102,516 research outputs found

    A Kinetic Model for Toluene Oxidation Comprising Benzylperoxy Benzoate Ester as Reactive Intermediate in the Formation of Benzaldehyde

    Get PDF
    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down causing the benzyl alcohol concentration to reduce to zero only very slowly. To account for this phenomenon a new reaction pathway has been proposed where the formation of benzaldehyde out of benzylhydroperoxide is catalysed by benzoic acid. Incorporation of this new reaction in a model improves the description of benzyl alcohol concentration prophiles while maintaining good predictions for benzaldehyde and benzoic acid

    Effect of strain hardening on friction behavior of iron lubricated with benzyl structures

    Get PDF
    Sliding friction experiments were conducted with iron, copper, and aluminum in contact with iron in various states of strain. The surfaces were examined in dry sliding and with various benzyl compounds applied as lubricants. Friction experiments were conducted with a hemispherical rider contacting a flat disk at loads of from 50 to 600 grams with a sliding speed of 0.15 cm/min. Results indicate that straining increases friction for dry sliding and for surfaces lubricated with certain benzyl structures such as dibenzyl disulfide. With other benzyl compounds (e.g., benzyl formate), friction coefficients are lower for strained than for annealed iron

    Mechanism of Alkyl Migration in Diorganomagnesium 2,6-Bis(imino)pyridine Complexes: Formation of Grignard-Type Complexes with Square-Planar Mg(II) Centers

    Get PDF
    Dialkylmagnesium compounds [MgR2L2] (R = n-Bu, L = none or R = Bn, L = THF) react with 2,6-bis(imino)pyridines (BIP) to afford different types of Mg(II) alkyl complexes, depending on the nature of R. For R = n-Bu, thermally stable products resulting from selective alkyl transfer to the pyridine nitrogen (N1) atom are obtained. However, NMR studies showed that the reaction of [Mg(Bn)2THF2] with iPrBIP at −65 °C leads to a thermally unstable product arising from benzyl migration to position C2 in the pyridine ring. Above +5 °C, this compound rearranges, cleanly yielding a mixture of two isomeric complexes, in which the benzyl group has migrated to positions C3 or C4 of the central ring, respectively. Similar isomeric mixtures were obtained when [Mg(Bn)2THF2] was reacted with iPrBIP or MesBIP at room temperature. Such mixtures are thermally stable below 80 °C, but at this temperature, the 3-benzyl isomer converts into the thermodynamically favored 4-benzyl product, albeit not quantitatively. An alternate route was devised for the selective syntheses of the latter type of compounds. The X-ray diffraction structure of one of them provided an unusual example of a square-planar alkylmagnesium(II) center.Ministerio de Economía e Innovación CTQ2015-68978-

    Effect of the benzyl groups on the binding of H2 by three-coordinated Ti complexes

    Full text link
    Using first-principles calculations, we investigate the adsorption of H2 molecules on a three-coordinated benzyl-decorated titanium complex suggested in a recent experiment [Hamaed et al., J. Am. Chem. Soc. 130, 6992 (2008)]. Unlike the interpretation of the experimental results that the Ti(III) complex can bind five H2 molecules via the Kubas interaction, the Ti(III) complex cannot adsorb H2 molecules via the Kubas interaction. In contrast, a benzyl-released Ti(III) complex can adsorb up to two H2 molecules with a binding energy of ~0.25 eV/H2 via the Kubas interaction, in good agreement with the measurement of ~0.2 eV. The calculated occupation number of H2 molecules at 25 oC and -78 oC under 60 atm is 0.9 and 1.9, respectively, in good agreement with the measurement of 1.1 and 2.4 near the conditions, respectively. Our results suggest that the Ti complex in experiment might be a benzyl-released form.Comment: 11 pages, 3 figures, to appear in Phys. Rev.

    Antiplasmodial activity of p-substituted benzyl thiazinoquinone derivatives and their potential against parasitic infections

    Get PDF
    Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This paper describes a continuation of our ongoing efforts to investigate the effects against Plasmodium falciparum strains and human microvascular endothelial cells (HMEC-1) of a series of methoxy p-benzyl-substituted thiazinoquinones designed starting from a pointed antimalarial lead candidate. The data obtained from the newly tested compounds expanded the structure-activity relationships (SARs) of the thiazinoquinone scaffold, indicating that antiplasmodial activity is not affected by the inductive effect but rather by the resonance effect of the introduced group at the para position of the benzyl substituent. Indeed, the current survey was based on the evaluation of antiparasitic usefulness as well as the selectivity on mammalian cells of the tested p-benzyl-substituted thiazinoquinones, upgrading the knowledge about the active thiazinoquinone scaffold

    Electrocarboxylation in supercritical CO2 and CO2-expanded liquids

    Get PDF
    In this study, the electrocarboxylation of benzyl chloride in pressurized CO2, or pressurized mixtures of dimethylformamide (DMF) and CO2, was investigated in order to synthesize phenylacetic acid. A stainless steel cathode was used as the working electrode, whereas a sacrificial massive magnesium rod or a platinized platinum grid was used as the anode, tetrabutylammonium perchlorate (TBAP) or tetrakis(decyl)ammonium tetraphenylborate (TDATPhB) being the supporting electrolyte. The electrocarboxylation was carried out at 40 ◦C, at operating pressures of 1, 6, 7, 8, 9 and 12MPa, using current densities ranging from 0.1 to 150mAcm−2. It was found that a small amount of DMF was necessary to ensure the solubility of the supporting electrolyte, to obtain sufficient electrical conductivity of the medium. The best resultswere obtained using the magnesium sacrificial anode, at 6MPa. After consumption of the theoretical amount of electrical current (2F mol−1), 65.7% benzyl chloride conversion was reached, together with an 82.4% phenylacetic acid selectivity and a 54.2% faradaic yield. Detected by-productswere toluene, bibenzyle, benzyl alcohol and benzaldehyde

    Variation of benzyl anions in MgAl-layered double hydroxides: Fire and thermal properties in PMMA

    Get PDF
    Magnesium aluminum layered double hydroxides (MgAl-LDHs) intercalated with a range of benzyl anions were prepared using the coprecipitation method. The benzyl anions differ in functionality (i.e. carboxylate, sulfonate, and phosphonate) and presence or absence of an amino substituent. Various methods for preparing LDHs (i.e. ion exchange, coprecipitation and rehydration of the calcined LDH methods) have been compared with the MgAl-benzene phosphonate and their effect on fire and thermal properties was studied. After characterization, the MgAl-LDHs were melt-blended with poly(methyl methacrylate) (PMMA) at loadings of 3 and 10% by weight to prepare composites. Characterization of the LDHs and the PMMA composites was performed using FTIR, XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. FTIR and XRD analyses confirmed the presence of the charge balancing benzyl anions in the galleries of the MgAl-LDHs. Improvements in fire and thermal properties of the PMMA composites were observed. The cone calorimeter revealed that the addition of 10% MgAl-LDHs reduces the peak heat release rate by more than 30%

    Cloud point extraction of phenol and benzyl alcohol from aqueous stream

    Get PDF
    Two-aqueous phase extraction of phenol and benzyl alcohol as a solute from their aqueous solutions was investigated using polyethoxylated alcohols (CiEj) as a biodegradable non-ionic surfactant. First, the phase diagrams of the binary systems, water–surfactant (Oxo-C10E3 and Oxo- C13E9), and the pseudo-binary systems, water–surfactant with a constant concentration of solute was determined. The effect of sodium chloride and sodium sulphate on water–surfactant systems were studied. According to the given surfactants concentrations and temperatures, the extraction results were expressed by the following four parameters, percentage of extracted solute, E, which reached 95 and 90% for phenol and benzyl alcohol, respectively, residual concentrations of solute, Xs,w, and the surfactant, Xt,w, in the dilute phase and volume fraction of the coacervate at the equilibrium condition, φc. The values of these parameters were determined by an analyzing central composite designs. After the first extraction process, phenol and benzyl alcohol concentrations in the effluent were reduced about ten times for the first and four times for the second, correspondingly

    Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid

    Get PDF
    An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb and thermophoresis parameter Nt. It is found that the local Nusselt number is a decreasing function, while the local Sherwood number is an increasing function of each parameters Pr, Le, Nb, and Nt. Different from a stretching sheet, the solutions for a shrinking sheet are nonunique

    Interaction of some extreme-pressure type lubricating compounds with an iron surface

    Get PDF
    An iron surface was exposed to the extreme-pressure type lubricant benzyl chloride, dichlorophenyl phosphine, dichlorophenyl phosphine sulfide, ophenyl phosphine oxide. Iron, in the sputter-cleaned state, was exposed to these materials statically and during dynamic friction experiments. With benzyl chloride only chlorine adsorbed to the surface, and with dichlorophenyl phosphine no adsorption occurred, while the addition of sulfur to that same molecular structure resulted in the promotion of carbon and chlorine adsorption. substitution of oxygen for sulfur in the dichlorobenzyl phosphine molecule resulted in carbon, chlorine, and oxygen adsorption. With none of the phosphorus containing molecules was phosphorus detected on the surface. Sliding in an atmosphere of benzyl chloride promoted adsorption of chlorine to the iron surface. Increases in load resulted in a decrease in the surface concentration of iron chloride
    corecore