1,431 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Towards Energy Efficiency in Heterogeneous Processors: Findings on Virtual Screening Methods

    Get PDF
    The integration of the latest breakthroughs in computational modeling and high performance computing (HPC) has leveraged advances in the fields of healthcare and drug discovery, among others. By integrating all these developments together, scientists are creating new exciting personal therapeutic strategies for living longer that were unimaginable not that long ago. However, we are witnessing the biggest revolution in HPC in the last decade. Several graphics processing unit architectures have established their niche in the HPC arena but at the expense of an excessive power and heat. A solution for this important problem is based on heterogeneity. In this paper, we analyze power consumption on heterogeneous systems, benchmarking a bioinformatics kernel within the framework of virtual screening methods. Cores and frequencies are tuned to further improve the performance or energy efficiency on those architectures. Our experimental results show that targeted low‐cost systems are the lowest power consumption platforms, although the most energy efficient platform and the best suited for performance improvement is the Kepler GK110 graphics processing unit from Nvidia by using compute unified device architecture. Finally, the open computing language version of virtual screening shows a remarkable performance penalty compared with its compute unified device architecture counterpart.Ingeniería, Industria y Construcció

    Structural Pattern Recognition for Chemical-Compound Virtual Screening

    Get PDF
    Les molècules es configuren de manera natural com a xarxes, de manera que són ideals per estudiar utilitzant les seves representacions gràfiques, on els nodes representen àtoms i les vores representen els enllaços químics. Una alternativa per a aquesta representació directa és el gràfic reduït ampliat, que resumeix les estructures químiques mitjançant descripcions de nodes de tipus farmacòfor per codificar les propietats moleculars rellevants. Un cop tenim una manera adequada de representar les molècules com a gràfics, hem de triar l’eina adequada per comparar-les i analitzar-les. La distància d'edició de gràfics s'utilitza per resoldre la concordança de gràfics tolerant als errors; aquesta metodologia calcula la distància entre dos gràfics determinant el nombre mínim de modificacions necessàries per transformar un gràfic en l’altre. Aquestes modificacions (conegudes com a operacions d’edició) tenen associat un cost d’edició (també conegut com a cost de transformació), que s’ha de determinar en funció del problema. Aquest estudi investiga l’eficàcia d’una comparació molecular basada només en gràfics que utilitza gràfics reduïts ampliats i distància d’edició de gràfics com a eina per a aplicacions de cribratge virtual basades en lligands. Aquestes aplicacions estimen la bioactivitat d'una substància química que utilitza la bioactivitat de compostos similars. Una part essencial d’aquest estudi es centra en l’ús d’aprenentatge automàtic i tècniques de processament del llenguatge natural per optimitzar els costos de transformació utilitzats en les comparacions moleculars amb la distància d’edició de gràfics.Las moléculas tienen la forma natural de redes, lo que las hace ideales para estudiar mediante el empleo de sus representaciones gráficas, donde los nodos representan los átomos y los bordes representan los enlaces químicos. Una alternativa para esta representación sencilla es el gráfico reducido extendido, que resume las estructuras químicas utilizando descripciones de nodos de tipo farmacóforo para codificar las propiedades moleculares relevantes. Una vez que tenemos una forma adecuada de representar moléculas como gráficos, debemos elegir la herramienta adecuada para compararlas y analizarlas. La distancia de edición de gráficos se utiliza para resolver la coincidencia de gráficos tolerante a errores; esta metodología estima una distancia entre dos gráficos determinando el número mínimo de modificaciones necesarias para transformar un gráfico en el otro. Estas modificaciones (conocidas como operaciones de edición) tienen un costo de edición (también conocido como costo de transformación) asociado, que debe determinarse en función del problema. Este estudio investiga la efectividad de una comparación molecular basada solo en gráficos que emplea gráficos reducidos extendidos y distancia de edición de gráficos como una herramienta para aplicaciones de detección virtual basadas en ligandos. Estas aplicaciones estiman la bioactividad de una sustancia química empleando la bioactividad de compuestos similares. Una parte esencial de este estudio se centra en el uso de técnicas de procesamiento de lenguaje natural y aprendizaje automático para optimizar los costos de transformación utilizados en las comparaciones moleculares con la distancia de edición de gráficos.Molecules are naturally shaped as networks, making them ideal for studying by employing their graph representations, where nodes represent atoms and edges represent the chemical bonds. An alternative for this straightforward representation is the extended reduced graph, which summarizes the chemical structures using pharmacophore-type node descriptions to encode the relevant molecular properties. Once we have a suitable way to represent molecules as graphs, we need to choose the right tool to compare and analyze them. Graph edit distance is used to solve the error-tolerant graph matching; this methodology estimates a distance between two graphs by determining the minimum number of modifications required to transform one graph into the other. These modifications (known as edit operations) have an edit cost (also known as transformation cost) associated, which must be determined depending on the problem. This study investigates the effectiveness of a graph-only driven molecular comparison employing extended reduced graphs and graph edit distance as a tool for ligand-based virtual screening applications. Those applications estimate the bioactivity of a chemical employing the bioactivity of similar compounds. An essential part of this study focuses on using machine learning and natural language processing techniques to optimize the transformation costs used in the molecular comparisons with the graph edit distance. Overall, this work shows a framework that combines graph reduction and comparison with optimization tools and natural language processing to identify bioactivity similarities in a structurally diverse group of molecules. We confirm the efficiency of this framework with several chemoinformatic tests applied to regression and classification problems over different publicly available datasets
    corecore