. Compute the centroid of each shape. 
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2. Rescale each shape to have equal size. 

3. Align with respect to position the two shapes at their centroids. 

4. Align with respect to orientation by rotation.   

 
 

Figure 11: Procrustes distance between two shapes aandb. 

 

The Procrustes distance ( 2M ) between two shapes ),( yixi xxx = and ),( yixi yyy =  is a 

least-squares type of metric of the form:  

     22 |||| yxM −=               (2.14) 

 

Procrustes distance-based rigid registration between two shapes usually involves 

minimizing the expression 2||)(|| yxT − , where  in the Euclidean case is 
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The term 2||)(|| yxT − can simply be differentiated with respect to the parameters a,b, xt  

and 
yt , to determine the optimum parameters that minimize the expression 2||)(|| yxT − . 

The actual closed-form solutions of the parameters are [52]: 

                     ,||/)( 2xyxa ⋅=  
2||/)( xyxyxb xiyi

i

yixi∑ −=           (2.16) 

                      ∑=
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Shape Warping 

 

Suppose we wish to warp a 2D shape , so that the set of  control 

points  are mapped to new positions, . We require a continuous 

vector-valued mapping function, , such that . This function is a type of 

forward-mapping method. One such transformation is 

 

     (2.17) 

 

The Matlab built-in function procrustes [53] solves for the parameters , , , , , , and 

, given the corresponding pair of control points  and .  

Image Warping 

 

Suppose we wish to warp an image  so that the set of  control points 

 are mapped to new positions, . We again require a continuous 

vector-valued mapping function, , such that . Given such a function, we can 

project each pixel of image  to a new image .  However, in practice, it is better to find 

the reverse map  (reverse-mapping), taking the control points  to , in order to avoid 
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interpolation problems. For each pixel in the target warped image , we can determine 

where it came from  and fill it in. Implementation of image warping forward-map is 

difficult as two problems may occur: (a) many source pixels can map to the same 

destination pixel and (b) some destination pixels may not be even covered.  However, 

with reverse-map image warping, since iteration over the destination image is performed, 

there is no possibility that the problems existing with the forward-map warping, will 

occur.   

 

2.5  Summary  

This chapter covered the basic image analysis tools which have been used in this 

thesis. In particular, the Farag-Abdelmunim Algorithm [37] for image segmentation is 

used for segmentation of the MRI data to isolate the corpus callosum, and the Algorithm 

for shape registration [38].  The chapter covered the basic mathematics involved in 

registration using the ICP algorithm and the Mutual Information (MI) algorithm. The MI 

algorithm would be value for registering normal to autistic (or vice versa) scans for 

purpose of normalization and comparison between intensity variations (especially at the 

cortical surface). The shape modeling approaches of Abdelmunim and and Farag [38] and 

Fahmi and Farag [40] are of value for both automatic segmentation of the corpus 

callosum as well as modeling the contours of the corpus callosum.  
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CHAPTER 3 

 

 

SHAPE REPRESE�TATIO� 

 

 

3.1  Introduction 

 

An object’s shape is what is invariant to rotation, translation and scaling; that is, 

all the geometrical information that remains when location, scale, and rotation effects are 

filtered out from an object (e.g., [54]).  Stated another way, the Euclidean similarity 

transformations of scaling, translation, and rotation have an invariant effect on shape, and 

if two objects can be mapped to one another using these transformations, then they are 

said to have the same geometric shape.” 

Shapes can be divided into two categories: Static or Dynamic.  Static Shapes are 

rigid shapes that do not change in time by deformation or articulation, for example, a 

model of a ship.  Dynamic shapes are rigid shapes that do change in time by deformation 

or articulation.  An MRI image of a human brain can be thought of as static, however the 

changes in the brain that occur over the course of many years from growth and disease 

can be thought of as Dynamic. The human face is a dynamic shape due to effects of 

gestures, talking and expressions. A fluid mechanic model resembling the state of a 

weather phenomenon is dynamic, etc.  

Shape representation is an important aspect of modern computational geometry 

and refers to the general framework that describes shape information, including data 

representation, meshing, surface fitting and convex hulls.    Shapes are typically defined 
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as an object, an abstraction, or a representation.  An object can be physically dealt with 

(seen, touched) such as a ball.  An abstraction is a quality separated from an actual 

example, such as the concept of a ball being a sphere.  A representation is the way a 

shape is symbolized; for example, representing the ball as an equation for a sphere (r² = 

x² + y² + z²). 

Shape Representation takes many forms in the sense that it may only describe a 

particular global feature of shape, such as the boundary that surrounds an object 

(Boundary-based representations like curves and surfaces), the region that is occupied by 

an object (Region-based representation like images/volumes), or by the mathematical 

coefficients that describe a transform-domain (Transform-based representation such as 

Fourier Descriptors and Spherical harmonics). Each representation incorporates certain 

aspects of a shape.  In general, shape representation approaches may be divided into two 

broad categories: Data-based representations and Model based representations.  Data-

based representations include point-based, landmark-based, boundary-based, and volume-

based representations. Model-based representations include global feature-based and 

graph-based Representations [54][55].  

 

Point based Representations: 

Point-based representations render a shape in terms of a point cloud or range 

images.  While they may provide a useful visual display, they generally lack the 

structural information of the shape such as its connectivity. Multiple Range images of an 

object (usually acquired via a laser scanner) are used to reconstruct a 3D model. Range 
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Images are acquired by moving an object through a continuous sheet of last light, which 

gets observed by a camera tuned to that wavelength of light.  The scanner measures the 

depth of the object and places it on a position of a grid in a range images.   

 

Figure 12: An example of point-based respresentation of a shape. 

Landmark-based Representations: 

Landmark-based representations describe a shape boundary by a set of specific 

points.  As defined by Dryden and Mardia, “A Landmark is a point of correspondence on 

each object/shape which matches between and within populations” [55].  They further 

divide landmarks into three subgroups (Anatomical, Mathematical, and Pseudo).  

Anatomical landmarks are points that correspond between organisms biologically as 

defined by an expert (e.g., [56]).  Commonly used synonyms for landmarks are nodes, 

vertices, homologous points, etc.  

 

Boundary Based Representations 

Boundary Based representations, commonly used in CAD and graphics, represent 

an object in terms of its boundary or surface.  This type of representation is one of the 
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two main representations used for this thesis.  Boundary data is defined in terms of 

polygonal meshes, parametric forms, and implicit surfaces. Figure 13 shows a one-

dimensional example of an open boundary; the more poly-lines (line segments sharing 

endpoints) used, the better the approximation.  

 

 
 

 

 

Figure 13:  Boundary representation and approximation with single (middle) and 

multiple lines (rightmost).  

 

 

  

Curves: 

Curves in the standard 2-dimensional Euclidean space  are called plane curves 

which can be described either in an explicit form, ; for example, as a function 

graph, or implicitly as a set of points which specify an equation ; this equation 

can be represented in a parametric form as , however we need to 

place restrictions on  such that the solution of   does not fill the entire plane. 

Algebraic curves are curves defined by  such that is a polynomial function in 

two variables. Equations of the first degree define straight lines, while equations of the 

second degree define ellipses, parabolas or hyperbolas. Curves in the standard 3-
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dimensional Euclidean space  are called space curves which can be defined as 

intersections of two surfaces defined implicitly by ,  and . 

Definition: Let  be a set of points in the d-dimensional Euclidean 

space, a curve can be defined in terms of these points as: 

 (3.1) 

Where  are continuous functions defined on the interval . The points 

 are called control point and  are called the basis functions of the 

curve .  Next we will discuss one of the more popular curves and how they may be used 

to interpolate points. 

In this thesis, we will focus on curve representations, specifically, Bezier 

curves/patches and the Fourier descriptions. Therefore, these two representations will be 

studied in details in the rest of this chapter. 

 

3.2  Bézier Curves 

 

 

Bézier curves are one of the most popular representations for curves. 

Definition 3.1:  Let  be a set of control points (or vertices of a shape), a 

Bézier curve of degree n is given by: 

    (3.2) 

Where the basis functions  are the Bernstein polynomials defined by; 
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     (3.3) 

Where  

Bézier curves interpolate the end points  and  , that is it connects the end 

points in a fashion directed by in-between control points, which do not lie on the curve, 

this is called endpoint interpolation property.  

 

Definition 3.2:  Given two control points  , a Linear Bézier curve is simply a 

straight line between those two points, the curve is given by: 

  (3.4) 

 

Figure 14:  The t in the function for a linear Bézier curve can be thought of as describing 

how far x(t) is from P0 to P1. For example when t=0.25, x(t) is one quarter of the way 

from point P0 to P1. As t varies from 0 to 1, x(t) describes a curved line from P0 to P1. 

 

Definition 3.3:  A quadratic Bézier curve is the path traced by the function  given 

three control points : 

 (3.5) 

We note, a quadratic Bézier curve is also a parabolic segment. 
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Figure 15:  For quadratic Bézier curves one can construct intermediate points Q0 and 

Q1 such that as t varies from 0 to 1: Point Q0 varies from P0 to P1 and describes a 

linear Bézier curve. Point Q1 varies from P1 to P2 and describes a linear Bézier curve. 

Point x(t) varies from Q0 to Q1 and describes a quadratic Bézier curve. 

 

Definition 3.4:  Four control points  in the plane or in three-dimensional 

space define a cubic Bézier curve, the curve starts at  going toward and arrives at  

coming from the direction of , usually it will not pass through  or   , these points 

are only there to provide directional information, the parametric form of the curve is: 

 

(3.6) 

Definition 3.5:  Let  be a set of control points, a Bézier curve of degree n 

given by: 

   (3.7) 

can be expressed recursively as follows:  

Let  denote the Bézier curve denoted by the control points , 

then, 

 (3.8) 
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Figure 16:   For higher-order curves one needs correspondingly more intermediate 

points. For cubic curves one can construct intermediate points Q0, Q1 & Q2 that 

describe linear Bézier curves, and points R0 & R1 that describe quadratic Bézier curves. 

For fourth-order curves one can construct intermediate points Q0, Q1, Q2 & Q3 that 

describe linear Bézier curves, points R0, R1 & R2 that describe quadratic Bézier curves, 

and points S0 & S1 that describe cubic Bézier curves. 

 

Hence, the Bézier curve of degree n is a linear interpolation between two Bézier 

curves of degree n-1. 

Definition 3.6:  Let  be a set of control points of the Bézier curve, the 

polygon formed by connecting the Bézier points with lines, starting with  and finishing 

with  , is called the Bézier polygon. The convex hull of the Bézier polygon contains 

the Bézier curve. 

3.2.1 The Bernstein polynomials  

 

The Bernstein polynomials are a partition of unity, i.e. , hence 

Bézier curves are affine invariant. This is a direct application of the binomial theorem; 
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Definition 3.7:  The Bernstein polynomials  are defined such that  

for  .  

A point of the Bézier curve  is thus a weighted average of 

the points   .  

 

Definition 3.8:  The convex hull of the curve  is the set of all weighted averages of  

 . The Bézier curve thus lies in the convex hull of the points 

 , where the convex hull is defined by a polygon created from these 

points. 

While 2D objects require groups of line segments (polygons) for shape 

representation, 3D objects need all their surfaces represented.  Using data such as 

vertices, edges, and faces, polygons are represented. Polygons are made by many curves 

unified to make a closed curve.  Indented polygons are called concave, while polygons 

with no indentation are referred to as convex, Figure 17. 

  

 

Figure 17: Illustration of Concave (left) and convex (right) polygons. 
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Figure 18: Examples of Bezier curves fitting on the corpus callosum using the Bernstein 

polynomials of 50
th

 order. The fittings are not aligned with the original contours. 

 

 

3.2.2 Surface Mesh 

 

Polygons may be assembled together in groups to form surfaces called meshes.  

Surface modeling is usually represented by polygon meshes. Constructing a mesh is a 

major component in the modeling and analysis of shapes, especially in 2D and 3D. Even 

though quantification of changes in autistic vs. normal brains are best studied in 3D (thus 

requiring a meshing process for the 3D segmented volumes from MRI scans) our focus in 

this thesis is limited to 1D closed contours representing the Corpus Callosum; hence,   the 

issue of meshing will not studied further.  

 

3.3  Model-based Representation  

 

Model based representation of an object describes certain global or topological 

features included in the shape.  Global feature based methods include the global 

properties such as moments, distance vs. angle, Fourier Descriptors and spherical 
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harmonics. This thesis explores Fourier Descriptors in more detail.  Fourier Descriptors 

are a very powerful tool because, unlike other techniques, they are invariant to scaling, 

translation, and rotation because of their basis using the Fourier Transform. 

 

3.3.1 Fourier Transformation 

 

The Fourier transform (FT) is an operator which transforms a real variable, or 

function, in the time domain into another variable in the frequency domain. Hence, the 

Fourier transform if often called the frequency domain representation of the original 

function. This representation is fundamental in calculus and has been the basis of major 

developments in the theory and applications of signals and systems for over two 

centuries, and an enormous body of literature exists since its invention by Joseph Fourier 

in the turn of the 19
th

 century (e.g., [58]).  We will barely touch some of the basics of the 

Fourier transform in this chapter and focus on an aspect of it that has been very useful in 

shape analysis, namely the Fourier Descriptors.  

Let  be a complex valued function of a real variable in the time domain. In 

the continuous time, the Fourier transform of this function can be written as: 

    (3.9)   

The inverse Fourier transform can be described as 

 

   (3.10)   
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In the Discrete Fourier transform (DFT) the function are discrete variables. Let 

 is complex-valued function of real variables. The DFT of these 

functions can be represented as 

    (3.11) 

The inverse DFT can be written as  

    (3.12)  

In the next section, we define the Fourier Descriptors which is used in shape 

representation and many applications. 

3.3.2 Fourier Descriptor 

 

Fourier descriptors are representation of vertices of a polygon in terms of the 

basis functions of the discrete Fourier transform. It has been used for various applications 

of pattern recognition for over four decades (e.g., [59]-[63]).  Let � represents the 

number of points of a given shape. The initial points can be represented as z. The Fourier 

descriptors ({ }) are the coefficients of the Fourier 

transform of input points {( )}. The variables of the function can be 

as below. 

• �: The number of points of a given shape, (input). 

• M: The number of the Fourier descriptors you want to use (user selection). 

• L: The number of points needed to be reconstructed.  
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• : The reconstructed points where  

• : The given (original) points where  

• : The Fourier descriptors where k  

For a given closed contour, the points represented as , where 

, the points should be selected in a clockwise or counterclockwise 

direction [61] as shown in Figure 19. From the start and to the end point, we encounter 

the coordinate pairs  [63]. 

 

Figure 19: Point selection from a given closed contour (the image is adopted from [63]). 

The Fourier descriptor can be defined as 

    where  k  (3.13) 

The reconstructed points are calculated as  

 where  .  (3.14)  

 The number of the Fourier descriptor is not dependent on the number of the given 

and reconstructed points. It is related with how much information we want to reconstruct 
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from the given points. In the Fourier descriptor representation, the  coefficients around  

 (DC term) describe the low-frequency information. The high frequency information is 

carried in the coefficients around  and  terms. The Fourier descriptors at 

lower frequency represent the general shape, whereas the Fourier descriptors at higher 

frequency describe the details and sharp corners [59- 62].    

 

Example 1: Shape representation of the corpus callosum  

 In this experiment, we are given a closed contour of corpus callosum. Our aim is 

to obtain a shape representation using various number of the Fourier descriptor. When we 

begin with a low number of the Fourier descriptor, we obtained a general shape of the 

input contour. The more Fourier descriptor we use, the more details of the given shape 

we obtain. Because the  coefficients around   (DC term) describe the low-frequency 

information, the descriptors at low frequency contain the general information of the input 

data whereas the descriptors at high frequency contain the details. Figure 20 shows the 

results of the shape representation experiment. The variables of this experiment are 

shown below.  

•  ,: The number of points of a given shape, (input) = 416 

• M: The number of the Fourier descriptors used, e.g., 2, 4… 100. 

• L: The number of points reconstructed = 416. 
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Figure 20: Shape representation of the corpus callosum. Red and blue points represent 

the original contour and reconstructed contours. Reconstructions using 2, 4, 6 and 14 

Fourier descriptors from left to right, respectively. 

 

Hence, the Fourier Descriptors may be used as the feature describing the shape.  

We shall show in Chapter 4 that the statistics of these descriptors provides discrimination 

between the autistic and normal subjects.  

Example 2: Use of Fourier Descriptors for Interpolation 

 In this experiment, we are given a contour of corpus callosum which has some 

missing points. Our aim is to interpolate the missing points. The interpolated points are 

not perfect but it is very close to the original shape. In this experiment, we change the 

number of the Fourier descriptors, too. When the number of descriptors are high enough 

the closest contour is obtained as shown in the Figure 21. The variables of this 

experiment are shown below.  

•  ,: The number of points of a given shape, (input) = 350 

• M: The number of the Fourier descriptors you want to use = 

{2,4,…,30}. 

• L: The number of points needed to be reconstructed = 416 (can be 

any number). 
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Figure 21: Interpolation of the corpus callosum shape. Red and blue points represent the 

given contour (with missing points) and reconstructed contours, respectively. From left to 

right on both rows reconstructions using 2, 4,8,10,14,18,24, and 30 Fourier descriptors, 

respectively. 

 

Figure 22 shows other interpolation results of more difficult cases with missing data. 

 
 

 

 
 

 

Figure 22: Other interpolation results of more difficult cases. Red shows the initial 

points and blue shows interpolation results using 60 Fourier descriptors.  
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The above examples illustrate the power of the Fourier Descriptors approach for 

contour analysis. First report for its use with the corpus callosum as well as closed 

contours of inner parcelation of the White Matter of the human brain was in the CVIP 

Lab [64][65]. We extend this work further as described in Chapter 4.    

3.4 Summary 

 

In this chapter, we studied various approaches for shape representation. The 

terminologies of polygons were introduced and two approaches were studied in details 

for contour modeling, Bezier curves and the Fourier Descriptors. Both approaches form 

the basis of the experimentation on the real data used in this thesis.   
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CHAPTER 4 

 

SHAPE A�ALYSIS OF THE CORPUS CALLSOUM 

 

 

 

4.1 Introduction 

 

In this chapter we examine the effectiveness of the shape modeling approaches in 

Chapter 3 for the analysis of the corpus callosum. The Fourier Descriptors (FD) approach 

is invariant to translation, rotation and scaling; thus it is of immediate value for shape 

analysis. We will investigate the global changes among normal and autistic populations 

using the FD coefficients, and also the power spectrum. We may extract this information 

from the raw contours of the two populations, and we may also use the globally aligned 

contours.  The Bezier Patches approach is a parametric approach for connecting the 

vertices of a shape. The Bernstein polynomials are used in the fitting process. We have 

experimented with polynomials up to the 50
th

 order. The histograms of these coefficients 

are examined and used for classification. We will highlight these techniques after we 

describe the data which has been used to test the research in this thesis. 

 

4.2 Experimental MRI Data Set 

 

 The postmortem MRI data used in this study is described in detail in [30]. In 

order to optimize white-gray matter substance contrast in formalin-fixed brains, a proton 

density weighted imaging sequence was used. The method employed a 1.5 Tesla GE MRI 

system to scan brains that have been placed within a special device that avoids 

dehydration during the scanning procedure.  The scan time lasted an average of 50 
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minutes, 29 seconds. A Fast Spin Echo (FSE) technique with a long Repetition time (TR) 

of 6700ms and a short Echo time (TE) of 8.23 ms and an Echo train of 4, render coronal 

images with excellent gray-white matter contrast.  The technique allows the full coverage 

of brains with 114 slices, 1.6mm in thickness, with no inter-slice gap. A high resolution 

K-space data set consisting of 256 points in the phase and Zero-fill interpolation (ZIP) 

512 points in the frequency of both encode direction [30].  An in-plane resolution of 625 

microns X 312.5 microns, a field of view of 16cm x 16 cm, and a number of repeated 

excitations (NEX) of 7 with a bandwidth of 62.5 were used. These techniques 

demonstrate good results in samples that have been fixed for 6 weeks to 15 months 

(Schumann et al., 2001). All images were acquired with the same 1.5-T Sigma MRI 

scanner (General Electric, Milwaukee, Wisconsin) using a 3-D spoiled gradient recall 

acquisition in the steady state (time to echo, 5 milliseconds; time to repeat, 24 

milliseconds; flip angle, 450; repetition, 1; field of view, 24 cm2).  Contiguous axial 

slices, 1.5 mm thickness (124 per brain), were obtained.  The images were collected in a 

192x256 acquisition matrix and were 0-filled in k space to yield an image of 256x256 

pixels, resulting in an effective voxel resolution of approximately 1.0 x 1.0 x 1.5 mm[65]. 

Eight whole brains and six hemispheres coronal volumes of size 512x512x114 

were used. Each slice is 1.6mm thick with an in-plane resolution of 0.625x0.3125mm, on 

which the WM appears dark, the GM appears light, and the fluid appears brighter. Due to 

different factors including the removal of the brain from the skull and fixation problems, 

distortions such as large deep cuts, commonly occur and are revealed in the MRI scans.  
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In the experiments in this thesis we use the contours of the corpus callosum of 22 

autistic and 16 normal subjects from the sagittal  plane cross sections of registered brains 

(i.e., nearly same anatomical locations). These contours were obtained by co-registering 

the normal and autistic scans and using single slices from the registered volumes. Co-

registration can be performed by various techniques and contours were generated 

manually from the slices of the co-registered volumes.  

 

4.3 Corpus Callosum Representation 

 

4.3.1 Bézier Curves 

 

Corpus Callosum can be represented as a parametric curve which can be defined 

as follows. Let  be a set of points in the 2-dimensional Euclidean space, a 

corpus Callosum curve can be defined in terms of these points as: 

  (1) 

Where  are continuous functions defined on the interval .  The points 

 are called control point and  are called the basis functions of the 

curve .  

Curve generation/reconstruction can be thought of as an interpolation process 

where the control points are interpolated to generate points whose locus is the curve. The 

simplest form of interpolation is Lagrange interpolation; however it does not satisfy the 

convex hull property. Typically, we would like the curve to be more confined, i.e. the 

area of the convex hull of the curve should not be much greater than the area of the 

convex hull of the control points. Bézier curves are one of the most popular 
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representations for curves which satisfy convex hull property, it can be defined as 

follows: 

     (2) 

where the basis functions  are the Bernstein polynomials defined as follows: 

         (3) 

Bézier curves interpolate the end points  and  , that is it connects the end points in a 

fashion directed by in-between control points, which do not lie on the curve, this is called 

endpoint interpolation property.  

Figure 23 shows fitting of corpus callosum for various values of t. It is important 

that the reconstructed curves maintain the main features of the original data. In our case 

we wanted the Bezier curves to captures the general shape, perimeter/circumference and 

volume of the original CC contours. 

 
 

Figure 23: Fitting a Bezier curve to corpus callosum using different values of the 

parameter t. Upper (autistic CC) and lower (normal CC).  
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Convex Hull: 

It is a useful property to see if a curve lies within its convex hull which can be defined as 

follows: The convex hull of a corpus Callosum  is the smallest convex set containing , 

hence the convex hull of the set  is the set of points that are weighted averages of points 

in that set, thus; 

. 

Fig 24 shows the convex hulls of Bezier curves with different values of . 

 
Figure 24: Bézier curve of corpus callosum for autistics (left) and normal subject (right). 

Control points are shown in red, and the convex hull of the control points is shown in 

dashed-yellow line. The reconstructed points are obtained by sampling the parameter 

 at different resolutions; it is observed that the reconstructed curves are 

maintained within the convex hull of the control points. 

 

Bezier curves parameterized with respect to   

 

Equations (2) and (3) can be combined to express the Bezier curve a polynomial (explicit 

function in the parameter ) instead of a sum of Bernstein polynomials. Binomial theorem 

can be applied to the definition of the curve followed by rearrangement to yield, 
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        (4) 

where the coefficients for the expansion of Bernstein polynomials into powers of t are 

given as follows, 

         (5) 

Proof: 

Bezier curve can be defined in terms of Bernstein polynomials as follows, 

       (6) 

According to the Binomial theorem, it is possible to expand any power of  into a 

sum of the form, 

         (7) 

Hence we can expand as follows; 

 

Therefore, 

 

Thus, 

 

where, 
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Let , 

 

Thus, 

 

from the factorial rules, to evaluate  we need to have , hence the second 

summation should be upper bounded by , 

         (8) 

where, 

         (9) 

 

Hence, a corpus Callosum can now be represented in terms of the Bézier curve 

coefficients  for . Figure 25 shows the discriminatory power of the 

coefficients of Eq. (4) where we show the scatter plot of these coefficients for normal and 

autistic subjects. We can clearly see that the coefficients of the two classes form two 

distinct clusters. Cluster analysis methods may be used to enhance the discrimination 

between the two classes (e.g., [49]). 
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Next we will use these coefficients as features for designing classifiers.  
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Figure 25: scatter plot of the Bezier coefficients of the corpus callosum of autistic and 

normal subjects. 

 

4.3.2 Fourier descriptors 

 

Fourier descriptor represents the shape in terms of its spatial frequency content. The 

boundary/contour of a corpus callosum, which can be the control points or the 

reconstructed points for Bezier curve fitting, is represented as a periodic function which 

can be expanded using a Fourier series; hence we obtain a set of coefficients which 

capture the shape information. Let the corpus callosum be represented as a parametric 

curve  such that , by considering a complex image plane, we 

will end up with a one dimensional function  for 

. from which Fourier series expansion is obtained. Figure 20 (Chapter 3) 

shows examples of reconstructions of the corpus callosum using the Fourier Descriptors 

method. 

In this thesis, the Fourier descriptor of the mean autistic  and the mean normal  

corpus callosum are obtained used for classification. 
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4.4 Shape Alignment  

 

The corpus callosums of normal and autistic subjects need to be put on a common 

reference in order to exploits the discriminatory features in the two classes.  We 

employed the procrastes technique for shape alignment of the corpus callosum of normal 

and autistic data (other approaches, e.g., [38][40] would work as well). Figure 26 shows 

the contours and corresponding Bezier patches for 22 autistic subjects. Figure 27 shows 

the individual as well as the average contours of these patches.  

 
 

 

Figure 26: A sample of 22 corpus callosum contours of autistic subjects and their 

corresponding Bezier curve  fitting.  

 

 
 -15 -10 -5 0 5 10 15

-40

-30

-20

-10

0

10

20

30

40

 

 

Figure 27:  Individual and aligned Bezier contours for 22 autistic subjects and 

their average shape (red). Left shows row vertices, middle show the contours and left 

is the mean Bezier contour. 
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Figures 28-29 shows the corresponding results for 16 normal subjects in the 

experimental data set used in this thesis. In general, the overall shape topologies are 

similar in the two populations. Of course, a more detailed representation would be based 

on 3D volume meshes of the entire corpus callosum, or based a series of contours form 

the slices forming it. This thesis is focused on single slice evaluations from the sagittal 

plane cross section of the data described before. 

  

 

Figure 28: A sample of 16 corpus callosum contours of normal subjects and their 

corresponding Bezier fitting.  
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Figure 29:  Individual and aligned Bezier contours for 16 normal subjects and their 

average shape (red). Left shows row vertices, middle show the contours and left is the 

mean Bezier contour. 

 

4.5 Classification 

 

4.5.1 Feature Extraction 
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Let  be a set of , features which describe the contour of a corpus colosum , 

where  can be one of the following: (1) the coordinates of the contour control 

points , (2) the coordinates of the reconstructed Bezier 

curve  or (3) the coefficients of the fitted Bezier curve 

.  

Let  be an ,×A matrix for a training set with A autistic corpus 

colosums, and  be an ,×C matrix for a training set with C normal 

corpus colosums. The average autistic and normal corpus collosum are defined as; 

 and  respectively.  

 

4.5.2 PCA Modeling 

 

The zero-mean autistic and normal matrices can then computed as 

 and  

respectively. The ,×, covariance matrices  and  of the autistic and normal classes 

can be constructed as  and . The eigen-configurations are defined 

as the eigen vectors of the covariance matrices  and . Let and be the  be 

the most significant eigen-configurations which maintain 98% of data variability (i.e. 

with the largest eigen values). Thus an autistic corpus callosum    can be re-expressed as 

with , similarly a normal corpus callosum    

can be re-expressed as . See Figs. 30 and 31 for 

illustrations of the process. 
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Figure 30: Given a set of training autistic corpus callosum rigidly registered, a mean 

autistic CC is computed. The eigen-values spectrum of the covariance matrix of the zero-

mean autistic CC is shown where only 10 of them maintain 98% variability of the 

training data, eigen callosum which are the most significant eigen vectors of the 

covariance matrix are plotted (as directions of variations in xy-plane) with the mean 

autistic CC superimposed for visualization. 

 

Classification involves measuring the degree of similarity of a test or unknown 

corpus callosum and trained models of autistic and normal subjects; these models can be 

(1) Fourier descriptors of the mean shapes, (2) Fourier descriptors of the contour points 

(control or reconstructed points), (3) eigen-configurations of the contour points (control 

or reconstructed points) or (4) eigen-configurations of the Bezier coefficients.  

  We should point out the circumference of the corpus callosum of the two 

populations was quite distinct as shown in Table 1. In fact, for the set of data we used in 

this thesis, 100% classification rate was obtained based on using the circumferences. This 

was consistent whether we used the original contours or the Bezier curves. In practice, we 

may not always have non-intersecting contours of the corpus callosum and a single 
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feature classification based on the circumference alone may not be robust. This also could 

have added as a feature to the feature vector before using the PCA  

 

Figure 31: Given a set of training normal corpus callosum rigidly registered, a mean 

normal CC is computed. The eigen-values spectrum of the covariance matrix of the zero-

mean normal CC is shown where only 9 of them maintain 98% variability of the training 

data, eigen callosum which are the most significant eigen vectors of the covariance 

matrix are plotted (as directions of variations in xy-plane) with the mean normal CC 

superimposed for visualization. 

 

4.5.3 Distance classification 

 

The L2 norm is used such that: 

 and   (10) 

Hence,   iff . 

4.5.4 Bayes classification 

 

Bayes’ classifier is also used which can be described as follows. We can express 

variability in the probabilistic between autistic and normal classes as follows; consider 

corpus Callosum  to be a continuous random variable whose distribution depends on the 
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state of nature  and is expressed as    this is called the class (state)-

conditional probability density function, i.e. the probability density function for  given 

that the state of nature is . Therefore the difference between  and  

describes the difference in features between autistic and normal classes. The joint 

probability density of finding a pattern that is in category  and has feature value  can 

be written as follows:  , where  is the a 

priori probability,  is the posterior probability, i.e. the probability of the state of 

nature being   given that the feature value has been measured,  is 

the likelihood of  with respect to , and  is the evidence factor that can merely be 

viewed as a scale factor that guarantees that the posterior probabilities sum to one. 

Therefore, the Bayesian decision rule for minimizing the probability of error becomes as 

follows: Decide  if  otherwise decide . Equivalently;  Decide 

 if , otherwise decide . 
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Figure 32: Bayes’ classification applied on Bezier curve coefficients, the quadratic 

decision boundary is shown in red. 

 

4.5.5 The overall classification approach 

 

The overall process is summarized in Figure 33 below which describes the steps used 

for automatic classification on normal vs. autistic subjects using shape analysis of the 

corpus callosum. Given the sagittal MRI slice of a human's brain, the corpus callosum is 

segmented, then the contour is extracted via canny edge detection, this contour is then 

sampled to obtain the control points which are used to fit a Bezier curve after being 

rigidly registered to a reference corpus callosum. The Bezier curve points are then 

reconstructed by sampling the parameter t.  Throughout this process we obtained three 

types of features which describe a corpus callosum (1) the control points, (2) the Bezier 

curve coefficients and (3) the reconstructed points.  These features are then modeled 

using (a) PCA (b) Fourier descriptor and (c) probability density function (pdf). Minimum 

distance classifier is used for PCA-based and Fourier-based features while Bayes' 

classifier constructed using the trained classes pdf. 

 

Figure 33: Automatic classification of normal and autistic subjects from shape analysis 

of the corpus callosum (CC). The CC contours are obtained from T1-weigheted MRI 
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scans and represented by Bezier polynomials or using the Fourier Descriptors. A set of 

features is extracted and are used for classification. 

 

4.6 Results 

 

The following Table lists the results of the classifiers for different percentages of 

training and testing data from the 22 autistics and 16 normal contours. In terms of 

training percentages, it can be observed that the more data we have in our training set, the 

better results we achieve whether in autistic or normal cases. F or example, the Bayes' 

classifier has zero success rate in case of autistic class when we include only 25% of the 

autistic CC in the training stage, while this percentages shoots to 100% percentage when 

we increase the training data to 50%. 

Table 1: Performance of various classifiers for discrimination of normal and autistic 

subjects based on shape analysis of the corpus callosum contours 

 

  

Training 

Percentages 

Bayes’ Classifier 

Bezier 

Coefficients  

Control  

Points   

Reconstructed 

points  

Autistic 

Success 

Rate 

25% 0%  0%  0%  

50% 100% 0%  0%  

75% 100% 0%  0%  

Normal 

Success 

Rate 

25% 0%  68.75%  100%  

50% 100% 81.125%  100%  

75% 100% 93.75%  100%  

  

Training 

Percentages 

Fourier Descriptor PCA 

Bezier 

Coefficients  

Control  

Points   

Reconstructed 

points  

Bezier 

Coefficients  

Control  

Points   

Reconstructed 

points  

Autistic 

Success 

Rate 

25% 95.45%  68.2%  100%  82.35%  75%  100% 

50% 86.36%  68.2%  100%  100%  100%  100% 

75% 77.27%  90.9%  100%  100%  100% 100% 
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Normal 

Success 

Rate 

25% 12.5%  81.25%  0%  84.6%  100% 100% 

50% 31.25%  81.25%  0%  100%  100% 100% 

75% 43.75%  93.75%  87.5%  75%  100% 100% 

 It can be inferred from the table that the classification results of the reconstructed 

Bezier points after PCA modeling outperform other features for all training percentages, 

and this is consistent in case of the normal or the autistic class. on the other hand, the 

PCA modeling of the control points maintain similar performance however this is 

violated in case of 25% autistic training. Fourier descriptor behaves differently, where the 

control points perform better for the normal class while the reconstructed points perform 

better for the autistic class.  

 Finally Bezier coefficients provide a good performance for both classes when 

statistically modeled and used within the framework of a Bayes' classifier. 

 

4.7 Summary 

 

This chapter studied classification of autistic vs. normal subjects using shape analysis 

of the contours of the corpus callosum. The Bezier Curves as well the Fourier Descriptors 

were tested on real data of 22 autistic and 16 normal subjects. Both approaches provide a 

parametric fitting of the contours, thus enabling various modeling applications. We 

employed various classification approaches based on the features that hold the greatest 

discriminatory abilities. Our investigation shows the effectiveness of the Bezier curve 

representation for classification. Results also showed features based on the circumference 

of the contours, the Bezier curve coefficients and the Fourier Descriptors possess 

discrimination power to distinguish autistic and normal subjects.
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CHAPTER 5 

 

 

SUMMARY A�D POSSIBLE EXTE�SIO�S 

 

 

5.1  Summary 

 

This thesis dealt with shape analysis of the contours of the corpus callosum 

segmented from T1-weighted MRI data of autistic and normal subjects. The purpose of 

this research is to extract features from the MRI images to enable automatic 

discrimination of these two populations. The ability to perform this task is extremely 

important for early diagnosis of autism and in follow up of the effectiveness of therapy. 

The literature is quite rich in neuro-imaging research as applied to autism. To date there 

is no automatic approach to accomplish this task using neuro-imaging analysis. The 

premise of the thesis has been to validate what has been known to be factual about autism 

using robust features that can be the basis of automatic classification techniques. From 

this point of view, shape analysis approaches have been implemented and tested on real 

data. We highlight the major accomplishments below: 

• Parametric Models of the Corpus Callosum Contours 

Chapter 2 described the basic techniques used in image segmentation and 

registration. In particular, we focused on the level set methods and its implementation by 

Farag and Abdelmunim 2004 [37]. We used this algorithm to segment the corpus 

callosum and highlight the contours using edge detection methods. Intensity based 

registration using the minimum square error (MSE) distance, normalized correlation and 
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the mutual information techniques may be used to perform slice by slice registration of 

imaging data. 

The points in the contours resemble vertices of a polygon on which various shape 

analysis methods were implemented in Chapter 3. To study the interrelationship between 

populations, shape registration methods were studied in chapter 2 with a focus on the 

variational approach of Abdelmunim and Farag, 2007 [37], the ICP approach [50] and 

Procrustes technique [52]. 

Parametric shape models were studied in Chapter 3 with focus on the Bezier 

Curve and Fourier Descriptors methods. Both techniques enable continuous fitting of the 

corpus callosum contours, and the coefficient of the fitting may be used for classification. 

• Feature Extraction for Classification 

Chapter 3 and chapter 4 examined the ability of the Bezier Curve and the Fourier 

Descriptors methods to distinguish between autistic and normal subjects. The contours of 

the two populations were compared with respect to the mean curves for each class. 

Various classification methods have been devised based on the statistics of the 

coefficients, the circumference of the contours and the 3dB number of descriptors. In all, 

quite a large number of features may be extracted from these contours and compared with 

respect to the average of each population. 

• Validation on real data with known ground truth 

Chapter 4 tested the shape analysis methods on 22 autistic and 16 normal subjects. 

We show that the circumference of the contours and the Fourier Descriptors up to the 

3dB bandwidth lead to robust classification of the two populations. 
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� From the computational point of view, a complete system has been developed on 

Matlab which takes an MRI scan, segment the corpus callosum, outline its 

contour, co-register with respect to the average shape and make a decision with 

respect to similarity.  

� From a clinical point of view, we have developed simple metrics for classification 

that are based on solid mathematical foundation. The accuracy of these measures 

on a sample contour of autistics and normal subjects holds great promise. The 

availability of more clinical data, specially, high resolution MRI scans on 3T 

scanners would provide a much needed row data for testing and validating the 

classifiers. 

� From a learning point of view, considerable experience has been gained in 

numerical approaches for biomedical imaging analysis.  Working on a thesis 

project has cause me to think out problems in a much more connected forum of 

the various parts of my education than I ever experienced by just taking individual 

classes. The research has also been a direct application of the tools that I learned 

from ECE 643 “Biomedical Computing”, Spring 2009 and ECE 600 “Shape 

Analysis”, Summer 2009. 

 

 

5.2  Possible Extensions 

 

The extensions to this work are immediate and would include the following: 
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1. Using 3D data instead of single contours. Shape analysis may be performed as 

average of a number of contours (e.g., from the slices of the Corpus Callosum 

taken at a particular scanning plane). 

2. Use of more clinical data, especially high resolution 3T scans of autistic and 

normal subjects. 

3. Explore further the features that may be described from the Bezier Curves, and 

consider a decision fusion algorithm based on these curves and the Fourier 

Descriptors and test the algorithms using a larger number of control points.  

These ideas will be explored with Dr. Casanova and Dr. Farag at the CVIP Lab in order 

to devise the best approaches to explore further research on this very important subject. 
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