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Abstract

Studyingmolecules and predicting their properties is an open problem in chemistry and drug
design. Using computers to perform those analyses is known as cheminformatics. It aims
to tackle the dimensionality problem and reduce the time and resources required to analyze
millions of molecules. Drug discovery and design require satisfying important safety and
efficacy objectives; therefore, it is inherently a multi-objective optimization process, making
machine learning and graph theory a standard tool in cheminformatics research.

Molecules are naturally shaped as networks, making them ideal for studying by employing
their graph representations, where nodes represent atoms and edges represent the chemical
bonds. An alternative for this straightforward representation is the extended reduced graph,
which summarizes the chemical structures using pharmacophore-type node descriptions to
encode the relevantmolecular properties. Oncewe have a suitableway to representmolecules
as graphs, we need to choose the right tool to compare and analyze them. Graph edit distance
is used to solve the error-tolerant graph matching; this methodology estimates a distance be-
tween two graphs by determining the minimum number of modifications required to trans-
form one graph into the other. These modifications (known as edit operations) have an edit
cost (also known as transformation cost) associated, which must be determined depending
on the problem.

This study investigates the effectiveness of a graph-only driven molecular comparison em-
ploying extended reduced graphs and graph edit distance as a tool for ligand-based virtual
screening applications. Those applications estimate the bioactivity of a chemical employing
the bioactivity of similar compounds. An essential part of this study focuses on using ma-
chine learning and natural language processing techniques to optimize the transformation
costs used in the molecular comparisons with the graph edit distance.

Overall, this work shows a framework that combines graph reduction and comparison
with optimization tools and natural language processing to identify bioactivity similarities in
a structurally diverse group of molecules. We confirm the efficiency of this framework with
several chemoinformatic tests applied to regression and classification problems over different
publicly available datasets.
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If youwish tomake anapple pie from scratch, youmust first

invent the universe.

Carl Sagan.

1
General introduction
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1.1 Virtual screening

Advances in experimental techniques for molecular analysis like High-throughput screening

and combinatorial chemistry have led to developing a broad catalog of chemical structures

and their corresponding bioactivities100,19. These structure-activity relationships form the

basis of a field known as cheminformatics, where scientists mine molecular datasets to create

predictive models to be used in the drug discovery pipeline66,50.

The average time for pharmaceuticals to bring a new drug to market is about 13 years128.

An essential first step in drug discovery is creating a pool of candidates for synthesis and char-

acterization; this is challenging since the space of possible molecules is vast and increasingly

growing89,134. The number of molecules synthesized is in the order of 108, while potential

drug-like molecules are estimated between 1023 and 1060 131. Having those numbers in mind,

it is evident the need for knowledge-guided virtual filtering and screening of compounds,

which help prioritize synthesis andwork as a complementary tool to high-throughput screen-

ing154,159.

Quantitative structure-activity relationship (QSAR) models are computational or math-

ematical models that attempt to find significant correlations between molecular structure

and molecular activity. With the massive increase in data on chemical compounds and their

reactivities thanks to high-throughput screening techniques, there is also a rising need for

computational tools to reduce the drug synthesis and test cycle execution times. These tools

are essential if activity data are analyzed and newmodels are created for virtual screening tech-

niques92.

Virtual screening – usually referred to as computational techniques to search and filter
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chemical databases147,5 – is a common step in the drug discovery process. Two main cate-

gories of methods can be found in the virtual screening inventory: structure-based virtual

screening (SBVS)82 and ligand-based virtual screening (LBVS)38. SBVS uses the 3D struc-

ture information of a target (obtained from X-ray, NMR, or some other method) to dock

a group of molecules into the binding site of a protein and estimate the likelihood that the

molecules will bind to the protein91,37. LBVS uses information about the known activity of

some molecules, activity in terms of their behavior as ligands binding to a receptor, to pre-

dict the unknown activity of newmolecules163. In this work, the focus will be only on LBVS

applications. Themain LBVS approaches are pharmacophoremapping163, shape-based sim-

ilarity88, fingerprint similarity, and various machine learning methods108. The concept of

molecular similarity is frequently used in LBVS contexts where the chosen measure of simi-

larity might determine the success or not of a virtual screening method.

1.2 The molecule

Understanding matter and its composition might be one of the oldest, most important, and

most complex challenges humanity has ever faced. This challenge can be traced back to the

pre-scientific Greek era, around the 5th century BC. At that time, philosophers started to

imagine the universe’s composition as made of atoms and voids. They described the funda-

mental elements like fire, earth, air, andwater and attracting and repulsing “forces” thatmake

the elements interact with each other.

Modernmaterials science and chemistry are primarily based on the need to devise and cre-

ate new molecules with specific desired properties; therefore, unraveling the working prin-

ciples of the molecular world is vital to understand the physicochemical properties and the
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reactivity of themolecules themselves. The atomic composition ofmolecules and themolec-

ular shape (i.e., the 3d shape of a molecule) significantly influence the molecule’s reactivity,

influencing features like boiling point, melting point, and ligand-binding properties for spe-

cific proteins.

The following section will discuss basic concepts and topics about the molecule, its struc-

ture, and its working mechanism.

1.2.1 What is a molecule?

Molecules can be considered the smallest fundamental unit of a chemical compound that

can participate in a chemical reaction; they can interact with one another by modifying their

structure and properties. Molecules aremade up of a group of atoms joined together by phys-

ical forces called chemical bonds. Those atoms are always in rapidmotion, makingmolecules

not static but dynamic entities, where atoms constantly change position, stretching back and

forth the chemical bonds.

There is a substantial range of different molecules, starting from just a few atoms up to

many thousands. Figure 1.1 shows the Atomic forcemicroscopy (AFM) image of amolecule

and its structural formula.

1.2.2 Molecular bonds

Bonds can be seen as the ”glue” holding together the atoms in a molecule; this ”glue” is

defined and managed by the shared electrons in different atoms. Molecular bonds can be

broadly classified into two groups: covalent bonds and non-covalent bonds.

Covalent bonds are, as a definition, the most critical type of bond since the molecule is
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Figure 1.1: AFM image of 1,5,9-trioxo-13-azatriangulene (TOAT) molecule and its structural formula. (Source: Wikime-
dia.)

Figure 1.2: A covalent bond in a hydrogen molecule. (Source: Wikimedia.)

technically defined as a group of atoms joined together by covalent bonds. They are themost

robust and most stable type of chemical bond, i.e., once they are created through a chemical

reaction, it requires a significant amount of energy to break them apart. This type of bond

involves sharing electron pairs between atoms, which means that in a pair of atoms with a

covalent bond, some electrons spend time moving around both atoms. Figure 1.2 depicts

the covalent bond involved in the making of the water molecule.

Non-covalent bonds are not as strong as covalent bonds, making themmore transitional

and changeable in time, constantly breaking and joining together with different atoms. This

kind of bond involves electromagnetic forces to tie atoms together, which areweak compared

to the electron sharing present in the covalent bonds.

Non-covalent bonds can be of different types; they include hydrogen bonds (see Figure
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Figure 1.3: Non-covalent (hydrogen) bonds between water molecules. Hydrogen bonds appear between the weakly
posi ve charge on the hydrogen atoms and the weakly nega ve charge on the oxygen atoms. Hydrogen bonds are
represented with a do ed line rather than a con nuous one since they are weak compared to covalent bonds. (Source:
Wikimedia.)

1.3), salt bridges, pi-stacking, among others. These bonds have an essential effect on de-

termining the shape of molecules and the way how they interact with one another. Non-

covalent and shape-dependent interactions are of paramount importance in drug design,

given that most drugmolecules interact with our biological molecules (in our body) through

non-covalent interactions.

1.2.3 Molecular graphs

Later in this document, we will make a more technical definition of a graph; for the time be-

ing, it is enough to say that a graph is amathematical data structure used to represent pairwise

relationships between objects. These graphs are made up of nodes (also known as vertices)

connected by edges (also known as links); check Figure 1.4 for an example. Graphs are used

to represent a broad diversity of structures like computer networks, letters, pixels in an im-

age, the shape of ridges in a fingerprint, and, more importantly for us, chemical structures

(see Figure 1.5).
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Figure 1.4: Example of a mathema cal graph. (Source: Wikimedia.)

Figure 1.5: Example of a diverse set of structures represented as graphs.
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Figure 1.6: Three different models of the benzene molecule. From le to right: Space-filling model; Ball and s ck model;
Graph nodes and edges model. (Sources: Wikimedia and Wikimedia.)

Molecules can be represented as graphs; the most straightforward way to do it is by using

nodes to represent the atoms in themolecule and using edges to represent the chemical bonds

between those atoms, as illustrated in Figure 1.6.

1.2.4 Chirality of molecules and stereoisomers

An object, shape, or structure is called “chiral” if it cannot be superimposed onto its mir-

ror image106; in other words, the object and its mirror image are distinguishable. Hands are

universally recognized chiral objects; the left hand is a mirror image of the right hand, which

cannot be superimposed, no matter how the two hands are oriented174. A sphere, for in-

stance, is “achiral” and cannot be distinguished from its mirror image, which alsomeans that

both images can be superimposed.

A chiral molecule has a non-superposable mirror image, and the most common cause of

molecular chirality is an asymmetric carbon atom29 (see Figure 1.7). The two mirror images

of a chiral molecule are usually called stereoisomers, and the information holding their dif-

ferences is called stereochemical information.

The 3D spatial distribution of the atoms relative to each other in a molecule is called

“molecular conformation”. A chiral molecule usually comes in two forms, one being the
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Figure 1.7: Chiral amino acid and its mirror image. (Source: Wikimedia.)

Figure 1.8: Axial chirality of an example compound. Note that the two chiral variants are labeled as “R” and “S”. “R” from
the La n “rectus” meaning right-handed and “S” from the La n “sinister” meaning le -handed.

mirror image of the other; those two forms are known as “right-handed” and “left-handed,”

as shown in Figure 1.8. In many experiments, distinguishing between the two versions of a

molecule is difficult, especially in computational models. For instance, themolecular graphs,

twographs representations obtained fromthe left and right-handed formsof a chiralmolecule,

are the same. Considering the chiral information of molecules gets more complicated as

molecules increase in size because the number of conformations they can take grows expo-

nentially with the number of atoms; therefore, the computational power needed to simulate

and analyze large molecules can be restrictive.
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To reduce the computational expense, the molecular representation and molecular com-

parison techniques used in this work do not envisage the use of stereochemical information

for molecules. Nevertheless, it should be possible to include this information since the 3D

location of each atom is available for all datasets used; thus, a reference for the position of the

neighbors for each atom should be possible to be established beforehand during the molec-

ular representation process.

1.3 Molecular similarity

It is assumed that structurally similarmolecules are likely to have similar activity properties84;

therefore, molecular similarity methods are commonly used to select suitable candidates in

the drug discovery industry. These similarity methods are used in applications related to

molecular clustering, similarity searching, or molecular screening12,122,181,95,180.

Regardless of the application, molecular similarity searching usually requires one descrip-

tor representing the molecules and a similarity or comparison measure to define the level of

similarity (or dissimilarity) between those molecules.

The purpose of featuring themolecule and creatingmolecular descriptors is to have amore

convenient numerical representation of themolecules, which can be readily applied tomath-

ematical models or learning algorithms, as illustrated in Figure 1.9.

Molecules are complex entities; as a result, researchers have created a varied group of differ-

ent techniques for featuring them. In the following two sections, we will dive into the prop-

erties of different molecular descriptors and the similarity methods used to compare them.
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Figure 1.9: Flowchart of a two-step molecular similarity searching process.

1.4 Molecular descriptors

Molecular descriptors correspond todifferentquantities ornumerical values describingphysic-

ochemical properties, structural information, behavioral treats, and some other possible fea-

tures describing the molecules. There is a more formal definition by Todeschini and Con-

sonni:

“The molecular descriptor is the final result of a logic and mathematical proce-

dure which transforms chemical information encoded within a symbolic repre-

sentation of amolecule into a useful number or the result of some standardized

experiment.”167

These descriptors are obtained from experimental measurements or theoretical symbolic

representations; they can come from different fields like quantum chemistry, graph theory,

organic chemistry, and information theory. They can be applied in different fields like tox-

icology, physical, pharmaceutical, or environmental chemistry153,182. Molecular descriptors

can be classified according to their “dimensionality”, referring to the molecular representa-
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tions fromwhich they are calculated. According to this classification, descriptors can be one

of the following types: one-dimensional (1D) descriptors, including bulk or whole molecu-

lar properties and physiochemical parameters like logP or molecular weight; 2D descriptors

such as structural fragments or connectivity indices. And 3Ddescriptors such as surface area,

molecular volumes, or spatial pharmacophores5,185,10.

1.4.1 One-dimensional descriptors

One-dimensional or whole molecular descriptors are general molecular properties derived

from experimental measurements using classical physics or chemistry; they include different

values such as molecular size, weight, logP, dipole moment, and polarizability109,129,148,98.

Molecular sizemeasures the volume a molecule occupies in the three-dimensional space;

the smallest one is the diatomic hydrogen (H2)46. Similarly,Molecular weight refers to the

mass of a given molecule. When working with macroscopic quantities of a substance, it is

common to use the molar mass instead, which is computed as the mass of the substance di-

vided by the amount of the substance, which in turn, is computed as the discrete number of

atomic particles divided by the Avogadro constant7.

LogP is derived from the partition coefficient, which is the ratio of the concentration of

a solution prepared with two solvents in a two-compartment system under equilibrium con-

ditions167. The concentration ratio is usually transformed into a logarithmic form, therefore

the LogP abbreviation. When the solution is preparedwithwater as a solvent, the LogP value

can be used to measure the lipophilicity or hydrophobicity of the compounds41,102, which is

essential information for the pharmaceuticals since it dictates the drug dissolution properties

inside the body177.
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Figure 1.10: Example of a molecule with dipole moment mo vated by nonuniform distribu ons of charges between the
atoms.

Dipolemoment (also known as electric dipolemoment) is an electric polarization descrip-

tor encoding information related to the charge distribution inside themolecule23, which can

be understood as the displacement of positive and negative charges in a molecule concerning

the center of gravity. Dipolemoments aremotivated by nonuniform distributions of charges

between the atomsdue to anunequal electrondensity distribution (see Figure 1.10). Adipole

moment equal to zero is called nonpolar and indicates a molecule with a center of symmetry;

any other molecule having a dipole moment different from zero is called polar167.

Similarly, polarizability (also known as static polarizability) is an electric polarization de-

scriptor encoding the tendency of a molecule, when embedded into a uniform electric field,

to acquire a proportional electric dipole moment167. Regardless of polar or nonpolar, any

molecule is polarizable, which means any molecule shows an induced dipole moment dif-
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ferent from zero and proportional to the electric field strength168. The molecular polariz-

ability can be approximated as the sum of the atomic polarizabilities over all the molecule

atoms168; those atomic contributions to polarizability were before estimated by several au-

thors85,114,124,167.

These whole-molecular descriptors are more valuable in some cases than others; they will

likely work better when trying to predict molecular behaviors relying on the generic prop-

erties of the molecules. Still, they will probably not be as much used to predict molecular

behaviors relying on the specific arrangement of atoms. The descriptors in the following sec-

tions will be more helpful in those latter cases.

1.4.2 Two-dimensional descriptors

This descriptor creates array representations of themolecules by simplifying the atomic infor-

mationwithin them; a typical exampleof suchdescriptors ismolecular fingerprints11,45,101,105.

Fingerprints

Molecular fingerprints are substructure descriptors generating a bit vector (or count vector)

encoding 2D and/or 3D information about the molecule’s structure to represent molecules

asmathematical objects, particularly suitable for informatic treatment inmachine learning or

statistical analysis167. Fingerprints often aremade up of binary digits (1s and 0s) representing

the presence or absence (in some cases, the frequency) of certain substructures or features in

the molecule, as illustrated in Figure 1.11.

Most fingerprint implementations take molecules of different sizes and encode them into

fixed-length vectors (typically between 1K and 4K bits). This fixed-length is a helpful ad-
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Figure 1.11: Encoding of a molecule into a binary fingerprint.

vantage because many computing models, such as those in machine learning, are built to

work with inputs having the same size. Whereas traditional fingerprint vectors represent the

presence or counting of structural fragments in each bin of the vector, some other implemen-

tations hash the counted information into vectors of a predefined length (number of bins).

Therefore in some cases, the same bin may encode information from different fragments167.

Some examples of well-known fingerprint implementations are atom pairs (AP)36, topo-

logical torsion (TT)123, binding property pairs (BP)86, MACCS101,51, Fragment-based Day-

light45, and Extended-connectivity fingerprints (ECFPs)140.

Atom pairs (AP) are built using substructures of the form:

atom type i - (distance) - atom type j

where (distance) represents the distance between “atom i” and “atom j” along the shortest

path, it is expressed in terms of the number of bonds. The distance representation is per-

formed for all pairs of non-hydrogen atoms in the structure of the chemical compound, and

the description for each atom embeds the chemical type, the number of non-hydrogen atoms

attached to it, and the number of π electrons that it bears36 (see Figure 1.12).

For a molecule with n atoms, we will obtain n(n − 1)/2 atom pairs. As it is expected,

generally, not all of the atom pairs are unique, even though only the presence of an atom pair

36

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL PATTERN RECOGNITION FOR CHEMICAL-COMPOUND VIRTUAL SCREENING 
Carlos Jesús García Hernández 



Figure 1.12: Encoding of a molecule into its AP representa on. The atom type is obtained employing the chemical type,
the number of non-hydrogen neighbors, and the number of π electron pairs.

is considered later for the comparison process and similarity computation.

A Topological torsion (TT) works similarly to AP, but it encodes the information from

a linear sequence of four consecutively bonded non-hydrogen atoms123. Each TT is of the

form:

atom type i - atom type j - atom type k - atom type m

where i, j, k, and m are consecutive atoms. The description for each atom in the sequence

includes its atomic type, thenumberofnon-hydrogenbranches attached to it, and its number

of π electron pairs123 (see Figure 1.13).

As reported by the authors, the combination of AP and TT descriptors may magnify the

information obtained from the molecular topology; hence, using them together might en-

hance the performance significantly in the molecular virtual screening process123.

Binding property pairs (BP) are an extension of the AP; they are built similarly, except

that the atom type is described differently. In BP, the non-hydrogen atoms are assigned to
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Figure 1.13: Encoding of a molecule into its TT representa on. The atom type is obtained employing the chemical type,
the number of non-hydrogen neighbors, and the number of π electron pairs.

one of the following seven binding property types86:

1. cations

2. anions

3. neutral hydrogen bond donors

4. neutral hydrogen bond acceptors

5. polar atoms (both donor and acceptor, e.g., hydroxy oxygen)

6. hydrophobic atoms

7. other

The difference between AP and BP is illustrated in Figure 1.14.

MACCS is a keys-based fingerprint, which means that the algorithm tries to describe the

compounds depending on certain substructures or features in the molecule (Figure 1.15).

The presence of the substructures is matched with a given list of structural keys. The most

commonly used version of MACCS uses a list of 166 structural keys based on SMARTS

patterns, as exhibited in Table 1.1.

Fragment-based Daylight is the most commonly used among the topological or path-

based fingerprints; similarly to TT, it analyses molecular fragments in the molecule built by

following linear paths of consecutively connected atoms up to a certain number of bonds
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Figure 1.14: Encoding of a molecule into its AP and BP representa ons.

Figure 1.15: Illustra on of a hypothe cal 10-bit substructure fingerprint. Each bit set is associated with the substructure
marked with the circle.
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Figure 1.16: Encoding of a molecule into its fragment-based Daylight fingerprint representa on.

(see Figure 1.16). TheDaylight fingerprint checks all possible connectivity pathways starting

from each atom in the molecule and up to a given length; later, the algorithm encodes this

information in a hashed bit array up to 2048 bits. Hashed fingerprints often can identify

different features with a single bit in the array; this is called “bit collision”. The hashed fin-

gerprint array is adjusted in length according to the specific needs of the study, where shorter

arrays are faster to compute and compare, but they also are more prone to bit collisions.

Extended-connectivity fingerprints (ECFPs), also known asMorgan, are themost com-

monly used circular fingerprints. They also are hashed topological fingerprints using a similar

approach to that fromDaylight fingerprint, but building the fragments within a circular ra-

dius for each atom in themolecule instead of doing it with linear pathways. ECFPs are based

on the Morgan algorithm117. They are intended to represent the atom’s circular neighbor-

hoods in different sizes of diameter. Still, the most commonly used value for the diameter is

4 (also known as ECFP4), which allows sub-fragments to have a radius of two bonds around

a central atom (see Figure 1.17).

The atom descriptors in ECFPs are created for each atom in an iterative process, first in-
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Figure 1.17: Illustra on of 3 steps in the ECFP itera ve process for one atom of a compound.

Figure 1.18: Hashed ECFP values for each atom in a compound during the ini al itera on.

cluding only the information of the central atom (see Figure 1.18), then adding the informa-

tion from the 1-bond-distance neighbor atoms, then the 2-bonds-distance neighbors, and so

on up to the specified radius value. This information is condensed and hashed into an integer

during each iteration (see Figure 1.19). The properties taken into account during the process

are the number of immediate non-hydrogen neighbors atoms, the valenceminus the number

of hydrogens, the atomic number, the atomic mass, the atomic charge, and the number of

attached hydrogens, and a 1 or 0 representing whether the atom is contained in at least one

ring or not.

Since this type of fingerprint encodes a large amount of information about the molecule,

Figure 1.19: Genera on of new hashed ECFP values by performing one itera on using an example compound. The
ini al atom iden fiers are shown on the le . Each atom receives a new iden fier a er the update, shown on the right.
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Donor
[([N; !H0; v3, v4&+ 1]),
([O, S;H1; +0]),
n&H1&+0]

Acceptor

[([O, S;H1; v2; !(*-*=[O,N,P,S])]),
([O, S;H0; v2]),
([O, S;−]),
([N; v3; !(N-*=[O,N,P,S])]),
n&H0&+0,
([o, s; +0; !([o,s]:n);!$([o,s]:c:n)])]

Aromatic [a]
Halogen [F,Cl,Br,I]

Basic

[#7;+,
([N;H2&+ 0][([C,a]);!([C, a](= O))]),
([N;H1&+ 0]([([C,a]);!([C, a](= O))])[([C,a]);!([C, a](= O))]),
([N;H0&+ 0]([C; !(C(=O))])([C;!(C(= O))])[C; !(C(=O))])

Acidic [$([C,S](=[O,S,P])-[O;H1,-1])]

Table 1.1: List of SMARTS pa erns used to iden fy the pharmacophoric features in ECFPs. Adapted from previous
work 70. (Source: RDKit.)

two different molecules can have identical fingerprints due to bit collisions and hashing pro-

cesses; in that case, it is impossible to identify the single-molecule where the fingerprint is

coming from.

ECFPs can be extended to include as well the pharmacophoric functional information for

the atoms; one example of this is the FCFPs (Functional-Class Fingerprints), used to identify

the pharmacophoric features; the algorithm uses a list of structural keys based on SMARTS

patterns as exhibited in Table 1.1

In general, fingerprints combine several valuable features: they are fast to compute, uses

a small space in memory, and are also relatively easy to compare since we just need to take

the vector arrays for two molecules and compare corresponding elements bit by bit, where

more similar molecules are supposed to have more elements in common. However, expe-
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rience shows that finding the best type of fingerprint for a specific application (e.g., virtual

screening) depends strongly on the data set.

Fingerprints may include important information about the molecule’s composition but

contain limited information about its structure and shape.

1.4.3 Three-dimensional descriptors

3D descriptors use the 3D molecular representations to calculate specific properties such as

solvent-accessible surface area, molecular volume, and spatial pharmacophores78,13.

Solvent-accessible surface area (SASA) aims to improve the van der Waals surface, com-

puted based on van der Waals radius cutoffs for individual atoms21. SASA is defined as the

molecule’s surface area accessible to a solvent; it was initially defined by Lee and Richards96.

For thosemolecules with several small cavities or folding parts, inaccessible to solvent interac-

tions, the SASA will be significantly different from the van der Waals surface167, as depicted

in Figure 1.20.

Molecular volume represents the quantity of three-dimensional space enclosed by the re-

gion where a molecule is confined; it is often computed as the volume of a substance divided

by the amount of substance at a given temperature and pressure. It is worthy to notice that

the molecular volume comprises both the inherent molecular volume and the volume of the

space between molecules167.

Onemethodcomputes themolecular volumebydefining a set of spheres around the atomic

nucleus for each atom depending on their type64. Another method is based on the covalent

bond distances and the van der Waals radius to calculate van der Waals volume21; as the au-

thor says, the volume is approximated by adding all the appropriate volume contributions of
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Figure 1.20: Solvent-accessible and van der Waals surface areas in a hypothe cal molecule.

atoms and functional groups.

To understand the molecular structure and behavior, the information extracted from the

surface area and volume is beneficial; it dictates, for instance, how the molecules bind to lig-

ands in the proteins or how molecules interact with other molecules. This relationship is

probably because the surface and the volume are directly correlatedwith themolecule’s shape.

A spatial pharmacophore is defined as the 3D arrangement or the spatial configuration

of certain features which allow a ligand molecule to interact with a biological target receptor

in a specific binding site48. Pharmacophore features often include aromatic rings, hydrogen

bond acceptors or donors, hydrophobic centroids, anions, and cations.

A pharmacophore can be seen as the largest common feature shared by a set of active

molecules towards a target structure; it does not represent an actual association of functional
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Figure 1.21: Example of a pharmacophore model of the benzodiazepine binding site on the GABAA receptor. White
s cks represent carbon atoms of the benzodiazepine diazepam, while green represents carbon atoms of the nonbenzo-
diazepine CGS-9896. Red and blue s cks indicate oxygen and nitrogen atoms in both structures. Red spheres H1 and
H2/A3 represent hydrogen bond dona ng and accep ng sites in the receptor. L1, L2, and L3 denote lipophilic binding
sites. (Source: Wikimedia.)

groups neither an actual molecule. It is an abstract concept for the typical molecular interac-

tion capacity among a set of active compounds167. In other words, it is possible to identify

a pharmacophore by analyzing a set of active molecules that experimentally showed interac-

tions with the target receptor48. Figure 1.21 illustrates an example of the pharmacophore-

receptor binding interaction.

On a final note, some comparative studies have shown that 2D descriptors such as finger-

prints can bemore effective than 3Ddescriptors at identifyingmoleculeswith similar features

and similar activity27,28,103? . Therefore, during this study, wewill compare our resultsmainly

with fingerprint-based methods.
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1.4.4 Graph-based descriptors

Additionally to the classification mentioned before, there exist methods representing com-

pounds as graphs164,8,161. Those methods often start from the plain atomic graph represen-

tation and modify the graphs to suit their specific needs and purposes.

We described the Atomic graph representation in section 1.2.3; it is often built using

nodes to represent atoms and edges representing chemical bonds between those atoms as

they appear in the original molecule. An example can be seen in Figure 1.6.

Reduced graphs

Atomic graph representations allowcustomizations tohighlight certain features in themolecules.

Those modifications often include grouping together some connected nodes, sub-structure

fragments, ring systems, acyclic components, among others, and substituting them for single

nodes to create a new graph. Those methods are known as reduced graphs55,67,69,161; they

group atomic sub-structures in terms of related properties such as pharmacophoric features,

hydrogen bonding, ring systems, or other rules.

Reduced graphs are smaller representations of the original atomic graph from a chemical

compound; they are smaller since the preliminary information is condensed in feature nodes

to give summary abstractions of the chemical structures. Different versions of reduced graphs

exist10,67,80,8,161; the main difference relies on the features they summarize and their use. In

the ligand-based virtual screening context, the structures are reduced to track down features

or sub-structures that can interact with a specific receptor or target from a protein. At the

same time, the reduction aims to keep the topology and spatial distribution of those features

since the edges are kept connecting the same substructures as they were in the original graph.
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Figure 1.22: Example of a Markush structure and its reduced graph representa on using a ring/non-ring reduc on
scheme.

Reduced graphs are used in themolecular analysis for different applications, ranging from

the study of Markush structures68,67, where substitutes are sought to replace chemical sub-

structures connected to a common structural feature or central core (see Figure 1.22). Up to

the detection of structure-activity relationships (SARs) among molecules. It is SARs where

our work will be focused on.

Figure 1.23 depicts examples of different possible graph reductions for the same molec-

ular graph. The examples in the figure aim to emphasize the binding features within the

structures; consequently, the reductions illustrated are oriented toward ring systems and

hydrogen-bond groups to create either Ring/Feature reduced graphs or Aromatic/Feature

reduced graphs.

Since reduced graphs condense the information in the atomic graph, there is a many-to-

one correspondence between atoms in the atomic graph and nodes in the reduced graph. In

other words, more than one atomic graph could translate into the same reduced graph; figure

1.24 shows an example of such situations.
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Figure 1.23: Example of different types of reduced graphs obtained from the same molecule. (a) nodes represent ring
systems (R) and acyclic components (Ac). (b) nodes represent carbon components (C) and hetero-atom components (H).
(c) nodes represent aroma c rings (Ar), alipha c rings (R), and func onal groups (F). (d) nodes represent aroma c rings
(Ar), func onal groups (F), and linking groups (L).

Figure 1.24: Example of several chemical structures that reduce to the same reduced graph based on aroma c rings (Ar)
and func onal groups (F).
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Extended reduced graphs (ErG)

ErGs161 are an extension of the reduced graphs described by Gillet et al.69, which, accord-

ing to the authors, introduce some changes to better represent the size, shape, and pharma-

cophoric properties of the molecules. Some of the extensions in the ErGs compared with

the reduced graphs include: rings are encoded as ring centroids, and ring atoms are encoded

as separate nodes; charged and hydrophobic features are encoded explicitly; resulting feature

nodes are connected following the shortest path between the reference nodes in the original

chemical graph.

In ErGs, nodes can be a single or a combination of the following features: hydrogen-bond

donor, hydrogen-bond acceptor, positive charge, negative charge, hydrophobic group, or

aromatic ring system. There are also featureless nodes, whichwork as links between themain

features and help them keep their spatial distribution. These featureless nodes can be carbon

or non-carbon link nodes. Figure 1.25 depicts the step-by-step process to convert a molecu-

lar compound to its corresponding ErG. Even though the resulting graph from ErG is more

complex than the reduced graph, the inter-feature distances between nodes and the 3D posi-

tional representation are more accurate than the original molecular graph17. An example of

how the ErG references the positional information from the original molecule is illustrated

in Figure 1.26.

In the specific context of ErGs, the fingerprint descriptor used by Stiefl et al. is based on

the method used by Kearsley et al. for their binding property pairs86, which, in turn, is an

extension of the atom pairs described by Carhart et al.36.

ErGs have been demonstrated to be a powerful tool for virtual screening161; they can be

used as an abstraction layer from the complex physicochemical-atomic world and leave the
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Figure 1.25: Example of the reduc on of a chemical graph into its ErG representa on as described by S efl et al. 161 (D)
H-bond donor; (Ac) H-bond acceptor; (Hf) hydrophobic group; (Ar) aroma c ring system; (+/-) posi ve/nega ve charge.

Figure 1.26: Spa al inter-feature distances in Angstrom (Å) of an example molecule.
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path clear to work directly with the pharmacophoric chemical information inside the molec-

ular structures.

The resulting ErG from a molecule can be encoded into a fingerprint descriptor, as it was

used in the original work by Stiefl et al.161, or into a graph-descriptor obtained directly from

the reduced graph after the ErG reduction. Thefingerprint descriptor presented by Stiefl et al.

uses only the property points or nodes with assigned features. As the authors point out, this

methodology can be described as a hybrid approach between reduced graphs69 and binding

property pairs86 (mentioned before in section 1.4.2), with the distinction that in this case,

the point pairs are built using substructures of the form:

Property Point 1 - (distance) - Property Point 2

where the inter-feature distances are computed from the reduced graph.

The graph descriptor instead uses the graph representation obtained as an outcome after

applying the ErG reduction to the originalmolecular graph, as illustrated in Figure 1.27. The

Figure exhibits an example of an ErG reduction where the upper half of the image shows a

chemical molecule with its pharmacophoric substructures highlighted; the lower half shows

the ErG obtained from thatmolecule. This graph descriptor is the preferred option through-

out this work since our primary comparison method is based on a graph matching method-

ology.

1.5 Similarity measure

The concept of molecular similarity refers to the pairwise comparison among chemical com-

pounds or molecules; it can be in terms of physical properties, behavioral qualities, or struc-
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Figure 1.27: Example of molecule reduc on using ErG. The original molecule is at the top, and its ErG representa on
is at the bo om. Ac: H-bond acceptor; Hf: hydrophobic group; Ar: aroma c ring system; +: posi ve charge. Colors are
used to show how different parts of the original structure are reduced to nodes in the ErG.
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tural features. This concept is of utmost importance in virtual screening, drug design, bioac-

tivity prediction, and cheminformatics84,122. These applications are based on the principle

stated by Johnson andMaggiora, saying that structurally similar molecules are likely to have

similar properties84. Therefore, they are commonly used in the drug discovery industry to

find drug candidates and perform scaffold hopping26. Scaffold hopping is an area of virtual

screening focused on identifying molecules with similar activity but belonging to different

lead series; it is helpful, especially when we need to pinpoint compounds with a particular

behavior while staying away from a patent space.

The first works related to molecular similarity searching were developed using fragment

bit-strings as a tool for substructure search36,183. Ever since thebeginningofmolecular screen-

ing in the 1980s, significant efforts have been made to create new and better descriptors to

describe molecules in a way that correctly represents their activity and properties. One of

the major challenges in the molecular similarity search is choosing a suitable descriptor for

a particular task; research is ongoing into new methods for measuring molecular similarity,

mainly because of the difficulty to describe the relationship between the complex chemical

space and its biological activity. In this study, we work with two different descriptors based

on the ErGs, the first one is the graph obtained after the reduction and the second one is the

fingerprint obtained as described by Stiefl et al. in their article161.

Once the descriptor has been decided, it is time to decide on themost convenient similarity

measure to compare such descriptors depending on the applications and needs of the study.

Three similarity measures have been used to perform reduced graph comparisons: The first

one (FP-based) maps the reduced graphs into a 2D fingerprint69,10,161; the second one (SED-

based) maps them into sets of shortest paths80; the third one (Graph-based) makes the com-
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parison directly on the graphs via the graph edit distance method61. These three similarity

measures are used in this study, so let us introduce each of them:

1.5.1 FP-based method

Generally speaking, fingerprint-based methods encode the molecular structure into a vector

array called a fingerprint (see Figure 1.28). Each bin denotes the presence or absence of a par-

ticular feature in a fragment of the molecule. Then, the similarity between two molecules A

and B is computed by comparing their fingerprints with ameasure or intersection coefficient

to find matching elements in both arrays since it is assumed that similar molecules tend to

have a greater number of fragments in common. The most commonly used similarity mea-

sure when comparing compounds represented through their fingerprints is the Tanimoto

coefficient, also known as the Jaccard index or Intersection over Union, exhibited in Equa-

tion 1.1.

Ts(A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A|+ |B| − |A ∩ B|
(1.1)

whereA∩B stands for the intersection andA∪B is the union of the bins in the fingerprints

A and B. Furthermore, |A| and |B| represent the number of non-empty bins in sets A and B.

The resulting value goes from 0 to 1, with 1 representing the highest degree of similarity.

Aswementionedbefore, in thefingerprint descriptor presented by Stiefl et al., the property

pairs are built using substructures of the form:

Property Point 1 - (distance) - Property Point 2

where the inter-feature distances are computed from the reduced graph.
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Figure 1.28: Fingerprint-based method flowchart

The resulting descriptor vector then encodes, for each bin, a specific property-property-

distance triplet. This bin is incrementedby a factor every time a corresponding triplet is found

in the structure under study. The increment factor is a user-definable parameter, which can

be set depending on the dataset traits and user needs. Our experiments used the default value

(0.3) for this factor.

DifferentTanimoto similarity coefficients canbe applied depending on the type of descrip-

tor being binary or algebraic. The summation form is used for ErG descriptors (Equation

1.2).

Ts(A,B) =

m∑
i=1

nA,inB,i
m∑
i=1

(nA,i)2 +
m∑
i=1

(nB,i)2 −
m∑
i=1

nA,inB,i
(1.2)

where m is the size of the ErG vector, nA,i is the ith entry of the vector in compound A,

and nB,i is the ith entry of the vector in compound B.
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Figure 1.29: SED-based method flowchart

The computation of the ErG reduction and the Fingerprint-based similarity value pre-

sented in this study uses the RDKit132, an open-source cheminformatics toolkit made avail-

able under the Berkeley Software Distribution (BSD) license.

1.5.2 SED-based method

Harper et al.80 proposed a string edit distance procedure to quantify the similarity between

reduced graphs (Figure 1.29); the distance between two reduced graphs A and B is calculated

as the cost of transforming one graph into the other by substituting, inserting, and deleting

nodes. Different node operations can yield different transformation costs. For instance, for

Harper et al., the substitution of a “donor” to a “donor and acceptor” nodewas assigned a low

cost since they seemed to be more closely related than a “donor” and a “negatively ionizable

group”, whose substitution was assigned a high cost. It is important to emphasize that the

edit costs used for node operations by Harper et al. were based on intuition only.
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Figure 1.30: String edit distance process to convert one path from graph A into one path from graph B. The total edit
distance is 3 based on the subs tu on and inser on/dele on costs presented on the right side of the image.

The graph transformation is performed by comparing the shortest paths between terminal

nodes (nodes of degree one) in graphsA andB. This type of string edit distancemethodology

is commonly used in computational biology to compare sequences by counting the number

of edit operations required to go from one sequence to another. The distance between two

reduced graphs is the maximum value obtained from the minimum costs after all paths have

been compared in A and B.

Figure 1.30 illustrates the string edit distance methodology. On the left side of the image,

we can see the step-by-step procedure to convert one path from graph A into one path from

graph B; the substitution costs and the insertion/deletion costs are located on the right side

of the image.

The SED-based similarity value presented in this study is computed with an in-house im-

plementation that uses C++ and Python languages, following the steps described by Harper

et al.80.
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Figure 1.31: Comparison of two molecules comprising two steps. First, we extract the ErGs. Second, we apply the GED.

1.5.3 GED-based method

Figure 1.31 shows amolecular comparisonprocedureusing theGED-based similaritymethod.

The GED is defined as the minimum cost of modifications required to transform one graph

into the other (see Figure 1.32). These modifications are called edit operations, and six of

them have been defined: insertion, deletion, and substitution of both nodes and edges. The

idea is similar to the SED-based presented before. Still, in this case, the transformation is car-

ried out directly on the graphs instead of doing it on the sequences obtained from the short-

est paths between terminal nodes. As shown in Figure 1.33, using a methodology applied

directly over graphs allow us to skip the step to convert those graphs into 2D representations

such as fingerprints or shortest paths.

In this way, for every pair of graphsA and B, there are several editPath(A,B) = (σ1, ..., σk)

that transform one graph into the other, where each σi denotes an edit operation.

Figure 1.34 shows a possible edit path holding the transformations necessary to go from
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Figure 1.32: Step-by-step GED transforma ons to go from g1 to g2.

Figure 1.33: Molecular comparison flowcharts. Difference between tradi onal ErG methods and our proposal
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Figure 1.34: An edit path that transforms graph A into graph B

graphA to graphB; it consists of the following five edit operations: Delete edge, Delete node,

Insert node, Insert edge, and Substitute Node. The substitution operation in the last step is

needed since it is assumed that the attributes in nodes 1 and 4 are different.

Edit costs have been introduced to quantitatively evaluate each edit operation and ulti-

mately determine which edit path has the minimum total cost. The edit costs aim to desig-

nate a coherent transformation penalty in proportion to how it modifies the transformation

sequence.

The final edit cost for a given edit path is obtained by adding up all individual transfor-

mation costs. Figure 1.34 shows an example of an edit path, in this case, the transformation

sequence is the sum for the cost of deleting an edge, plus the cost of deleting node 3, plus the

cost of inserting node 2, plus the cost of inserting an edge, plus the cost of substitution from

node 1 to node 4. The process of adding up all transformation costs and getting the edit cost

is repeated for any possible edit path able to transform one graph into the other. In the end,

theGED resulting value for any pair of graphs A and B is defined as theminimum cost under

all those possible edit path sequences.
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Usually, the GED is normalized according to the number of nodes in both graphs com-

pared by dividing the obtainedGEDby their average number of nodes. This normalization is

performed tomake themeasurement independent of the graphs’ size and thus avoid favoring

smaller graphs since larger graphs tend to have higher overall transformation costs.

1.6 Machine learning for molecular analysis

Machine learning is a subset of artificial intelligence and has been defined as “the science (and

art) of programming computers so that they can learn from data”65. The technological tools

necessary formachine learning were developed in the 1950s and improved in the 1980s. Still,

it was just over the last ten years that computer hardware advances made those tools applica-

ble to real-world problems. Machine learning algorithms are now ubiquitous in the technol-

ogy and science fields, taking part in various applications from online shopping to protein

structure prediction149; some of the most renowned are: image recognition, recommender

systems, language translation, voice recognition, and drug discovery.

Machine learning is transforming all areas of science; disciplines arenowutilizingbigdatasets

that are impossible to analyze manually through human observation. For instance, it is com-

mon to usemachine learning to analyze cell images and classify them as normal or cancer cells

to decide future treatments126. Molecular simulation and property predictions in molecular

physics are other areas deeply impacted bymachine learning algorithms, obtaining significant

improvements in the complex and time-consuming calculations by learning the patterns in

the data125,53 while reducing the execution time by orders of magnitude as compared with

traditional computational chemistry methods33.

A standard way of functioning in machine learning experiments is working with an input
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dataset used as “training data”, which the algorithm uses to learn and make predictions or

make decisions without the need to be programmed for that purpose explicitly90. We are

currently at a time when there is widely available scientific data and different methods to

process it; therefore, combining those two things properly to learn from patterns in the data

can allow us to develop significant scientific advances.

1.6.1 Optimizing the edit costs for GED

Mathematical optimization is a branch of applied mathematics; it can be defined as the sci-

ence of finding the best element (out of a set of available alternatives) to solve a mathemat-

ically defined problem according to specific criteria156. Those problems are obtained from

physical reality or manufacturing and management systems; they can arise from disciplines

such as computer science, engineering, operations research, and economics.49. In order to

perform the optimization, the algorithmmaximizes or minimizes a real function by iterating

systematically among a set of input values and computing the output value of the function;

this process is repeated until it obtains a feasible solution (see Figure 1.35). This function

is usually known as the objective function, loss function, cost function, energy function, or

fitness function. On the other hand, the best result (minimizes or maximizes depending on

the problem) for the objective function is called an optimal solution.

Usually, inmathematics, the convention states all optimizationproblems in terms of “min-

imization”. This convention intends to avoid confusion between minimization and maxi-

mization problems. Once the objective function has found an optimal solution, this mini-

mum might be one of two options: local minimum or global minimum. A local minimum

of a function is where the function value is at least as good as any nearby point but possi-
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Figure 1.35: Graph of a func on. The global maximum is at (x, y, z) = (0, 0, 4). (Source: Wikimedia.)

bly worse than a distant point. A global minimum is a point where the function value is at

least as good as any other feasible point. Generally, there may be several local minima for

a function; therefore, finding an arbitrary local minimum is relatively straightforward. On

the other hand, finding the global minimum of a function is significantly more difficult (see

Figure 1.36), requiring complex optimization techniques, such as genetic algorithms.

A genetic algorithm (GA)71,162 is an optimizationmethodology belonging to the group of

evolutionary algorithms173 and inspired by the process of natural biological evolution. It in-

cludesmechanisms such as reproduction,mutation, recombination (also knownas crossover),

and selection, where the available candidate solutions take part in the optimization problem

as individuals in a population. GAs are often used in optimization and search problems to

obtain high-quality results115, which might also be helpful to find global minima.

As mentioned above, the edit costs used for node operations by Harper et al. and Garcia-
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Figure 1.36: Example of local and global minima in a hypothe cal op miza on problem.

Hernandez et al. in the original SED-based80 and GED-based61 methodologies were based

on intuition; hence, it is reasonable trying to improve those values through an optimization

procedure. That is precisely what Birchall et al. did in their optimization work for the SED-

based methodology18 and what we will do in chapter 4 of this document. Both studies use a

GA to identify optimized sets of edit costs employing an objective function that minimizes

the classification error over a group ofmolecules with different activity classes extracted from

well-known available drug databases (see Figure 1.37).

1.6.2 Graph embeddings to infer the edit costs for GED

Machine learning and graph analytics have advanced enormously in the last years due to the

vast natural presence of graphs in real-world applications such as social networks, word co-

occurrence networks, and communication networks. Those advances reported several high-

impact new methods in the top journals every year186, yielding insights into different topics
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Figure 1.37: Representa on of a gene c algorithm used to op mize the transforma on costs (inser on, dele on, and
subs tu on) used for the GED.
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such as the structure of society, language, and different patterns of communication. Some

examples of these advancements are: graph neural-networks74, which directly process graphs

and extend recursive neural networks; they can be applied on most of the types of graphs;

another example is the methods that use the low-dimensional representation of graph nodes

in vector space, also known as graph embeddings75.

Graph embeddings are trained to catch the graph’s topology, the relationship between

vertices, and even some other information about the subgraphs present in the structure. In

the application of word co-occurrence, many natural language processing (NLP) techniques

treat words as atomic units since these words are represented as one-hot indices in a vocab-

ulary112. An example of such applications is the N-gram model used for statistical language

modeling, trained with trillions of words25. A popular application of the N-gram model is

Word2vec112, which learns the embeddings of words and later confirms that embedding vec-

tors of similar words are also near in the vector space. The same concept has been adapted

to analyze graphs77; protein sequences for the classification of protein families4; and even for

molecular substructures derived from theMorgan algorithm, those substructures are treated

as “words,” and the whole compounds play the role of “sentences”83.

In this work, specifically in chapter 5, we use theNLP techniquesmentioned before to ob-

tain abstract low-dimensional vectors fromthedifferent types ofnodes in a groupofmolecules

represented as ErGs. The pairwise distances among those vectors in the vector space are inter-

preted as a dissimilarity value used as the transformation costs in theGEDmethodology. The

GED will be applied as a similarity estimation among molecules to predict the bio-activity

group they belong to.

The main goal of this study is to implement a graph-only driven molecular comparison
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methodologywithout the array representations. The comparison is made directly on graphs,

and there is no need to perform any transformation from graphs into 2D vectors (Figure

1.33). Additionally, we implement optimization tools to improve the recognition ratio when

classifying molecules represented as ErGs according to their biological activity. The opti-

mization techniques help determine better values to be used as edit costs when computing

the graph edit distance ? 145,60,157, which works as a dissimilarity measure between molecular

graphs based on ErGs.

The outline of this document is as follows. The second chapter presents and explains the

general materials and methods used in this work, including datasets, the GEDmethodology,

and the optimization processes. The third, fourth, and fifth chapters describe three different

works using the methodologies defined in the second chapter, including the specific compu-

tational results for each work. Chapter six concludes the document with a final discussion.
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Ifwe knewwhat itwaswewere doing, it wouldnot be called

research, would it?

Albert Einstein.

2
Methodology
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2.1 Datasets

During the experiments described in chapters 3 and 4, we used six publicly available datasets:

ULSandUDS184, GDDandGLL62,DUDRelease 2121 (DUD-E),NRLiStBDB94,MUV141,

and a dataset from Comparative Analysis of Pharmacophore Screening Tools144 (CAPST).

All these datasets were normalized in a format ready to use by the LBVS benchmarking plat-

form developed by Skoda and Hoksza155. This platform is similar in concept to another

benchmarking platform developed by Riniker and Landrum and has extended some of its

features139. The datasets within this platform consist of several “selections” of active and in-

active molecules arranged according to the target used to perform the physical tests. Each

selection is separated into two sub-groups named “test” and “train” sets to be readily used for

machine learning applications. Table 3.1 shows all targets available in the datasets.

Furthermore, as for chapter 5, the datasets usedwill be described later in the same chapter.

2.2 Molecular representations

Section1.4discusseddifferentmolecular descriptors used to representphysicochemical, struc-

tural, or behavioral treats frommolecules.

Throughout this work, we will be using the ErG molecular descriptor described by Stiefl

et al.161, where node features encode pharmacophore-type information. According to the

authors, this methodology can be described as a hybrid approach between reduced graphs69

and binding property pairs86 (both mentioned before in section 1.4). ErGs will be used in

two ways: fingerprints, as employed in the original work by the authors161 and described be-

fore in this document in section 1.4.2; and attributed graphs, similarly to the representation
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Dataset Targets used
ULS-UDS 5HT1F_Agonist, MTR1B_Agonist, OPRM_Agonist, PE2R3_Antagonist
GLL&GDD 5HT1A_Agonist, 5HT1A_Antagonist, 5HT1D_Agonist, 5HT1D_Antagonist,

5HT1F_Agonist, 5HT2A_Antagonist, 5HT2B_Antagonist, 5HT2C_Agonist,
5HT2C_Antagonist, 5HT4R_Agonist, 5HT4R_Antagonist, AA1R_Agonist,
AA1R_Antagonist, AA2AR_Antagonist, AA2BR_Antagonist, ACM1_Agonist,
ACM2_Antagonist, ACM3_Antagonist, ADA1A_Antagonist, ADA1B_Antagonist,
ADA1D_Antagonist, ADA2A_Agonist, ADA2A_Antagonist, ADA2B_Agonist,
ADA2B_Antagonist, ADA2C_Agonist, ADA2C_Antagonist, ADRB1_Agonist,
ADRB1_Antagonist, ADRB2_Agonist, ADRB2_Antagonist, ADRB3_Agonist,
ADRB3_Antagonist, AG2R_Antagonist, BKRB1_Antagonist, BKRB2_Antagonist,
CCKAR_Antagonist, CLTR1_Antagonist, DRD1_Antagonist, DRD2_Agonist,
DRD2_Antagonist, DRD3_Antagonist, DRD4_Antagonist, EDNRA_Antagonist,
EDNRB_Antagonist, GASR_Antagonist, HRH2_Antagonist, HRH3_Antagonist,
LSHR_Antagonist, LT4R1_Antagonist, LT4R2_Antagonist, MTR1A_Agonist,
MTR1B_Agonist, MTR1L_Agonist, NK1R_Antagonist, NK2R_Antagonist,
NK3R_Antagonist, OPRD_Agonist, OPRK_Agonist, OPRM_Agonist,
OXYR_Antagonist, PE2R1_Antagonist, PE2R2_Antagonist, PE2R3_Antagonist,
PE2R4_Antagonist, TA2R_Antagonist, V1AR_Antagonist, V1BR_Antagonist,
V2R_Antagonist

CAPST CDK2, CHK1, PTP1B, UROKINASE
DUD-E COX2, DHFR, EGFR, FGFR1, FXA, P38, PDGFRB, SRC, AA2AR
NRLiSt_BDB AR_Agonist, AR_Antagonist, ER_Alpha_Agonist, ER_Alpha_Antagonist,

ER_Beta_Agonist, FXR_Alpha_Agonist, GR_Agonist, GR_Antagonist,
LXR_Alpha_Agonist, LXR_Beta_Agonist, MR_Antagonist, PPAR_Alpha_Agonist,
PPAR_Beta_Agonist, PPAR_Gamma_Agonist, PR_Agonist, PR_Antagonist,
PXR_Agonist, RAR_Alpha_Agonist, RAR_Beta_Agonist, RAR_Gamma_Agonist,
RXR_Alpha_Agonist, RXR_Alpha_Antagonist, RXR_Gamma_Agonist,
VDR_Agonist

MUV 466, 548, 600, 644, 652, 689, 692, 712, 713, 733, 737, 810, 832, 846, 852, 858, 859

Table 2.1: Input data used for the experiments. The column en tled ‘Dataset’ contains the name of each dataset, and
the column en tled ‘Targets used’ contains the name of the targets used during the experiments for each dataset. Note
that in the result plots shown below, per-target points are arranged in the same order as they are in this table.
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Figure 2.1: Illustra on with different versions of labeled graphs.

used by Harper et al. in their work about the similarity between reduced graphs80.

2.2.1 Attributed graphs

Graph theory is a field of science devoted to the analysis of graphs. It dates back to 1736when

Leonard Euler published his paper on “The Seven Bridges of Königsberg”, which is consid-

ered the first paper in graph theory16. In graph theory, a graph is a mathematical structure

used to describe pairwise relationships between objects. Those objects are represented in the

graph as nodes (also known as vertices), and pairwise relationships are represented as edges

(also known as links). Attributed graphs’ name comes because nodes and edges are associated

with a set of attributes (or labels) holding information to describe the features in those objects

(represented by the nodes) and those relationships (represented by the edges), as depicted in

Figure 2.1. An increase in prediction accuracy has been observed by annotating nodes and

edges with additional attributes22,59,79.

Graphs have been used in different fields to represent a wide diversity of structures such as

computer networks, social networks, or chemical structures (see Figure 2.2),

The sub-field of Chemical graph theory uses the molecular graph as a means to model

molecules. This graph model is intuitive since nodes represent atoms and edges represent

chemical bonds. For the attributed molecular graph, nodes are usually labeled with the type
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Figure 2.2: Social network graph illustra ng friendships among a group of users. (Source: Wikimedia.)

of the corresponding atom, and edges are labeledwith the type of the corresponding chemical

bonds106. In this work, nodes are labeled with the corresponding pharmacophoric features

obtained with the ErGmethodology (see Figure 2.3).

Typically, molecular graphs do not bear any information about the 3D distribution of

atoms or bonds. Therefore, they cannot pinpoint the difference between geometric isomers

or other stereoisomers. The concepts of chirality and stereochemical information were de-

fined before in section 1.2.4.

2.3 Molecular comparison

Once the molecular structure has been represented as an ErG, the next step is to define a

similarity procedure to measure how similar or different two molecules or ErGs are.

In this document, we make use of two reported methods, and we present a new one. First
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Figure 2.3: Example of an ErG with the corresponding pharmacophoric features. Ac: H-bond acceptor; Hf: hydrophobic
group; Ar: aroma c ring system; +: posi ve charge.

method: Fingerprint-based, used by the authors in the paper that reported ErGs for the first

time161 (see section 1.5.1 for further details). Second method: String Edit Distance (SED)-

based, presented by Harper et al.80 (see section 1.5.2 for further details). Third method: our

new proposal, GED-based, compares ErGs directly with no intermediate representation. We

explained this GED-based methodology before in section 1.5.3. Let us now take a more in-

depth description of the graph matching and graph edit distance definitions.

2.3.1 GraphMatching

Graph matching is a fundamental problem in graph theory and pattern recognition, hav-

ing applications in various fields such as computer vision and computational biology, where

problems are often formulated as an attributed graph matching problem. The term graph

matching refers to the pairwise comparison between two or more graphs. This comparison

takes two graphs and performs a pairwise correspondence (or mapping) between all nodes

73

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL PATTERN RECOGNITION FOR CHEMICAL-COMPOUND VIRTUAL SCREENING 
Carlos Jesús García Hernández 



from one graph and all nodes from the other while intending to preserve the relationships

between those nodes in their corresponding graph.

Many problems of interest in science can be formulated as a problem of correspondence,

wheremapping is needed between two separate sets of points. Since typically, those point sets

have different internal structures, they are often treated not simply as two sets of points but

as two separate graphs. Therefore the correspondence problem is often referred to as graph

matching43.

Due to its combinatorial nature, we have two ways to solve the graph matching problem:

exactly,with a very restricted setting, or approximately, developing approximate relaxations to

the problem. Graph matching problems have been extensively studied, and research focuses

mainly ondesigningmore accurate and faster algorithms to approximately solve thequadratic

assignment problem, which is typically NP-hard3,34.

An example NP-hard problem related to graph matching is the maximum common sub-

graphproblem,which attempts to find the largest possible subgraph in two graphs (see Figure

2.4). However, graph similarity does not necessarily require an exact solution to be a useful

measure in a broad range of applications.

Maximum common subgraph techniques were employed before by Barker et al. to com-

pare chemical compounds represented as reduced graphs and thus compute a similarity value

between pairs of molecules9. Other similarity measures for attributed graphs have been de-

fined30,31,111,120,145,175. Apopular one is the graph edit distance,whichwewill focuson through-

out this work and the one we will describe in-depth in the next section.
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Figure 2.4: Example of a maximum common subgraph for a group of molecules.

2.3.2 Graph edit distance

Graph edit distance (GED)145,60,157,31 is the base of error-tolerant graph matching and the

most commonly used inexactmethod tomeasure the pairwise similarity between graphs. The

GED is considered one of the most flexible and versatile graph matching models available,

useful for many applications in structural pattern analysis, pattern recognition, and related

fields.

The GED defines the dissimilarity between two attributed graphs as the cost of the least

expensive sequence of edit operations needed to transform one graph into another. Each edit

operation can be one of the following six: insertion, deletion, and substitution of both nodes

and edges in the graph, as shown in Figure 2.5.

TheGEDmay be seen as theminimal amount of edit operations required to transformone

graph into another. These operations are restricted to substitutions, insertions, and removals;

and are applied either on nodes or edges. The complete sequence of edit operations needed

to transform one graph into another is called edit path. There might be several possible edit
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Figure 2.5: Simplified GED process to convert g1 into g2. The total edit distance is 11 based on the subs tu on and
inser on/dele on costs presented on the right side of the image.
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Figure 2.6: Matrix of costs and workers. When applied to the above table, a pairwise assignment solver like the Kuhn–
Munkres algorithm would yield the minimum cost of $6, assigning Paul to clean the bathroom, Dave to sweep the floors,
and Chris to wash the windows.

pathswith the same result, mainly whenworking with attributed graphs. To identify the edit

path holding the minimum global cost, we add up all the edit operationsmaking up each edit

path.

For a set of edit paths P(g1, g2) transforming graph g1 into g2, where each edit operation e

is penalized by a non-negative cost c(e), the GED between graphs g1 and g2 is defined as:

GED(g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑
i=1

c(ei)

We approach this problem of finding the edit path yielding the minimal global cost as the

assignment problem, which attempts to find an optimal pairwise assignment of the elements

in two different sets having the same number of elements. For instance, for two sets |A| and

|B|with the same cardinality n, we can consider an nXn costmatrixCwhere each elementCi,j

represents the cost of assigning the i-th element of |A| to the j-th element of |B| as the example

depicted in Figure 2.6 considering the problem of pairwise assigning tasks to workers.

In this example, the optimal assignment of tasks andworkers is the one that minimizes the

global cost; in other words, finding the assignment that minimizes
∑n

i=1 Ci,p(i). The Kuhn–

Munkres algorithm (also known as theHungarian algorithm)119,93 and its extension to work

with non-square matrices24 solve the assignation problem inO(n3)52.
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The Bipartite algorithm (BP)137,136 is an efficient method to compute the approximation

of the GED faster than traditional methods, while the approximated distance accuracy is not

much affected. BP’s basic idea is to reduce the difficulty of a quadratic assignment problem

in the GED computation to a linear sum assignment problem160,32. BP algorithm is made up

of three main steps: the first step defines a cost matrix based on the edit operations and trans-

formation costs; the second step applies a lineal solver such as the Kuhn–Munkres algorithm

to the cost matrix and deduces the pairwise assignation; the third step uses the assignation

matching to compute the edit distance.

Figure 2.7 depicts a (n+m)x(n+m)BP costmatrixC for two given attributed graphs: Gp

and Gq, where n andm indicate the graph orders. In this matrix, values Ca,i in quadrant Q1

represent the substitution cost between cliqueKp
a andKq

i . ValuesCa,ε in quadrantQ2 repre-

sent the cost of deleting cliqueKp
a; values Cε,i in quadrantQ3 represent the cost of inserting

clique Kq
i , and quadrant Q4 is filled with zeros since the cost of mapping two null cliques is

always defined to be zero. A clique Ka on an attributed graph G is a local star-like structure

concerning a central node and its adjacent outgoing edges.

In this context, Munkres’ algorithm optimally solves the assignation problem in polyno-

mial timeO((n+m)3). Still, it is worth pointing out that theGraph EditDistance computa-

tion keeps being sub-optimal since cliques are evaluated individually. Therefore the second-

order information is incomplete compared with an optimal method in which the computa-

tional cost is exponential.
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Figure 2.7: BP algorithm’s cost matrix.

2.3.3 GED computation

Developing an efficient similarity or dissimilarity measure for graphs is a major problem in

structural pattern recognition. In the last three decades, several GED computation methods

have been proposed. There are two types: those that return the exact value of the GED in

exponential time concerning the number of nodes20 and those that return an approximation

of the GED in polynomial time150,146. These GED computation methods have been subject

to studies and comparisons in previous works42,172. We used an in-house implementation of

thebipartite graphmatchingmethodproposedbySerratosa150 to compute an approximation

of the GED in polynomial time; it was developed in C++ and Python languages.

The GED definition has two main constraints: first, its computational expense grows ex-

ponentially with the number of nodes held by the graphs being compared; second, it relies
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on a proper definition of the edit costs associated with the edit operations.

Independently of the definition of the edit costs, to define the GED as a distance metric,

it must fulfill the following four properties31:

1. Cvs ⩽ Cvd + Cvi and Ces ⩽ Ced + Cei

2. Cvd = Cvi and Ced = Cei

3. Cvs = 0 and Ces = 0 if same attributes
4. All costs have to be non-negative

where Cvs is the cost of node substitution, Cvd is the cost of node deletion, Cvi is the cost of

node insertion. For edges: Ces is the cost of edge substitution,Ced is the cost of edge deletion,

and Cei is the cost of edge insertion.

Additionally, for the GED to be a metric, it also needs to satisfy the following require-

ments151:

• GED(G1,G2) ⩽ GED(G1,G3) + GED(G2,G3)

• GED(G1,G2) = GED(G2,G1)

• GED(G1,G2) = 0 ⇔ G1 = G2

Figure 2.8 shows a toy illustration of several GED examples using simple transformation

costs (all equal to one). We start from two equal graphs, and then wemake subtle progressive

changes to one of the graphs (remove, substitute, or add nodes and edges) and re-compute

the edit distance to exemplify the usage of the GED as a distance metric.

Now, let us discuss the edit costs employed in this work for the GED computation.

2.3.4 GED costs

Edit costs are often selected depending on how similar the nodes and edges are. For instance,

when ErGs are compared, it is logical to think that the cost of substituting a “hydrogen-
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Figure 2.8: Illustra on of the GED used as a distance metric.
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Node attributes
Attribute Description
[0] hydrogen-bond donor
[1] hydrogen-bond acceptor
[2] positive charge
[3] negative charge
[4] hydrophobic group
[5] aromatic ring system
[6] carbon link node
[7] non-carbon link node
[0, 1] hydrogen-bond donor + hydrogen-bond acceptor
[0, 2] hydrogen-bond donor + positive charge
[0, 3] hydrogen-bond donor + negative charge
[1, 2] hydrogen-bond acceptor + positive charge
[1, 3] hydrogen-bond acceptor + negative charge
[2, 3] positive charge + negative charge
[0, 1, 2] hydrogen-bond donor + hydrogen-bond acceptor + positive charge

Edge attributes
Attribute Description
- single bond
= double bond
≡ triple bond

Table 2.2: Descrip on of the node and edge a ributes that make up an ErG.

bond donor” feature with a joint “hydrogen-bond donor-acceptor” feature should be rela-

tively lowly penalized. On the other hand, the cost of substituting a “hydrogen-bond donor”

feature with an “aromatic ring” system should be penalized with a higher value. Similarly,

inserting a single bond should have a lower penalization cost than inserting a double bond,

and so on.

In chapters 3 and 4, we use the edit costs proposed byHarper et al.80 adapted to ErG. The

node and edge descriptions are found in Table 2.2, and our specific costs can are shown in

Table 2.3.
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Matrix of Substitution Costs
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2] - = ≡

[0] 0 2 2 2 2 2 2 3 1 1 1 2 2 2 1 2 3 3
[1] 2 0 2 2 2 2 2 3 1 2 2 1 1 2 1 2 3 3
[2] 2 2 0 2 2 2 2 3 2 1 2 1 2 1 1 2 3 3
[3] 2 2 2 0 2 2 2 3 2 2 1 2 1 1 2 2 3 3
[4] 2 2 2 2 0 2 2 3 2 2 2 2 2 2 2 2 3 3
[5] 2 2 2 2 2 0 2 3 2 2 2 2 2 2 2 2 3 3
[6] 2 2 2 2 2 2 0 3 2 2 2 2 2 2 2 2 3 3
[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3
[0, 1] 1 1 2 2 2 2 2 3 0 2 2 2 2 2 2 2 3 3
[0, 2] 1 2 1 2 2 2 2 3 2 0 2 2 2 2 2 2 3 3
[0, 3] 1 2 2 1 2 2 2 3 2 2 0 2 2 2 2 2 3 3
[1, 2] 2 1 1 2 2 2 2 3 2 2 2 0 2 2 2 2 3 3
[1, 3] 2 1 2 1 2 2 2 3 2 2 2 2 0 2 2 2 3 3
[2, 3] 2 2 1 1 2 2 2 3 2 2 2 2 2 0 2 2 3 3
[0, 1, 2] 1 1 1 2 2 2 2 3 2 2 2 2 2 2 0 2 3 3
- 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 0 3 3
= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3
≡ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0

Insertion/Deletion Costs
insert 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 0.1 1 1
delete 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 0.1 1 1

Table 2.3: Subs tu on and Inser on/Dele on costs used in the GED and SED calcula on.

2.3.5 GED computational expense

When representing data by attributed graphs, the main challenge is the computational diffi-

culty to compare them, which in many cases restricts the GED applicability to only graphs

of a relatively small size. Any optimal implementation may become exponential with the

number of nodes, at least in the worst case. One example of this is the A algorithm81, a

classical tree search algorithm, which is the most popular method to compute the GED op-

timally. A* works by exploring the space of all possible mappings among nodes and edges in

both graphs. On the other hand, we have sub-optimal implementations to solve the graph-

matching problem; they have polynomial complexity but do not guarantee to find the opti-

mal solution14,152. Several such implementations and surveys have surged145,54,42,171,172,56,60.

Sub-optimal techniques aremeant to reduce the search space and alleviate the computational
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Figure 2.9: GED execu on me with an increasing number of ErGs.

expense problem.

As a measure to reduce the computational burden for graph comparison, in this work,

we use a sub-optimal GED implementation based on the Bipartite Graph Edit Distance. As

mentioned before, this sub-optimal implementation has the primary goal of reducing the

difficulty of a quadratic assignment problem in the GED to that of a linear sum assignment

problem in the BP, since the difficulty of the latter is the same as the problem of finding an

optimal assignment for two sets of items. Another measure taken in this work to reduce the

computational burden is to use reduced graphs, which by definition contain fewer nodes and

edges than the original chemical graphs from the molecule.

Figure 2.9 shows differentGEDexecution timeswhile comparing an increasing number of

randomly selected ErGs obtained from the publicly available dataset AIDS (see section 5.2.1

for more details about the dataset).
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2.4 Method evaluation

Throughout this work, we carry out two different types of evaluationmethods: the first one,

used in chapter 3, uses the tools and metrics available in the LBVS benchmarking platform

and the RDKit; This evaluation computes the AUC performance value and the BEDROC

as an “early recognition” method, the usage of both metrics combined is recommended as

good practice by Riniker and Landrum in their fingerprint benchmarking study139. The

second evaluation method, used in chapters 4 and 5, is based on bioactivity prediction accu-

racy. More precisely, the number of errors or miss-classifications when trying to predict the

bioactivity of molecules with a particular protein target; We use the same metric during the

training process of a genetic algorithm used to fit a model over 127 targets in 4.

To predict compounds’ bioactivity, we handle theAGs in the context of nearest-neighbors

classification. Wedecide the belonging group of an unknown inputAGby comparing it with

many ground-truth known AGs in the database; Later on, the unknown input is assigned to

the same class or group as the most similar ground-truth.

All the techniques presented in this chapter will serve as the foundations uponwhich later

chapters will build; nevertheless, we might expand some of the concepts later in those chap-

ters.
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I have hadmy results for a long time: but I do not yet know

how I am to arrive at them.

Carl Friedrich Gauss.

3
Ligand-Based Virtual Screening Using

Graph Edit Distance as Molecular Similarity

Measure
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3.1 Chapter introduction

This chapter investigates the effectiveness of a graph-only driven molecular comparison us-

ing extended reduced graphs and graph edit distance methods for molecular similarity calcu-

lation as a tool for ligand-based virtual screening applications. As mentioned before, LBVS

applications estimate a molecule’s bioactivity based on that of similar compounds.

The results proved to be very stable. The graph edit distance method performed better

than other methods previously used on reduced graphs; this is exemplified using six publicly

available datasets. The screening and statistical tools available on the ligand-based virtual

screening benchmarking platform and the RDKit were also used. Our method performed

better in most of the experiments than other molecular similarity methods using array repre-

sentations.

Overall, it is shown that extended reduced graphs and graph edit distance are a suitable

combination of methods, having numerous applications and identifying bioactivity similar-

ities in a structurally diverse group of molecules.

This chapter is organized as follows. First, materials and methods are presented and ex-

plained in detail. Second, computational results are shown. In the end, a final discussion

concludes the chapter.

3.2 Specific materials and methods

3.2.1 Datasets

The datasets in this chapter were presented in section 2.1; they are publicly available and

normalized in a ready-to-use format inside the LBVSbenchmarking platform; Those datasets
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are DUD-E, MUV, GLL&GDD, CAPST, NRLiSt BDB, and ULS-UDS.

3.2.2 Molecular representation and comparison.

Three different molecular representation methods are employed in this chapter: FP-based,

SED-based, and GED-based methods; they were presented in detail in sections 1.5.1, 1.5.2,

and 1.5.3, respectively.

SED-based and GED-based methods share the exact edition costs needed to balance the

transformation from one node to another and one edge to another.

3.2.3 Method evaluation

The LBVS benchmarking platform and the RDKit library were used to evaluate the three

methods mentioned earlier: Fingerprint-based, SED-based, and GED-based. The screening

phase consists of using all active and inactive compounds in the test set compared with the

active compounds in the training set. Then, all test molecules are ranked according to their

similarity to the active molecules in the training set. Only the information from the test

molecule with the highest similarity value is kept. Subsequently, the performance of each

method is calculated by using the information obtained in the previous step and some of the

performance evaluation methods.

As recommended by Riniker and Landrum in their fingerprint benchmarking study139,

it is a good practice to provide the performance values for AUC and one of the “early recog-

nition” methods, enrichment factor (EF) or Boltzmann-enhanced discrimination of ROC

(BEDROC)170. In this study, we selected the BEDROC (α = 20) as our “early recognition”

method since it has the advantage of running from 0 to 1.
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The step-by-step evaluation processed followed by the LBVS benchmarking platform is as

follows:

1. The library generates ten random splits of molecules from the databases to limit the

size and work with smaller subsets. Having several subsets helps to mitigate the ran-

domness used to select the molecules on each split and better generalize the different

molecular features available. The following steps are performed equally on each split.

2. The split is divided into two parts, train and test sets.

3. For each molecule in the test set (also known as the “query molecule”), the library

predicts its activity by comparing it with all the molecules in the train set and finding

themost similar one. The “querymolecule’s” activity is assumed to be the same as that

of the most similar molecule from the train set.

4. After having an activity prediction for each molecule in the test set, a ROC curve is

generated employing the true positive rate (TPR) against the false positive rate (FPR).

Weuse a threshold through the accepted similarity values (similarity between the ”query

molecule” and the most similar one) to determine whether the prediction was accu-

rate or not. In other words, even if the prediction is performed according to the most

similar molecule, maybe the similarity value is not good enough; therefore, we check

TPR and FPR while changing the threshold for the accepted values, see Figure 3.1.

While varying the threshold (vertical line), different TP and FP values are produced,

as illustrated in Figure 3.2.

5. Once the ROC curve is created, the library computes the area under the curve or
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Figure 3.1: Examples of ac va on func ons normalizing a method’s output to a probability distribu on over predicted
output classes. Logis c regression is the type of regression analysis o en used when the dependent variable is binary.

Figure 3.2: Depic on of a ROC curve while changing the distribu on of TP and FP values. TP and FP distribu on
changes by modifying the threshold.
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Figure 3.3: Example of an array holding the predicted ac vi es from one experiment. ROC curve and its corresponding
AUC value are obtained employing the predic ons.

(AUC)anduses this value to compare theperformancebetweendifferentROCcurves.

Figure 3.3 shows an example of a ROC curve and its corresponding AUC values re-

sulting from one of the experiments below.

3.2.4 Computational expense

The experiments reported in this chapter were performed using a quad-core, 2.0 GHz Intel

Core i7 laptop with 8 GB RAM (operating system version Ubuntu 16.04). The most time-

consuming step during the benchmarkingprocess is calculating the similarity between graphs

for eachmethod; the remaining steps require negligible computational expense. An accurate

time-consuming comparisonwould not be fair since differentmethods were developed using

different proportions of Python or C++ programming language. Nevertheless, none of the

similarity calculations took longer than 20 minutes per target (executing ten iterations per

target where each iteration performs almost 20 thousand individual molecular comparisons)

using the predefined random-built splits available in the LBVS benchmarking platform.
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3.3 Results

3.3.1 Experimental setup

Six experiments were carried out using different activity classes from six publicly available

datasets. The classification accuracy for themethods testedwas computedusing the screening

and statistical tools available in the LBVS benchmarking platform and theRDKit. TheAUC

and BEDROC results show the behavior of all the targets available in each data set in the

platform using the Fingerprint-based, SED-based, and GED-based methods.

3.3.2 Analysis of the experiments

Table 3.1 summarizes the input data of the experiments, and Figure 3.4 shows the overall

behavior for the three similarity methods for all the targets available in the LBVS platform.

These results show that the GED-basedmethod has a slight advantage over the FP-based and

the SED-based methods, which can be observed in the median, first quartile, and the third

quartile for both the AUC and BEDROC results in the box-and-whisker plots. An overall

comparison might not be very informative, so a more profound analysis should be carried

out for each dataset separately.

Figures 3.5 and 3.6 show the same information as Figure 3.4 separated for each dataset

(one dataset per sub-figure). Figure 3.5 represents the AUC values, and Figure 3.6 represents

the BEDROC values. Again, box-and-whisker plots are located on the right of each subplot

to illustrate the distribution. The following analysis will focus on these distribution results.

For theULS-UDS dataset, themedian value of results for theGED-basedmethod is better

than for the FP-based and SED-basedmethods. This difference is noticeable in the AUC and
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Dataset Targets used
ULS-UDS 5HT1F_Agonist, MTR1B_Agonist, OPRM_Agonist, PE2R3_Antagonist
GLL&GDD 5HT1A_Agonist, 5HT1A_Antagonist, 5HT1D_Agonist, 5HT1D_Antagonist,

5HT1F_Agonist, 5HT2A_Antagonist, 5HT2B_Antagonist, 5HT2C_Agonist,
5HT2C_Antagonist, 5HT4R_Agonist, 5HT4R_Antagonist, AA1R_Agonist,
AA1R_Antagonist, AA2AR_Antagonist, AA2BR_Antagonist, ACM1_Agonist,
ACM2_Antagonist, ACM3_Antagonist, ADA1A_Antagonist, ADA1B_Antagonist,
ADA1D_Antagonist, ADA2A_Agonist, ADA2A_Antagonist, ADA2B_Agonist,
ADA2B_Antagonist, ADA2C_Agonist, ADA2C_Antagonist, ADRB1_Agonist,
ADRB1_Antagonist, ADRB2_Agonist, ADRB2_Antagonist, ADRB3_Agonist,
ADRB3_Antagonist, AG2R_Antagonist, BKRB1_Antagonist, BKRB2_Antagonist,
CCKAR_Antagonist, CLTR1_Antagonist, DRD1_Antagonist, DRD2_Agonist,
DRD2_Antagonist, DRD3_Antagonist, DRD4_Antagonist, EDNRA_Antagonist,
EDNRB_Antagonist, GASR_Antagonist, HRH2_Antagonist, HRH3_Antagonist,
LSHR_Antagonist, LT4R1_Antagonist, LT4R2_Antagonist, MTR1A_Agonist,
MTR1B_Agonist, MTR1L_Agonist, NK1R_Antagonist, NK2R_Antagonist,
NK3R_Antagonist, OPRD_Agonist, OPRK_Agonist, OPRM_Agonist,
OXYR_Antagonist, PE2R1_Antagonist, PE2R2_Antagonist, PE2R3_Antagonist,
PE2R4_Antagonist, TA2R_Antagonist, V1AR_Antagonist, V1BR_Antagonist,
V2R_Antagonist

CAPST CDK2, CHK1, PTP1B, UROKINASE
DUD-E COX2, DHFR, EGFR, FGFR1, FXA, P38, PDGFRB, SRC, AA2AR
NRLiSt_BDB AR_Agonist, AR_Antagonist, ER_Alpha_Agonist, ER_Alpha_Antagonist,

ER_Beta_Agonist, FXR_Alpha_Agonist, GR_Agonist, GR_Antagonist,
LXR_Alpha_Agonist, LXR_Beta_Agonist, MR_Antagonist, PPAR_Alpha_Agonist,
PPAR_Beta_Agonist, PPAR_Gamma_Agonist, PR_Agonist, PR_Antagonist,
PXR_Agonist, RAR_Alpha_Agonist, RAR_Beta_Agonist, RAR_Gamma_Agonist,
RXR_Alpha_Agonist, RXR_Alpha_Antagonist, RXR_Gamma_Agonist,
VDR_Agonist

MUV 466, 548, 600, 644, 652, 689, 692, 712, 713, 733, 737, 810, 832, 846, 852, 858, 859

Table 3.1: Input data used for the experiments. The column en tled ‘Dataset’ contains the name of each dataset, and
the column en tled ‘Targets used’ contains the name of the targets used during the experiments for each dataset. Note
that per-target points in the result plots shown below are arranged in the same order as in this table.
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Figure 3.4: AUC and BEDROC (α = 20) for all available targets in the LBVS benchmarking pla orm. The sca ered
values on the le of both subplots represent the median value from 10 predefined random-built splits, using different
colors and shapes per similarity method. Ver cal segmented lines mark the edge between different datasets (from le
to right: ULS-UDS, GLL&GDD, CAPST, DUD-E, NRLiSt_BDB, MUV). The box-and-whisker plots on the right of both
subplots show the distribu on of the resul ng values for each similarity method. The boxes show the first and third
quar le, the line is the median value (second quar le), and the whiskers extend from the boxes to show the range of the
data (outliers are included if there are any).

BEDROCresults, especially in the last two targets (OPRM_Agonist andPE2R3_Antagonist).

Probably the most noticeable advantage of the GED-based method, in this case, is its stabil-

ity. The stability is represented as the box and whiskers length. Shorter lengths indicate that

several results are closer to each other, and therefore the method seems more reliable.

For the GLL&GDD dataset, the performance of the GED-based method is significantly

better than the FP-based and SED-based methods. The median, first quartile, and third

quartile are better in both the AUC and BEDROC results. The most significant differ-

ence in performance is in the “PE2R” group targets, located close to the right in the plot

(PE2R1_Antagonist, PE2R2_Antagonist, PE2R3_Antagonist, and PE2R4_Antagonist).

For theCAPSTdataset, theperformance is slightly betterwith theFP-basedmethod rather

than the GED-based and SED-based methods. This difference in performance can be seen

in the AUC and BEDROC results, and it is more noticeable in the last two targets (PTP1B
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and UROKINASE). Nevertheless, the stability of results is not very reliable, especially in

BEDROC, where performance goes from very low to very high values.

The advantage of the GED-based method is possibly most significant for the DUD-E

dataset. Even the second quartile of the GED-based method is higher than the third quar-

tile of the FP-based and SED-based methods. This superiority is valid for the AUC and

BEDROC values. Furthermore, the GED-based method is relatively stable, particularly for

the AUC values. The GED-based advantage is more noticeable in such targets as P38, SRC,

FXA, and FGFR1 located between the center and the right of the plot.

With the NRLiSt_BDB dataset, the GED-based method again gets significantly better re-

sults than FP-based and SED-based methods. This difference can be seen in the AUC and

BEDROC results, and it is evident in the first, second (median), and third quartiles. The sta-

bility is similar for all methods, with the FP-based method being slightly better in the AUC

values and the SED-basedmethodbeing slightly better in theBEDROCvalues. Themost sig-

nificant difference in performance for the GED-based method is for LXR_Alpha_Agonist,

LXR_Beta_Agonist, PPAR_Alpha_Agonist, and PPAR_Gamma_Agonist, near the center

of the plot.

The overall results for the MUV dataset are the lowest of all the experiments. This dif-

ference is present in the three similarity methods. Nevertheless, the GED-based method per-

forms slightly better than the FP-based and the SED-basedmethods in the “early recognition”

BEDROC results. The difference is more significant for such targets as 466, 548, and 600

on the left of the plot. Moreover, the FP-based method performs slightly better than others

in the AUC results, particularly in such targets as 652, 852, and 737.
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Figure 3.5: AUC results for all available targets in the LBVS benchmarking pla orm separated by dataset. Each sca ered
value on the le of each subplot represents the median value of 10 predefined random-built splits. Different colors and
shapes are used for each similarity method. Box-and-whisker plots on the right of each subplot show the distribu on of
results.

96

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL PATTERN RECOGNITION FOR CHEMICAL-COMPOUND VIRTUAL SCREENING 
Carlos Jesús García Hernández 



Figure 3.6: BEDROC (α = 20) results for all available targets in the LBVS benchmarking pla orm separated by dataset.
Each sca ered value on the le of each subplot represents the median value of 10 predefined random-built splits.
Different colors and shapes are used for each similarity method. Box-and-whisker plots on the right of each subplot
show the distribu on of results.
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Friedman test (AUC) Friedman test (BEDROC)
ULS-UDS 0.173774 0.173774
GLL&GDD 2.97804E-14* 5.30798E-15*
DUD-E 0.000911882* 0.000300185*
NRLiSt_BDB 7.48518E-05* 5.77775E-08*
MUV 0.00102573* 0.00714619*
CAPST 0.0497871* 0.0497871*
All datasets 7.46387E-24* 1.89219E-28*

Table 3.2: P-values for the Friedman test (AUC and BEDROC) comparing the three similarity methods (GED-based, FP-
based, and SED-based) simultaneously. The test is done per dataset, and all datasets are combined in the last row. Here,
a confidence level of α = 0.05 is used, so p-values lower than α indicate sta s cally significant differences, which are
marked with an asterisk (*) in the table.

3.3.3 Statistical tests

Statistical tests were carried out to determine whether the differences in performance are sta-

tistically significant. In other words, these tests assess whether somemethods are consistently

better than others.

First, we used a comprehensive Friedman test58 for each dataset, as presented in Table 3.2.

The last row shows the results of applying the same test to all the targets combined. The

p-value for the comprehensive Friedman test was extremely low in most cases (a confidence

level of α = 0.05 is used), indicating statistically significant differences between different

methods. Hence, a more in-depth analysis might be helpful.

The second step in the statistical tests consists of a pairwise Wilcoxon signed-rank test179

to determine which pairs of methods exhibit a statistically significant difference. Table 3.3

shows the results of this test applied to all the datasets combined and including the AUC and

BEDROC values.

The same pairwise Wilcoxon signed-rank test was performed again but this time applied

to each dataset separately. The results of the tests are presented in Tables 3.4 (AUC values)
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Wilcoxon test (AUC) Wilcoxon test (BEDROC)
SED FP GED SED FP GED

SED 1.20841E-13* 7.4432E-21* 2.08456E-16* 1.18024E-21*
FP 1.20841E-13* 0.000748788* 2.08456E-16* 0.000585085*
GED 7.4432E-21* 0.000748788* 1.18024E-21* 0.000585085*

Table 3.3: P-values for the pairwise Wilcoxon signed-rank test (AUC and BEDROC) comparing the three similarity meth-
ods (GED-based, FP-based, and SED-based). The test is applied to all targets in the datasets combined. Here, a confi-
dence level of α = 0.05 is used, so p-values lower than α indicate sta s cally significant differences, which are marked
with an asterisk (*) in the table.

ULS-UDS GLL&GDD
SED FP GED SED FP GED

SED 0.273322 0.0678892 4.26037E-08* 3.34327E-12*
FP 0.273322 0.465209 4.26037E-08* 0.0018207*
GED 0.0678892 0.465209 3.34327E-12* 0.0018207*

CAPST MUV
SED FP GED SED FP GED

SED 0.0678892 0.0678892 0.000351533* 0.00748178*
FP 0.0678892 0.465209 0.000351533* 0.0615039
GED 0.0678892 0.465209 0.00748178* 0.0615039

DUD-E NRLiSt_BDB
SED FP GED SED FP GED

SED 0.109745 0.00768579* 0.0520334 3.02696E-05*
FP 0.109745 0.00768579* 0.0520334 0.00167307*
GED 0.00768579* 0.00768579* 3.02696E-05* 0.00167307*

Table 3.4: P-values for the pairwise Wilcoxon signed-rank test (AUC) comparing the three similarity methods (GED-
based, FP-based, and SED-based). The test is done using all targets separated by datasets. Here, a confidence level
of α = 0.05 is used, so p-values lower than α indicate sta s cally significant differences, which are marked with an
asterisk (*) in the table.

and 3.5 (BEDROC values).

Pairwise comparison tables show very low p-values in most cases (the lower the p-value,

the better), and the difference between onemethod and the other was statistically significant.

This difference is valid for AUC and BEDROC results and with all datasets except ULS-

UDS and CAPST. Therefore, for these two datasets, the slight differences in performance

are not regarded as statistically significant. Note that statistically significant differences may

not always mean practically meaningful differences87.

Finally, Table 3.6 shows thedrawing and theErGrepresentationof three samplemolecules.

As an example,we selected thefirst twoactivemolecules (ligands) and thefirst inactivemolecule
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ULS-UDS GLL&GDD
SED FP GED SED FP GED

SED 0.273322 0.0678892 1.41571E-09* 7.73521E-13*
FP 0.273322 1 1.41571E-09* 0.125128
GED 0.0678892 1 7.73521E-13* 0.125128

CAPST MUV
SED FP GED SED FP GED

SED 0.0678892 0.0678892 0.00988213* 0.00359936*
FP 0.0678892 0.465209 0.00988213* 0.758312
GED 0.0678892 0.465209 0.00359936* 0.758312

DUD-E NRLiSt_BDB
SED FP GED SED FP GED

SED 0.015156* 0.00768579* 0.000318217* 3.43006E-05*
FP 0.015156* 0.00768579* 0.000318217* 0.000284994*
GED 0.00768579* 0.00768579* 3.43006E-05* 0.000284994*

Table 3.5: P-values for the pairwise Wilcoxon signed-rank test (BEDROC) comparing the three similarity methods (GED-
based, FP-based, and SED-based). The test is done using all targets separated by datasets. Here, a confidence level
of α = 0.05 is used, so p-values lower than α indicate sta s cally significant differences, which are marked with an
asterisk (*) in the table.

(decoy) from the target VDR_Agonist in the NRLiSt_BDB dataset. Table 3.7 shows the

distances between these molecules using the FP-based, SED-based, and GED-based similar-

ity methods. The range of FP-based and SED-based distances is [0, 1], whereas the range

of the GED-based is [0, Inf]. Hence, we cannot compare the values directly from different

methods. Nevertheless, it is noticeable that, for each method, the distance value computed

between two ligand compounds is lower than the distance computed between a ligand com-

pound and a decoy compound. This assertion is the basis of correctly classifying the ligand

and decoy molecules to be used in the process of virtual screening.

3.4 Discussion

This chapter presented a molecular similarity measure that uses graph edit distance to com-

pare the representation of molecules by extended reduced graphs effectively. This method

works as an alternative to the fingerprint-based similarity method used in the original paper

on ErGs by Stiefl et al. and an alternative to the string edit distance-basedmethod used in the

paper by Harper et al.
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Mol ID Molecule ErG Properties

1

Mol. Name: ZINC04474609
Dataset: NRLiSt_BDB
Target: VDR_Agonist
Activity: Ligand

2

Mol. Name: ZINC03924790
Dataset: NRLiSt_BDB
Target: VDR_Agonist
Activity: Ligand

3

Mol. Name: ZINC00091842
Dataset: NRLiSt_BDB
Target: VDR_Agonist
Activity: Decoy

Table 3.6: Three sample molecules from the target VDR_Agonist in the NRLiSt_BDB dataset.

Mol ID 2
Ligand

Mol ID 3
Decoy

Mol ID 1
Ligand

SED: 0.06
FPD: 0.40
GED: 0.49

SED: 0.28
FPD: 0.92
GED: 3.05

Table 3.7: Distances between molecules shown in Table 3.6 computed using the FP-based, SED-based, and GED-based
similarity methods.
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The experiments performed used several samples collected frompublicly available datasets

like DUD-E andMUV. To overcome the common problems of reproducibility when differ-

ent methods are compared, we used a benchmarking platform proposed by Skoda and Hok-

sza. The platform includes, among other features, various screening and statistical tools and

provides fully reproducible outcomes.

Results show that theGED-basedmethod performed better in 5 out of 6methods accord-

ing to the “early recognition” BEDROC values; moreover, GED-based performed better in

4 out of 6 methods according to AUC values. Nevertheless, these differences are statistically

significant in four out of six datasets because ULS-UDS and CAPST differences are not sig-

nificant according to the pairwise Wilcoxon signed-rank test.

To compute the GED, we used the edit costs proposed by Harper et al., which experts

assigned tomanage relationshipsbetween thedifferentnode and edge types. Thenext chapter

will be focused on automatically learning the edit costs onnodes and edges in several scenarios

using various toxicological endpoints. This learning process will be similar to that carried out

byBirchall et al.18, inwhich they optimized the edit values proposed byHarper et al. for their

method.
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We haven’t got the money, so we’ve got to think.

Ernest Rutherford.

4
Learning The Edit Costs Of The Graph

Edit Distance Applied to Ligand-Based

Virtual Screening Applications
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4.1 Chapter introduction

In the previous chapter, we used the edit costs proposed byHarper et al., assigned by experts

considering the different node and edge types. This chapter presents amethod for optimizing

those edit costs based on minimizing the distance between molecules classified correctly and

maximizing the distance between molecules classified incorrectly.

This chapter is inspired by a similar work carried out by Birchall et al.18. In that work,

the authors optimize the transformation costs of a String Edit Distance-based method to

compare molecules using reduced graphs. In contrast, our work optimizes the edit costs of a

Graph Edit Distance-based method to compare molecules using ErG.

The outline of this chapter is as follows. First, materials and methods are presented and

explained in detail, including the datasets, the GEDmethodology, and the optimization pro-

cess; second, we present the computational results; third, the chapter is concluded with a

final discussion.

4.2 Specific materials and methods

4.2.1 Datasets

Datasets used in this chapter are trimmed versions of the datasets presented in section 2.1;

they were trimmed to reduce the computational time needed for the optimization process.

The resulting subsets include the first 100 active and 100 inactive molecules for each target

as formatted in the LBVS benchmarking platform. In some cases, available active molecules

are less than 100; for those cases, all available active molecules and the same number of inac-

tive molecules are used. Later, we split each set by half to have a train and a test subset used
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independently; the former to optimize the transformation costs and the latter to evaluate the

recognition ratio with unknown data.

4.2.2 Molecular representation and comparison.

GED computation

SeveralGEDcomputationalmethodshavebeenproposedduring the last threedecades,which

can be classified into two groups: those returning the exact value for the GED in exponen-

tial time proportional to the number of nodes20, and those returning an approximation of

the GED in polynomial time150,146. These two groups of GED computational methods have

been widely studied42,172.

As in the previous chapter, here, we compute the approximation of the GED in polyno-

mial time using an in-house implementation of the bipartite graph matching method pro-

posed by Serratosa150; it was programmed in C++ and Python languages.

GED costs

In theprevious chapter,weused the edit costs proposedbyHarper et al.80withminor changes

to fit the ErG features. The node and edge descriptions are shown in Table 2.3, and the spe-

cific costs proposed byHarper et al. are exposed inTables 4.1 and 4.2. Note that the insertion

anddeletion costs applied to a givennode are constants. Moreover, substitutions are symmet-

ric, which means that the substitution of node type A to B is assigned the exact cost as the

substitution of type B to A to guarantee the symmetry property for the GED.
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Substitution Costs for Nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 2 2 2 2 2 2 3 1 1 1 2 2 2 1
[1] 2 0 2 2 2 2 2 3 1 2 2 1 1 2 1
[2] 2 2 0 2 2 2 2 3 2 1 2 1 2 1 1
[3] 2 2 2 0 2 2 2 3 2 2 1 2 1 1 2
[4] 2 2 2 2 0 2 2 3 2 2 2 2 2 2 2
[5] 2 2 2 2 2 0 2 3 2 2 2 2 2 2 2
[6] 2 2 2 2 2 2 0 3 2 2 2 2 2 2 2
[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3
[0, 1] 1 1 2 2 2 2 2 3 0 2 2 2 2 2 2
[0, 2] 1 2 1 2 2 2 2 3 2 0 2 2 2 2 2
[0, 3] 1 2 2 1 2 2 2 3 2 2 0 2 2 2 2
[1, 2] 2 1 1 2 2 2 2 3 2 2 2 0 2 2 2
[1, 3] 2 1 2 1 2 2 2 3 2 2 2 2 0 2 2
[2, 3] 2 2 1 1 2 2 2 3 2 2 2 2 2 0 2
[0, 1, 2] 1 1 1 2 2 2 2 3 2 2 2 2 2 2 0

Insertion/Deletion Costs for Nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2
delete 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2

Table 4.1: Subs tu on, Inser on and Dele on costs for Nodes based on those proposed by Harper et al. 80

Substitution Costs for Edges
- = ≡

- 0 3 3
= 3 0 3
≡ 3 3 0
Insertion/Deletion Costs for Edges

- = ≡
insert 0 1 1
delete 0 1 1

Table 4.2: Subs tu on, Inser on and Dele on costs for Edges based on those proposed by Harper et al. 80
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4.2.3 Method evaluation

As introduced in section 2.4, to evaluate the methodology in this chapter, we compute the

number of errors or miss-classifications when trying to predict the bioactivity of molecules

concerning a particular protein target. This evaluationmetric was selected since it is the same

used for the model optimization during the training process of a genetic algorithm. The ge-

netic algorithm is optimized over 127 different targets extracted from the datasets mentioned

before.

The set of molecules corresponding to each target was split by half to have “train” and

“test” subsets. The “train” subset is used to optimize the transformation costs for the GED

computation. The “test” subset is used to evaluate the recognition ratio with unknown data

for the model.

Objective function.

Figure 4.1 shows the objective functionweuse togetherwith a genetic algorithm71,162 to track

the evolution of the learning process. The objective function is divided into threemain steps.

First, we compare each molecule with all the others and create a matrix of distances. Second,

for each row in the matrix (which represents the distances computed for one molecule, the

“querymolecule”, with all of the others), we find the lowest distanceD,which is considered as

the “closest molecule” to the query one. Third, we use the “closest molecule” distance D and

a log loss function143, adding up the quantity exp(−D) as follows: if the “query molecule”

and the “closest molecule” are from the same bioactivity classes, the objective function is de-

creased. On the contrary, if the “query molecule” and the “closest molecule” are from differ-

ent bioactivity classes, the objective function increases. The log loss uses the errormagnitude
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in the prediction (howmuch it varies from the ground truth) to give amore continuous view

over the model’s behavior, slowly increasing or decreasing the objective function output val-

ues. Note that during the construction of the matrix of distances, if the molecules belong to

the same bioactivity class, then the lower the distance, the better. On the other hand, if the

molecules belong to different bioactivity classes, the higher the distance, the better.

The learning algorithm attempts to minimize the objective function to have as many cor-

rect classifications as possible. This minimization occurs since correct classifications reduce

the resulting value and wrong classifications increase it, as explained before. The main goal

of this process is to measure the performance of the objective function on each iteration and

tune the values to be used as edit costs during the next iteration.

Computational expense

The experiments reported in this chapter were performed using a quad-core, 2.0 GHz Intel

Core i7 laptop with 8 GB RAM (operating system version Ubuntu 18.04). The most time-

consuming step is the training of the edit costs employing the genetic algorithm; this process

is computationally demanding due to the difficulty of finding costs that work better for all

the molecules evaluated against the same target. In one experiment performed for one target

only, the computation time was about 6 hours; the same task was executed for all 127 targets

in the database. Fortunately, we executed all the optimizations in parallel since optimizing

one target is entirely independent of others.
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Figure 4.1: Objec ve func on.
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4.3 Results

The aim of the practical experiments is twofold. First, we want to compare the recognition

ratio deduced using the learned edit costs to the recognition ratio deduced using the edit costs

proposedbyHarper et al.80 Second,wewant to analyze if the learned costs are congruentwith

the chemical knowledge given by Harper et al. To that aim, we performed four experiments

learning one different edit cost on each. The four edit costs were selected considering the

most frequent node and edge attributes.

• Experiment 1: insertion and deletion costs corresponding to the carbon link node

assigned to the “[6]” attribute in Table 2.2.

• Experiment 2: substitution cost between the carbon link node (“[6]” attribute in Ta-

ble 2.2) and the aromatic ring system node (“[5]” attribute in Table 2.2).

• Experiment 3: insertion and deletion costs corresponding to the single bond edge

assigned to the “-” attribute in Table 2.2.

• Experiment 4: substitution cost between the single bond edge (“-” attribute in Table

2.2) and the double bond edge (“=” attribute in Table 2.2).

Analysis of the experiments. Figure 4.2 shows an example of the learning behavior of a

single target; the continuous blue line represents the objective function, which decreases after

every learning iteration until convergence. The red segmented line represents the number

of miss-classifications over the training set, and the green points represent the number of

miss-classifications over the test set. Both training and test miss-classification values should

decrease. However, it is not always the case since it depends on several factors, including the
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Figure 4.2: Training evolu on curves for the FXA target in the DUD-E dataset.

training set’s size, the number of variables being learned, the tolerance for convergence, and

the over-fitting.

Figure 4.3 shows the number of errors in the classification process for Experiment 4 over

the test set and for all 127 targets, using two different edit cost configurations, the edit costs

proposed by Harper et al.80, and the edit costs we have learned. It is important to note that,

since the figure depicts the number of miss-classifications, the lower the values, the better.

These results show how the learned edit costs present a slightly improved behavior compared

to the edit costs proposed byHarper et al. The improvement is noticed in themaximum and

the third quartile being part of the box-and-whisker plots. All other quartile values are the

same for both methods.

Figure 4.4 shows values for each dataset separately to have a better picture of the behav-

ior using the learned costs. This figure shows the number of errors in the classification for

two datasets in each experiment (we do not include all the results per experiment for space
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Figure 4.3: The number of miss-classifica ons in Experiment 4 using the test set over the 127 targets available in the
six datasets combined. The sca ered values on the le of the plot represent the number of classifica on errors. Differ-
ent colors and shapes represent different sets of edit costs. Ver cal segmented lines mark the limit between different
datasets (from le to right: ULS-UDS, GLL&GDD, CAPST, DUD-E, NRLiSt_BDB, MUV). The box-and-whisker plots on
the right show the distribu on of the resul ng values. The boxes show the first and third quar le, the line in the middle
of the box is the median value (second quar le), and the whiskers extend from the boxes to show the range of the data
(outliers are not included).
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reasons, nevertheless, other results can be found as supplementary material). Note that each

row represents an experiment and each sub-figure in the row represents a different dataset.

As in Figure 4.3, here we show the number ofmiss-classifications, and box-and-whisker plots

are located on the right of each subplot to illustrate the distribution of the values.

For the first experiment, we used the GLL&GDD andDUD-E datasets. The results using

the learned edit costs are slightly better. The improvement obtained using the learned costs

is observed in the third quartile and the maximum value for the GLL&GDDdataset and the

median andmaximum value for the DUD-E dataset. For the GLL&GDD, as the third quar-

tile is reduced, notice how the GED using the learned costs provides more stable results. The

stability is represented as the box and whiskers length. Shorter lengths indicate that several

results are closer to each other, and therefore the method seems more reliable. For the other

datasets in this experiment, results were similar, obtaining lower or equalmedian values using

the learned edit costs compared to the edit costs fromHarper.

For the second experiment, we used the ULS-UDS andGLL&GDDdatasets. In this case,

again, the results using the learned edit costs are significantly better. The improvement using

the learned costs is exhibited in every aspect for the ULS-UDS dataset and most aspects for

the GLL&GDD dataset, except for the minimum values in both cases, which are zero. For

the other datasets in this experiment, median values using the learned andHarper’s edit costs

were the same except for CAPST, which obtained a better median value usingHarper’s ones.

For the third experiment, we used the CAPST and ULS-UDS datasets. In this case, only

the results for ULS-UDS using the learned edit costs are better. This improvement is notice-

able for all values in the box plot, including the three quartiles and the minimum and maxi-

mum. On the other hand, for the CAPST dataset, the values are equal for each target using
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the learned edit costs and the edit costs proposed by Harper et al.80 For the other datasets

in this experiment, median values using the learned and Harper’s edit costs were the same in

every case.

Finally, for the fourth experiment, we used the NRLiSt_BDB and MUV datasets. In

this experiment, the results using the learned edit costs are slightly better. The improve-

ment obtained by using the learned costs is exhibited in the median and maximum values

for theNRLiSt_BDB dataset. For theMUV, the improvement is more noticeable in the first

quartile, minimum and maximum values. Nevertheless, the third quartile is better for the

NRLiSt_BDB dataset using the costs proposed by Harper et al.80 For the other datasets in

this experiment, resultswere similar, obtaining loweror equalmedianvalues using the learned

edit costs compared to the edit costs fromHarper, except for CAPST, which obtained a bet-

ter median value using Harper’s ones.

Overall, the usage of GED together with ErGs using the learned edit costs obtained better

recognition ratio results in most cases. During the experiment, we only learned one edit cost

per case. We chose this straightforward and explicit approach to show the validity of our

method. Our learning methodology can be applied to learn several edit costs at a time, either

sequentially or in parallel. Learning a more significant number of edit costs might increase

the recognition ratio values than those presented in this paper.

Table 4.3 shows the edit costs proposed by Harper et al.80 and the learned edit costs ob-

tained for each experiment. We can see how the learned edit costs of the first experiment tend

to be lower than Harper’s edit costs in most datasets. It means that, in general, inserting or

deleting a link node should imply a lower cost than expected byHarper et al.80 On the other

hand, for the third experiment, learned edit costs tend to be slightly higher thanHarper’s edit
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Figure 4.4: The number of miss-classifica ons for all available targets in the LBVS benchmarking pla orm separated per
dataset and experiment. The sca ered values on the le of each subplot represent the number of classifica on errors
(the lower the values, the be er) using different colors and shapes depending on the edit costs used. Box-and-whisker
plots on the right of each subplot show the distribu on of the resul ng values for each experiment.
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Harper
et al CAPST DUD-E GLL&GDD MUV NRLiSt_BDB ULS-UDS

Experiment 1 1 0.000002 0.005 0.014 0.490 0.012 0.115
Experiment 2 2 0.013 0.145 0.333 0.867 0.104 0.500
Experiment 3 0 0.004 0.001 0.003 0.327 0.003 0.011
Experiment 4 3 0.017 0.186 0.206 1.005 0.024 0.607

Table 4.3: Harper’s and learned costs (average values from all targets) per experiment.

costs, which means that inserting or deleting a single bond edge should imply a higher cost

than Harper et al. expected. Furthermore, learned edit costs of second and fourth experi-

ments tend to have a higher value than first and third experiments. It might imply that the

substitution of a link node for an aromatic ring node or the substitution of a single bond edge

for a double bond edge should carry a higher cost than inserting or deleting a link node or a

single bond edge. This information is helpful to increase our knowledge about the structure-

activity relationship within the molecules.

4.3.1 Comparisonwith the previous chapter

In order to make a direct comparison of results obtained in this chapter with those from the

previous chapter 3, we show in Figure 4.5 a plot with the AUCROC values computed using

Harper’s and learned transformation costs applied to the same subset of molecules used in

this section.

The figure shows the superiority of both GED-based methods compared with the SED-

based and the FP-based method. The difference between the GED using the edit costs pro-

posed by Harper et al. and the edit costs we have learned is small. This mild difference in

Experiment 3 is likely due to the usage of only one edit costs to be optimized, namely, the in-

sertion/deletion cost corresponding to the single bond edge (“-” attribute in Table 2.2). Nev-

ertheless, it is possible to notice how the minimum value and the median value are slightly
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Figure 4.5: AUROC values comparison between chapter 3 and chapter 4 over the 127 targets.

better when using the optimized version of the edit costs.

4.4 Discussion

In the previous chapter, a molecular similarity measure was presented, which uses graph edit

distance to compare molecules’ representation by extended reduced graphs effectively. At

that moment, the edit costs for the different node and edge operations were assigned using

expert knowledge. In this chapter, we used a learning algorithm to learn the edit costs auto-

matically. Significant performance improvements were shown when using the learned costs

in most experiments for the 127 targets present in the six datasets. All datasets used are pub-

licly available and were formatted as part of the benchmarking platform proposed by Skoda

and Hoksza.

Results show that the learned edit costs performed as good or better in most of the targets

present in the six datasets, compared to the edit costs proposed by Harper et al.80 Moreover,

the learned costsmay also give some ideas related to the structure-activity relationship present
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within the activity classes.

The optimizationprocess usually is computationally demanding, sometimes taking several

hours to be completed. The next chapterwill use amethodology inspired bynatural language

processing techniques to infer the transformation costs much faster.
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God not only plays dice, he throws them in the corner where

you can’t see them.

Stephen Hawking.

5
NLP tools to swiftly infer GED

transformation costs for virtual screening
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5.1 Chapter introduction

Graphs are frequently used in real-world applications, andmultiple complex systems are nat-

urally shaped as networks, making them ideal to be studied by employing their graph repre-

sentations. Some examples of such systems being: social networks where people follow and

interact with each other57, neural networks which mimic the way that neuron cells operate

inside the animal brains39, biological networks like Protein-Protein interactions6,166, and lin-

guistics or co-occurrence networks used in the field of text mining35.

In certain straightforward cases, graph structures include only single nodes or sequences

of nodes one after the other. However, in many applications, the data obtained from the sys-

tems is presented inmuchmore complex structures like trees, cyclic graphs, or acyclic graphs.

In those complex cases, network data can get considerably challenging to work with, so to

process it effectively, the main challenge is to find the most convenient network data repre-

sentation. In otherwords, finding how to represent networks clearly and concisely is a critical

step to conduct efficiently any advanced analysis44.

We can broadly separate Graph analytics tasks into four categories: node classification15,

link prediction97, clustering47, and visualization99. When working with any of these tasks,

applyingmathematical and statistical methods directly on the graphs is limited and challeng-

ing, also applying machine learning methods. This difficulty is probably because common

graph data structures such as adjacencymatrices and lists are plaguedwith sparsity, and sparse

representations are natural setbacks for data analysis andmachine learning applications,mak-

ing them harder to generalize in statistical learning.

One solution to tackle the sparsity problem is to apply some dimensionality reduction
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Figure 5.1: Example of conversion from an adjacency matrix to a low-dimensional con nuous vector space.

technique, converting the sparse graph data into a low-dimensional representation known as

graph embedding. Methods using this low-dimensional vector space are recently becoming

widely popular1,165,176.

Somepopularmatrix decomposition techniques are singular valuedecomposition (SVD)73

andmultidimensional scaling (MDS)107, but those techniques have a running time ofMatrix

Multiplication, which is around n3 (see Figure 5.1). This running time is not a big problem

for many applications; however, it might be unfeasible for graph representations involving

thousands or evenmillions of nodes. On top of that, thosematrix decomposition techniques

must be recomputed as nodes change or new nodes are added to the graph. To overcome

those challenges, we could use techniques coming from machine learning to compute the

low-dimensional embeddings; some examples of using machine learning for graph represen-

tation are Deepwalk130 and Node2vec77 (see Figure 5.2).

Graph embeddings should catch the graph’s topology, vertex-to-vertex relationship, and

other information about the subgraphs and vertices. We can divide embeddings into two

broad groups: vertex embeddings and graph embeddings. In vertex embeddings, each vertex

has its independent vector representation, which is helpful to obtain specific information or

makepredictions on the vertex level, e.g., studying the role or specific atoms inside amolecular
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Figure 5.2: Illustra on of the 2-dimensional embeddings obtained from the graph on the le . The embeddings can be
plo ed and clustered based on metrics such as the Euclidean distance.

structure. On the other hand, graph embeddings capture the information from the whole

graph in a single vector, which is helpful to obtain information or make predictions on the

graph level, e.g., studying the toxicity of whole molecular structures.

Beforediscussing embeddings, it isworth talking aboutWord2vec and the skip-grammodel112

since they are the base for this work’s graph embeddingmethod. Word2vec is also an embed-

ding methodology, but instead of transforming graphs into vectors, it transforms words into

vectors. After applyingWord2vec to an input text (also known as dictionary) and get the em-

beddings as an outcome, a simple mathematical function like the cosine similarity between

the embedding vectors should indicate the level of semantic similarity between the words

represented by those vectors. Therefore, low cosine distance should represent two similar or

related words such as orange and apple, and high cosine distance should represent not very

related words such as car and closet.
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Figure 5.3: The green-box words are given to the network as targets; they are op mized to predict the words in the
neighborhood (white-box words). In this example, we consider words located up to two places away from the input
word.

5.1.1 Word2vec

Word2vecuses aneural networkwithonehidden layer to train the inputdictionary andbuild

the embeddings; this particular case of a neural network is called skip-gram. It is specifically

designed to learn the likelihood of words appearing in the proximity of other words into a

sentence; those nearby words are also known as “neighbor words”.

The skip-gram neural network is used only during the training phase; once this phase is

finished, we can obtain the embedding vectors from the trained values assigned to the arti-

ficial neurons placed in the middle hidden layer. Figure 5.3 shows an example with a short

text where the boxes represent the training neighborhood words predicted from the green-

highlightedword used as an input. Themain goal for the skip-grammodel is that two similar

words should have similar neighborhoods, and therefore, two similar words should also have

similar embedding vectors.

Figure 5.4 shows the main building blocks of a skip-gram neural network: the input layer,

one middle hidden layer, and the output layer. As for the input, the network receives the

words encoded as one-hot vectors (see the vector in the input layer in Figure 5.4). Those one-

hot vectors for eachword should have the same length as the word dictionary (the number of
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Figure 5.4: Components of a skip-gram neural network.

words in the text corpus used to train the network). All the values in a one-hot vector should

be zero except the one indicating the word it encodes in the same order as they appear in the

dictionary, as explained in Figure 5.5. The hidden layer does not have any activation func-

tion, and the final training values represent the word’s embedding. Finally, the output layer

uses a Hierarchical Softmax113,116,118 as an activation function to approximate the probabil-

ity distribution and speed up the training process. After training, this last layer indicates the

neighborhood words predicted for a given input.

Someworks helpfully analyze and explain theWord2vecworking process to bemore easily

understood by non-experts142,72, including tools used as a playground and learn by using the

actual algorithms. Figure 5.6 shows the 2D impression of the embeddings learned from a

simple training example using a small dictionary; this plot was made using one of the afore-

mentioned tools142.
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Figure 5.5: One-hot vectors construc on for an example dic onary of words.

After discussing the working mechanism of the skip-gram model for word embeddings

used in Word2vec, we can now move to graph embeddings and describe two related works,

namely DeepWalk and Node2vec, which also make use of the skip-grammodel.

When working with nodes, we also need an input set of phrases like the word dictionary

mentioned inWord2vec. Since we do not have such dictionaries or phrases in graphs, we can

build an analogy out of walks through the network as described in the following sections.

5.1.2 DeepWalk

DeepWalk employs the use of random walks to generate the walk-dictionary. To build a

random walk, we start in a selected node, move to a random neighbor, and keep moving

randomly for a defined number of steps. In the end, the walk will be the combination of

random nodes selected and the links or bonds between them.

The whole DeepWalk method can be broadly separated into three steps:

1. Sampling the graph: The idea is sampling the graph by using randomwalks; not many

randomwalks per node are necessary, and they do not need to be very long, but indeed,

thenumber ofwalks and their length is usually different dependingon the size and type
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Figure 5.6: Wevi screenshot 178. The top le shows the control panel with the input dic onary and the learning se ngs.
The top right shows the evolu on of the neurons in the neural network during the training. The bo om le shows the
weight matrices for the input and output vectors from each word in the dic onary. The bo om right shows the PCA
distribu on of the embedding vectors obtained from the words in the dic onary. (Source: h p://bit.ly/wevi-online.)
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Figure 5.7: Phases of DeepWalk.

of the graphs used in the study.

2. Training the skip-gram: Similar Word2vec using the skip-gram to predict the proba-

bility of certain neighbor words by training the neural network with a collection of

one-hot vectors, the skip-gram in DeepWalk can predict the probability of specific

neighbornodes by training theneural network alsowith a collectionof one-hot vectors

representing the nodes.

3. Computing the embedding vectors: In DeepWalk, and also in Word2vec, the embed-

dings are obtained as the outcome of the hidden layer once the training step is com-

pleted; the only difference is that Word2vec computes the embeddings for words in a

dictionary whereas DeepWalk computes them for nodes in a graph.

5.1.3 Node2vec

Node2vec is another implementation of the skip-grammodel applied to graph networks. As

DeepWalk, Node2vec predicts the probability of specific neighbor nodes in the same win-

dow. One crucial difference between these two approaches is the sampling procedure used

to generate the random walks; DeepWalk generates them randomly, whereas Node2vec in-

cludes two parameters, P and Q, to discern between the type of walk we prefer, either BFS
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Figure 5.8: Probabili es of a random walk step in Node2vec a er moving one step from the red to the green node. The
probability of going back to the red node is 1/P; the probability of going to a non-neighbor of the previous node (red) is
1/Q; the probability of going to a neighbor of the previous node (red) is 1.

or DFS. In BFS (Breadth-first Sampling), the neighborhood is restricted to neighbors of the

source node. In DFS (Depth-first Sampling), the neighborhood comprises nodes sequen-

tially sampled at increasing distances from the source node. Furthermore, parameter Q de-

fines the random walk probability of discovering new parts of the graph far from the source

node, and parameter P defines the random walk probability of returning to a previous node

while exploring the network (see Figure 5.8). The other steps for the embedding construction

are the same as for DeepWalk.

Mol2vec83 is another work where the authors used a similar approach applying the skip-

grammodel for graphs, optimizing themodel to learn the vector representations ofmolecular

substructures. Like Word2vec, where closely related words are assigned to nearby embed-

dings in the vector space, in Mol2vec, the closely placed embeddings represent chemically

related substructures.

The skip-gram model in Word2vec is trained with an input dictionary made up of sen-

tences andwords. Mol2vec also uses an input textwhere instead of “words”, they useMorgan

fingerprints140, and instead of “sentences”, they use compounds. Each compound is encoded
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Figure 5.9: Morgan algorithm’s substructure selec on on heavy atoms for two different radios.

as one vector by summing theMorgan fingerprints of the individual substructures inside the

molecule.

Morgan fingerprints (also known as extended connectivity fingerprints (ECFPs)) are com-

monly used to represent the chemical features of themolecules since they usually outperform

other types of fingerprints inmolecular activity prediction138,104,110,158, as well as in similarity

search and virtual screening tasks139,127. TheMorgan algorithm generates and assigns unique

identifiers to all the possible substructures obtained from the heavy atoms of the molecule;

these substructures are restrained to a predefined radio around the heavy atoms, as presented

in Figure 5.9. The resulting identifiers (one for each heavy atom) are also known as Morgan

identifiers; they are usually hashed and combined into a vector with a predefined length to

obtain the compoundMorgan fingerprint of the whole molecule.

In their work, after processing all the molecules and obtain the molecular “sentences”, the

authors used them as typical text sentences to train aWord2vecmodel and obtain the embed-

dings. Later, the embeddings train different machine learning methods like random forest

and deep neural networks and perform molecular analysis like substructures relationships,

compound similarities, and supervisedML predictions.
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Figure 5.10: Phases of the approach used in this chapter.

This chapter uses the skip-grammodel to learn the features and compute a relative distance

betweendifferent nodes in a graph, similar to how it is done inDeepWalk andNode2vec. The

graph we use is built with the representations of chemical substructures obtained with the

ErGmethodology; in otherwords,we are training the skip-gramwith themolecular substruc-

tures from compounds, similarly to how it is done inMol2vec. Although in our case, we use

the spatial distances from the resulting embedding vectors as transformation cost values to

compare molecular graphs through the GEDmethodology applied to chemical compounds

for virtual screening. The entire process is presented in Figure 5.10.
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Datasets Molecules Avg Degree Avg Size Min Size Max size Problem type
MAO 68 2.1 18.4 11 27 Classification
PTC 416 2.1 14.4 2 64 Classification
AIDS 2000 2.1 15.7 2 95 Classification
ACYCLIC 185 1.8 8.2 3 11 Regression

Table 5.1: Feature summary of the datasets.

5.2 Specific materials and methods

5.2.1 Datasets

In this chapterweused fourpublic available datasets: MAO63, PTC169, AIDS135 andAcyclic40.

Table 5.1 shows the general properties for each dataset, including the number of molecules,

average degree, average size, minimum size, maximum size, and the type of problem. All

these datasets are available on the GREYC research group’s dataset repository76, with whom

we worked together to develop the experiments below.

A classification problem predicts the class of a molecule; the classification can be binary

(each molecule can belong to the positive or negative) or multi-class class (each molecule can

belong to one of several distinct classes). On the other hand, a regression problem consists of

predicting a property of a chemical compound, which can take the value of any real number.

The MonoAmine Oxidase (MAO) dataset is a classification problem that predicts the in-

hibitory character ofmolecules onmonoamine oxidase. The dataset consists of 68molecules

divided into two classes: 38 molecules inhibit monoamine oxidase (characteristic of an an-

tidepressant drug), and 30 do not. These molecules are represented with cyclic and labeled

graphs. However, the sets of cycles of each molecule do not differ much from one molecule

to another.
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The Predictive Toxicity Challenge (PTC) dataset is taken from the Predictive Toxicity

Challenge169. It proposes a classification problem: to predict the carcinogenicity of 416

molecules distributed over four classes of animals: female rats (FR, 351 molecules), male

rats (MR, 344 molecules), female mice (FM, 349 molecules), and male mice ( MM, 336

molecules). Each class of animals is separated into learning and testing sets. Each molecule is

made up of heteroatoms and rings and is represented by cyclic and labeled molecular graphs.

The AIDS dataset is taken from135 and is based on the AIDSAntiviral ScreenDatabase of

Active Compounds. It consists of 2000 diverse chemical compounds, some of them made

up of disconnected molecules. These chemical compounds have been classified as active or

inactive against HIV. They are divided into three groups: learning set with 250 compounds,

validation set with 250 compounds, and test set with the remaining 1500 compounds.

The ACYCLIC dataset comprises 185 acyclic ether molecules used in regression problem

experiments to predict their regular boiling point40. These molecules are acyclic and include

heteroatoms (atomswith a chemical element different from carbon) and are thus represented

as acyclic labeled graphs. The boiling temperatures range from −23.7 °C to 250 °C.

5.2.2 Molecular representation and comparison

This chapter employs the GED-based method, presented in detail in section 1.5.3, to com-

pare molecules represented as the ErGs described by Stiefl et al.161, where node features rep-

resent pharmacophore-type node descriptions.

In chapter 3, we used the edit costs proposed byHarper et al.80, and in chapter 4, we used

a genetic algorithm to optimize the edit costs. Differently, in this chapter, we use a much less

computationally expensive method, the skip-grammodel, to learn the features and compute
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a relative distance between different nodes in a graph. Then we use those relative distances as

transformation costs for the GED.

GED computation

As in chapters 3 and 4, here we compute the approximation of the GED in polynomial time

using an in-house implementation of the bipartite graphmatchingmethod proposed by Ser-

ratosa150; it was programmed in C++ and Python languages.

GED transformation costs

During the graph comparison process, the GED-based method uses three different sets of

edition costs:

1. The first set of costs uses a random distance between different types of nodes and,

therefore, a random distance between molecules; this is used as a reference to confirm

whether the distances obtained with the other sets behave randomly or not.

2. The second set of costs uses a fixed value when comparing different node types and

zero if comparing the same type of nodes as presented in Tables 5.2 and 5.3; we refer

to this set of costs as “Direct Costs”.

3. The third set of costs is the one obtained from the skip-gram model and its embed-

dings.

133

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL PATTERN RECOGNITION FOR CHEMICAL-COMPOUND VIRTUAL SCREENING 
Carlos Jesús García Hernández 



Substitution Costs for Nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1] 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3
[2] 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3
[3] 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3
[4] 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3
[5] 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3
[6] 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3
[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3
[0, 1] 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3
[0, 2] 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3
[0, 3] 3 3 3 3 3 3 3 3 3 3 0 3 3 3 3
[1, 2] 3 3 3 3 3 3 3 3 3 3 3 0 3 3 3
[1, 3] 3 3 3 3 3 3 3 3 3 3 3 3 0 3 3
[2, 3] 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3
[0, 1, 2] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0

Insertion/Deletion Costs for Nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
delete 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.2: Direct Subs tu on, Inser on, and Dele on costs for Nodes.

Substitution Costs for Edges
- = ≡

- 0 3 3
= 3 0 3
≡ 3 3 0
Insertion/Deletion Costs for Edges

- = ≡
insert 1 1 1
delete 1 1 1

Table 5.3: Direct Subs tu on, Inser on, and Dele on costs for Edges.
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Figure 5.11: Wevi screenshot 178 using an example of a small dic onary and a er only 200 itera ons. Le shows the
weight matrices for the input and output vectors. Right shows the PCA distribu on of the embedding vectors. In the
bo om le of the PCA plot, we can no ce a cluster with the words “orange”, “rice”, and “apple” in orange and the word
“eat” in blue; implying a seman c rela onship between the fruits and the verb “eat” higher than with “milk” or “water”
whose vectors are closer to the verb “drink”. (Source: h p://bit.ly/wevi-online.)

5.2.3 Embedding generation

The Skip-gram model is a machine learning technique for natural language processing that

learns word associations from an input text or dictionary, as described in section 5.1.1. While

training, the neural network fixes a word and uses it to predict those nearby or neighbor

words. Once trained, the model can identify synonyms and related words and even make

suggestions to complete a partial sentence112.

Theobjective function in the skip-gramneural network seeks tomaximize the co-occurrence

probability for eachwordwithin a specifiedwindow in a sentence. Due to this objective func-

tion, words appearing in similar contexts end up having similar embeddings; the distance

between embeddings can be measured by the cosine similarity or the euclidean distance (see

Figure 5.11).

The graphweuse is builtwith the representations of chemical substructures obtainedwith
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the ErG methodology; in other words, we will be training the skip-gram with the molecular

substructures from compounds, similarly to how the authors do it in Mol2vec.

We use the skip-gram model in a similar way to Word2vec. However, instead of learning

relative distances betweenwords, we seek to learn the relative distance between nodes in ErGs

to later use those distances as transformation costs for the GEDmethodology. Following, we

will discuss the process to obtain the embeddings.

Joined paths as a text corpus

Wor2vec uses a corpus of text (word-dictionary) as input to train the skip-grammodel; from

this corpus and for each training step, the algorithm extracts a sentence of a certain length

(window) and uses it to learn the word co-occurrence probability within that specific win-

dow. The algorithm thenmoves on to the followingwindow and repeats the same procedure

as exhibited in Figure 5.3.

As described in sections 5.1.2 and 5.1.3, Deepwalk and Node2vec employ random walks

to generate a walk-dictionary, treating walks as the analogy of sentences in Word2vec; each

walk will combine different nodes and the links or bonds between them.

We use an implementation based onNode2vec with a slight difference to create the walks.

Node2vec was thought mainly to be applied on big graphs like social interaction networks;

unlikely, we are working with small molecular graphs, then we create the walks out of short-

est paths between all pairs of nodes. Next, we remove all paths shorter than a given value

“n2v_walk_length” and remove duplicate paths or reverse duplicate paths (identical paths

but opposite order). Later we use the remaining paths as sentences to feed into the skip-gram

model, where they are treated similarly to the sentences in the text-corpus used byWord2vec;
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Figure 5.12: The process of joining together paths from different graphs.

wecan call this corpus “path-corpus”. Thepath-creating process is exemplified in Figure 5.12.

Visualizing the node embeddings

Here we use the gensim133 skip-gram implementation of Word2vec to compute the embed-

dings of the sentences we created using the shortest paths. This implementation is a shallow,

two-layer neural network.

Figure 5.13 shows a 2D and 3D visual representation of the embeddings obtained in one

of the experiments using the AIDS dataset.

We use the cosine similarities or euclidian distances among all the embeddings as transfor-
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Figure 5.13: 2D and 3D T-SNE visualiza ons of embeddings from the AIDS dataset.

mation costs for the GED computation. In other words, those distances will substitute the

edit costs proposed byHarper et al.80 used in chapter 3; andwill also substitute the optimized

edit costs used in chapter 4.

Dimensionality evolution and stability

The quality of word embedding increases by using a higher number of dimensions; never-

theless, the quality stops increasing after a certain point; it either finds a plateau or starts de-

creasing112. Therefore, it is a good practice to analyze the dataset to find a coherent number

of dimensions.

We ran experiments and measure the stability by relative square error (RSE) between the

cosine distances among all the embeddings. The cosine distances among embeddings are the

values we use as transformation costs for the GED computation; thus, we compute those

distances while increasing the number of dimensions and later measure the stability like:

∑
|(Cn − Cn−1)|2
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Figure 5.14: Stability evolu on of embeddings with different datasets.

where Cn is the matrix of cosine distances among all embeddings computed using n di-

mensions, andCn−1 is the same computed using n− 1 dimensions starting from n = 10 until

n = 2000.

Figure 5.14 shows the evolution of cosine distances among embeddings with different

datasets. The distances were relatively stable for all cases when dimensions n = 1000; hence,

we use that value for the experiments below.

Other settings to compute the embeddings

Word2vec can be trained in two ways: one option is the continuous bag of words (CBOW)

when the objective function attempts to predict aword from a context regardless of the order

of words in the input context (thus the bag-of-words assumption). The other option is the
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Skip-gram when the context is predicted according to the input word and assigns a higher

weight to closer words inside the input context. We use the Skip-gram model only because

wewant to learn the graph’s structure, givingmore significance to nodes closer to each other.

Other parameters in the skip-gram algorithm like “window size” were explored to find the

best settings. The “window size” indicates the size of the context used by the algorithm for

the training stage; we use a value of 3 in our experiments.

Any non-frequent type of node not appearing in the training data will be treated as “UN-

KNOWN” for the rest of the experiments, assigning a transformation cost equal to “IN-

FINITY”. The goal is to ignore those ErGs having rare nodes since Word2vec cannot get

meaningful embeddings for rare words.

Computational expense

The experiments reported in this chapter were performed using an octa-core, 3.5 GHz Intel

Core i7 laptopwith 16GBRAM(operating system versionUbuntu 18.04). Comparedwith

chapters 3 and 4, the computations performed here are significantly light and quick. The

average time to compute the embeddings for one dataset is notmore than a couple of seconds.

For instance, the computation of the embeddings and cosine distances for theAIDSdataset is

about 4 seconds; the ACYCLIC dataset is about 400milliseconds; theMAOdataset is about

370milliseconds, and for anyof thePTCsub-sets is about 1.5 seconds. Those execution times

are almost insignificant compared to the optimization time needed for the genetic algorithm

used in chapter 4.
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5.2.4 Method evaluation

As we discussed before in section 5.2.2, in this chapter, we compare three different sets of

edit costs to confirm whether the information obtained through the embedding process is

significantly better than other methods. The three versions of edit costs used to compute the

GED are:

• “random-costs”, used as a reference to compare the behavior of our method with that

of a random distance generator.

• “direct-costs”, based on a set of fixed values as presented in Tables 5.2 and 5.3.

• and our method, “embedding-costs”, obtained through the skip-grammodel.

To evaluate the predictive accuracy of the different edit cost sets, we use a version of the

“k-nearest neighbors” algorithm (k-NN) depending on the type of task we are working with,

being either a classification or a regression problem.

For classification tasks, namely MAO, PTC and, AIDS, we use the k-NN classification

model to perform the predictions; later, we use a simple counting of correct and incorrect

outputs to evaluate thequality of results. For regression tasks, namelyACYCLIC,weuse a k-

NNregressionmodel2, where k is thenumber ofneighbors taken into account toperform the

prediction. Later, we use the Residual Sum of Squares (RSS), defined as the sum of squared

prediction errors made for each molecule, to evaluate the quality of results.

Datasets available on the GREYC repository76 are often conveniently separated into dif-

ferent splits to be used independently as train and test sets. We use the test set to measure the

methods’ prediction accuracy with a specific set of edition costs. The train set is used to op-
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timize the hyper-values, e.g., the k value optimized using a 5-fold cross-validation procedure

for all values between 1 and 25.

5.3 Results

The experiments carried out in this chapter are aimed to directly compare the predictive ac-

curacy among three different sets of edition costs. We tested the three sets with an in-house

implementationof the bipartite graphmatchingmethodused to compute the approximation

of the GED in polynomial time.

The pipeline for each experiment is always the same:

1. select one of the databases mentioned in section 5.2.1.

2. transform the molecular graphs in the dataset into ErGs.

3. create the path-corpus by joining all the paths available in the ErGs as described in

section 5.2.3.

4. compute the embeddings via the skip-gram model while increasing the number n of

dimensions.

5. verify the stability of the embeddings when n = 1000 and use those embeddings for

the next steps.

6. measure the spatial distance among all the embeddings anduse themas transformation

costs for the GED computation

7. use the GED and the transformation costs to compute the distances among all the

molecules and create a molecular distance matrix.
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Figure 5.15: Heatmap using GED values with MAO dataset.

8. evaluate the accuracy of the distance matrix using the methodology described in sec-

tion 5.2.4.

9. analyze the outcome of the evaluation.

Analysis of the experiments.

Figure 5.15 shows the heatmap of an example molecular distance matrix obtained with

theMAOdataset and the transformation costs obtained from the embeddings. In this exam-

ple, molecules were organized by activity, placing all active molecules at the beginning and

all inactive molecules at the end. The figure shows two different groups indicating how dis-

tance values tend to be lower for molecules belonging to the same activity group and higher

otherwise.

Figure 5.16 shows the bar plots with the values obtained in the experiments using the four

subsets in the PTC dataset and the three different sets of transformation costs. The GED

classification accuracy is higher for all subsets using the transformation costs computed from

the embeddings (ged_embs). For all subsets, the accuracy obtained by using the direct values
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Figure 5.16: Results for PTC_0, PTC_1, PTC_2, and PTC_3 datasets.

(ged_dir) is lower than the embeddings; however, it is higher than the one achieved using the

random values as transformation costs (ged_rand).

Figure 5.17 (a) shows the bar plots with the values obtained using the MAO and AIDS

datasets. With MAO, the classification accuracy obtained with ged_embs and ged_dir is the

same, bothbeingbetter thanged_rand. A similar situationoccurs forAIDS,where ged_embs

and ged_dir are very alike; nevertheless, they are not the same (see Table 5.4).

Figure 5.17 (b) shows the bar-plot with the values obtained using the ACYCLIC dataset.

In this experiment, the regression error RSS computed with ged_embs is lower than that

computed with ged_dir and ged_rand. Since this is a regression dataset, the measure is based

on the differential error; therefore, lower values are better.

Table 5.4 includes the actual values obtained for the experiments using the seven datasets

and the three versions of the transformation costs. Here we can confirm that results are as

good or better for all cases when using the transformation costs based on embeddings, rather

than using the transformation costs based on direct or random values.
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(a) (b)

Figure 5.17: (a) Results for MAO and AIDS datasets. (b) Results for the ACYCLIC dataset.

dataset ged_embs ged_dir ged_rand
ptc_0 0.5616438356164384 0.5342465753424658 0.4657534246575342
ptc_1 0.6521739130434783 0.6413043478260869 0.5869565217391305
ptc_2 0.6065573770491803 0.5409836065573771 0.45901639344262296
ptc_3 0.59 0.57 0.54
mao 0.779412 0.779412 0.45588235294117646
aids 0.9793333333333333 0.978 0.796
acyclic 38.627896439574194 43.60018615234525 46.3911403146047

Table 5.4: Actual values for all the experiments using the seven datasets and the three sets of transforma on costs.
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5.4 Discussion

This chapter continues our global aim to combine graph-reduction, graph-distance, andma-

chine learning techniques to compare molecular structures and reveal inherent relationships

among them.

Chapter 3 presented a molecular similarity measure based on GED and ErGs to compare

the representation of molecules based on their pharmacophore-type node descriptions. In

that chapter, we used the edit costs proposed by Harper et al.80, fixed values assigned by ex-

perts to manage relationships between the different node and edge types. Later, in chapter

4, we aimed to automatically learn the edit costs on nodes and edges through a genetic algo-

rithm, which resulted in an improved version of the algorithm at the expense of a long and

heavy optimization process. This chapter uses a fasterMLmethod based onNLP to learn the

features and compute relative distances between different nodes and edges in a graph; those

relative distances were later used as transformation costs for the GEDmethodology.

All datasets in this chapter are formatted and publicly available on the GREYC research

group’s dataset repository, with whom we were working together to develop this section’s

experiments.

GEDs computed with the embedding-based transformation costs are equal or better than

the other two proposed sets of transformation costs. Since embeddings overtake the fixed

values, we can hypothesize an intrinsic knowledge relationship between the embeddings and

the pharmacophore-type of nodes in the ErGs. Additionally, we show that results do not fol-

low a random distribution behavior; this is achieved by comparing all results with a random

pairwise distance between ErGs. Finally, as in the previous chapter, the optimized transfor-
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mation costs may hint at the structure-activity relationship in the different activity classes.
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If you torture the data long enough, it will confess.

Ronald Coase.

6
General conclusion
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This thesis focuses on studying QSAR models to find significant correlations between

molecular structure and molecular bioactivity, assuming that structurally similar molecules

are likely to have similar properties. This assumption makes molecular similarity methods

frequently used to select suitable candidates in the drug discovery industry and in ligand-

based virtual screening applications, where the activity of compounds is estimated from the

bioactivity based on similar molecules.

In our work, we favored the use of graph reduction, graph theory, and optimization tools.

It is not thefirst time those tools are used in life sciences formolecular analysis,QSARmodels,

and drug discovery. Chapter 1 presents a state of the art and literature review on molecular

similarity and virtual screening in chemoinformatics. Most of the works mentioned in that

chapter are based on fingerprints, which are substructure descriptors generating a vector en-

coding information about the molecule. Fingerprints are particularly suitable for machine

learning or statistical analysis, often made up of binary digits (1s and 0s) representing the

presence or absence (in some cases, the frequency) of certain substructures or features in the

molecule. Fingerprints are fast to compute, use a small space in memory, and are relatively

easy to compare. However, experience shows that finding the best type of fingerprint for a

specific application (e.g., virtual screening) depends strongly on the data set. Moreover, fin-

gerprints include essential information about the molecule’s composition but contain lim-

ited information about its structure and shape.

Chapter 2 shows and explains the general materials and methods used throughout this

work, emphasizing the datasets, the graph reduction process, the GEDmethodology, the op-

timization tools, and the evaluation methods.

Chapter 3 introduces a molecular similarity measure to compare the representation of
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molecules as extended reduced graphs utilizing the graph edit distance. The goal of that chap-

ter is to present an alternative to the string edit distance-based andfingerprint-based similarity

methods available, including the original one used in the paper on ErGs. The experiments in

that chapter used several samples from publicly available datasets and an open-source bench-

marking platform. The platform includes, among other features, various screening and sta-

tistical tools and provides fully reproducible outcomes. Results show that the GED-based

methodperformedbetter in5outof 6methods according to the “early recognition”BEDROC

values; moreover, GED-based performed better in 4 out of 6 methods according to AUC

values. The transformation costs used in that chapter were proposed by Harper et al., fixed

values experts assigned to manage relationships between the node and edge types.

Chapter 4 presents an optimization procedure based on a genetic algorithm to automat-

ically learn the edit costs for nodes and edges in several scenarios using various toxicological

endpoints. The optimization improves the recognition ratio when classifyingmolecules rep-

resented as ErGs according to their biological activity. A significant improvement is obtained

using the learned costs in most experiments for the 127 targets present in the six datasets. All

datasets used are publicly available and formatted as part of a benchmarking platform. Re-

sults show that the learned edit costs performedas goodorbetter inmost of the targets present

in the six datasets, compared to the edit costs proposed by Harper et al.

Additionally to the better performance, the learned edit costs may also give some hints

about the structure-activity relationship in the activity classes. This method’s downside is

theneed for a long andcomputationally heavyoptimizationprocess, sometimes taking several

hours to be completed.

Finally, chapter 5 uses a methodology inspired by natural language processing techniques,
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the skip-grammodel, to infer the transformation costsmuch faster than the previous chapter.

This process analyzes relationships between node features as words in a text and computes

relative distances between different nodes and edges in a graph. The relative distances are

then used as transformation costs for the GEDmethodology. All datasets in this chapter are

formatted and publicly available similarly to those in the previous chapters.

GEDs computed with the embedding-based transformation costs are equal or better than

the other sets of transformation costs proposed for evaluation. Results obtained using the

embeddings do not follow a random distribution behavior; this is confirmed by comparing

all results with a random pairwise distance between ErGs. Furthermore, the transformation

costs obtained from the embeddings may hint at the structure-activity relationship in the

different activity classes, which could be understood as an intrinsic knowledge relationship

between the embeddings and the pharmacophore-type of nodes in the ErGs.

From a global view, this thesis aims to combine graph-reduction, graph-distance, and ma-

chine learning techniques to compare molecular structures and reveal inherent relationships

among them to be used in LBVS applications. The results proved promising and consistent,

with our methods performing better than others based on reduced graphs or array repre-

sentations. We use various screening and statistical tools, including the ligand-based virtual

screening benchmarking platform and the RDKit open-source cheminformatics software.

Overall, it is shown that extended reduced graphs, graph edit distance, and optimization

tools are a suitable combination of methods. This combination has numerous applications

and identifies bioactivity similarities in structurally diverse groups ofmolecules, thus suggest-

ing that theymight be beneficial in scaffold-hopping applications. Moreover, from the results

in chapters 4 and 5, we can conclude that optimizing the transformation costs performed on
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specific activity classes can improve retrieval accuracy and yield some property hints about

the underlying structure-activity relationship among molecules.

6.1 Prospects and Perspectives

After performing diverse experiments with tools coming from several fields, this work opens

different perspectives to go further in the attempt to solve the problems related to molecular

bioactivity prediction:

First, reduced graphs try to generalize themolecular structurewhile retaining the topology

information. They proved helpful in many situations, but the reduction scheme is crucial

depending on the type of application. For instance, in applications searching for Markush

structures, a simple ring/non-ring scheme might suffice; on the other hand, applications to

identify the structure-activity relationship, more complex schemes are required to identify

the pharmacophoric groups. We conceive as an option the use of an optimizationmethod to

learn the sub-structures reduced in each specific scheme according to the type of molecular

property to be predicted.

Second, as mentioned in chapter 3, this work does not envisage the use of stereochemi-

cal information for molecules, and it constitutes essential information for specific chemical

properties. It would be interesting to include the 3D location of each atom as a quantitative

label and then use a reference of the neighbors’ location as an extension of the costs in the

graph edit distance methodology.

Third, life sciences are advancing at a rate probably faster than most branches of science,

and the same can be said formachine learning; Combining those two research fields can yield

outstanding outcomes. Thus, similarly to how we used a shallow, two-layer neural network
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in chapter 5 as the skip-gram implementation to infer the transformation costs of the GED.

It might be a good idea to use a Graph neural network combined with an objective function

based on the GED as a tool to infer better transformation costs yielding improved property

hints about the structure-activity relationship among molecules.
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