67 research outputs found

    NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

    Full text link
    The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics

    NeuroBench:Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

    Get PDF
    The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics

    Human activity recognition: suitability of a neuromorphic approach for on-edge AIoT applications

    Get PDF
    Human activity recognition (HAR) is a classification problem involving time-dependent signals produced by body monitoring, and its application domain covers all the aspects of human life, from healthcare to sport, from safety to smart environments. As such, it is naturally well suited for on-edge deployment of personalized point-of-care (POC) analyses or other tailored services for the user. However, typical smart and wearable devices suffer from relevant limitations regarding energy consumption, and this significantly hinders the possibility for successful employment of edge computing for tasks like HAR. In this paper, we investigate how this problem can be mitigated by adopting a neuromorphic approach. By comparing optimized classifiers based on traditional deep neural network (DNN) architectures as well as on recent alternatives like the Legendre Memory Unit (LMU), we show how spiking neural networks (SNNs) can effectively deal with the temporal signals typical of HAR providing high performances at a low energy cost. By carrying out an application-oriented hyperparameter optimization, we also propose a methodology flexible to be extended to different domains, to enlarge the field of neuro-inspired classifier suitable for on-edge artificial intelligence of things (AIoT) applications

    Sub-mW Neuromorphic SNN audio processing applications with Rockpool and Xylo

    Full text link
    Spiking Neural Networks (SNNs) provide an efficient computational mechanism for temporal signal processing, especially when coupled with low-power SNN inference ASICs. SNNs have been historically difficult to configure, lacking a general method for finding solutions for arbitrary tasks. In recent years, gradient-descent optimization methods have been applied to SNNs with increasing ease. SNNs and SNN inference processors therefore offer a good platform for commercial low-power signal processing in energy constrained environments without cloud dependencies. However, to date these methods have not been accessible to ML engineers in industry, requiring graduate-level training to successfully configure a single SNN application. Here we demonstrate a convenient high-level pipeline to design, train and deploy arbitrary temporal signal processing applications to sub-mW SNN inference hardware. We apply a new straightforward SNN architecture designed for temporal signal processing, using a pyramid of synaptic time constants to extract signal features at a range of temporal scales. We demonstrate this architecture on an ambient audio classification task, deployed to the Xylo SNN inference processor in streaming mode. Our application achieves high accuracy (98%) and low latency (100ms) at low power (<100μ\muW inference power). Our approach makes training and deploying SNN applications available to ML engineers with general NN backgrounds, without requiring specific prior experience with spiking NNs. We intend for our approach to make Neuromorphic hardware and SNNs an attractive choice for commercial low-power and edge signal processing applications.Comment: This submission has been removed by arXiv administrators because the submitter did not have the authority to grant a license to the work at the time of submissio

    Benchmarking of Neuromorphic Hardware Systems

    Get PDF
    Ostrau C, Klarhorst C, Thies M, Rückert U. Benchmarking of Neuromorphic Hardware Systems. In: Neuro-inspired Computational Elements Workshop (NICE ’20), March 17–20, 2020, Heidelberg, Germany. International Conference Proceeding Series (ICPS). Association for Computing Machinery (ACM); 2020.With more and more neuromorphic hardware systems for the accel- eration of spiking neural networks available in science and industry, there is a demand for platform comparison and performance esti- mation of such systems. This work describes selected benchmarks implemented in a framework with exactly this target: independent black-box benchmarking and comparison of platforms suitable for the simulation/emulation of spiking neural networks

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators
    • …
    corecore