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ABSTRACT
With more and more neuromorphic hardware systems for the accel-
eration of spiking neural networks available in science and industry,
there is a demand for platform comparison and performance esti-
mation of such systems. This work describes selected benchmarks
implemented in a framework with exactly this target: independent
black-box benchmarking and comparison of platforms suitable for
the simulation/emulation of spiking neural networks.

CCS CONCEPTS
• Hardware → Power and energy; • Computing methodolo-
gies → Neural networks.
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There is large interest in neuromorphic computing: a growing num-
ber of proposed architectures have been fabricated and are ready
to use. To name just the largest projects, there are for example
the BrainScaleS [21], DYNAPs [18], Loihi [8], SpiNNaker [11] and
TrueNorth [5] systems, with some successors already planned or
under construction. Numerous publications have shown the ap-
plicability of these systems in different areas of computation, e.g.
[2, 3, 24, 26, 28]. Furthermore, there are attempts to make many
of these systems accessible via a unified API [9]. Still, a lack of
spiking neural networks descriptions deployable to several of these
platforms complicates direct comparisons and benchmarking. Only
a few attempts have been made (see e.g. [15, 25]), and those are
insufficient to compare these systems fairly, as every application
benchmark reveals only certain properties of a hardware system.
At the same time, the need for comparative studies grows [6, 7, 27]
to measure the state of the current hardware systems, but also to
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quantify the progress of following hardware generations. However,
it is not yet clear what “the” application for spiking neural networks
will be. Thus, state-of-the-art applications of these networks are
changing swiftly, and in any possible direction. For preexisting
applications it is not immediately clear, whether these map well to
all systems, or whether a certain architecture type is in general not
suited. Finding a network or algorithm that is working on a variety
of hardware accelerators and not just solutions confined to a single
platform complicates this endeavour.

In this work we elaborate on our benchmarking approach for
neuromorphic platforms. Previous work presented a sample appli-
cation [25] and our software framework SNABSuite (SpikingNeural
Architecture Benchmark Suite) for benchmarking neuromorphic
hardware [19]1. In this approach, we take a user’s perspective and
use the same network description on every hardware platform
(compare Figure 1). We presume that the preparation and mapping
of spiking neural networks is optimized by the respective front-
end software of the target platform. Due to obvious differences
in the hardware, we nevertheless allow adjusted sizes of neuron
populations (e.g. dependent on chip size) and neuron parameters
(due to different neuron models, device mismatch or calibration
issues). This is only one part of the modularity of the suite, as the

1https://github.com/hbp-unibi
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Figure 1: Benchmark work-flow presented in this paper.
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Figure 2: Benchmarks are separated into three categories.

support for target platforms is independent of benchmark imple-
mentations, and new benchmarks can be added without touching
the platform-specific backends. This results in flexibility in several
directions. First, new simulation backends can be added that adopt
any existing benchmarks with minimal effort. Second, the number
of implemented benchmarks is constantly growing and third, exist-
ing benchmarks can be used beyond their elementary benchmark
procedure, e.g. for parameter sweeps or tests. To tackle the problem
of varying applications in the field, we found it useful to have a
rather broad approach to benchmarking. The scope of benchmarks
ranges from low-level benchmarks, measuring application indepen-
dent raw performance of hardware properties, up to application
benchmarks, which have a specific task to solve. In between, there
are application inspired sub-tasks, that are self-contained core algo-
rithms of applications (compare Figure 2). Application benchmarks
give very specific performance measures that are tightly coupled
to the application itself, while only benchmarks from the other
two categories allow to extrapolate results for multiple application
domains or different spiking networks.

At the time of writing, the presented benchmark framework
targets four neuromorphic simulators via the Cypress abstraction
layer (compare [19, 25]). First, it supports the NEST (NEural Simu-
lation Tool) CPU simulator [12, 14] as a baseline in regard to com-
putational accuracy. The NEST-specific backend is implemented
either using NEST via PyNN [9], or NEST’s native SLI interface.
NEST allows scalable simulations supporting multi-threading on
local nodes, as well as MPI for simulations on distributed high-
performance computing clusters [13]. Second target system is the
SpiNNaker platform [11], which simulates spiking neural networks
digitally on a distributed system. Its architecture is comprised of 4
to 48 SpiNNaker chips, with each of them containing 18 ARM968
general purpose processing cores. In general, the SpiNNaker sys-
tem allows networks to run in real-time, with the option to slow-
down the simulation for increased accuracy. The third platform

Platform Average freq. Std. dev. Max Min
in ms−1 in ms−1 in ms−1 in ms−1

BrainScaleS 2.15 0.40 4.17 0.89
Spikey 2.80 0.13 2.86 2.50
NEST 5.00 0.00 5.00 5.00

SpiNNaker 1.00 0.00 1.00 1.00
Table 1: Results of a benchmarkmeasuring themaximal fre-
quency of a single neuron.

is the mixed-signal Spikey [22] system. Spikey uses analog cores
and emulates a parametrizable integrate-and-fire neuron model
with conductance based synapses 10,000 times faster compared
to biological realtime and employs a digital interconnect for the
transmission of spikes. The full system consists of two chips, where
each chip supports the emulation of 192 neurons with 256 synapses.
As Spikey’s neuron model is fixed, our benchmarks default to this
model even on the more flexible target platforms. Finally, the mixed
signal BrainScaleS system [21] is coupled via its high-level C++
interface. In contrast to Spikey, BrainScaleSs emphasis is on scaling
the architecture to larger systems. A single HICANN chip supports
512 neuron circuits with 220 synapses each, and up to 64 circuits
can be combined to form a virtual neuron, if more synapses are
needed. BrainScaleS employs wafer-scale integration [23] to group
352 HICANN chips to be used by a single network.

Figure 3: Spike raster plot for winner-takes-all networks on
SpiNNaker and Spikey. The SNABSuite framework produces
such plots on demand as part of its debug output. The WTA
dynamics between two populations is clearly visible.
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Platform #Solved Bio-time to sol. Standard dev. Real-time to sol. Power Energy to sol.
Sudokus in ms in ms in s inW in J

BrainScaleS 86 3,241.9 4,573.1 3.24 ·10−4 NA †0.0062
NEST 100 214.6 263.1 0.03 45 1.4
SpiNN-3 99 241.2 250.0 2.41 2.7 6.5
Spikey 75 3,745.8 6,041.1 3.75 ·10−4 5.6 0.0021

Table 2: Excerpt of a bunch of benchmarks solving Sudokus. Note that the actual network differs on target platforms due to
hardware limitations. For more details see [20]. † calculated from values given in [24]

In the remainder of this paper we present an example of such
a hierarchy of related benchmarks. Solving constraint satisfac-
tions problems applying a winner-takes-all (WTA) architecture
is a known concept [10, 16], and due to the robustness of this kind
of networks it is suited to be deployed on neuromorphic hardware.
As such, the WTA networks are hardware limited by e.g. read-out
bandwidth and communication bandwidth, which are low-level
entities and can be measured beforehand. The mere core-algorithm,
the WTA network, can also be tested alone.

As a representative of the low-level benchmarks, we take a look
at output rates of a single neuron. On hardware, these can be limited
by buffers, bandwidth restrictions and more. Looking at the results
in Table 1 it becomes clear, that on digital simulators the maximal
output rate is determined by the time-step and thus by the accuracy
of the simulation. On analog emulators however, themain limitation
is reading out events from the analog circuitry. This maximal output
rate is key to parameter tuning of the following networks.

In our specific case, the representative medium-level benchmark
for the sub-task is evident. The system has to show its capability to
run simple WTA networks. Here, we connect two populations of
neurons with independent random poisson spike sources, and make
use of cross inhibition and self-excitation. Depending on the target
architecture, the cross inhibition is realized with the help of direct
inhibition between populations, mirror populations or through
inhibition by a single separate population. As motivated above,
not all network topologies are suitable for all target platforms,
which is why every variant is treated as a separate benchmark
task. For all setups, both populations are activated with roughly
the same probability in the optimal case. Still, one might observe
that a population spikes systematically less than then the other, or
even that major parts of the populations do not spike at all. This
might be a statistical effect of the random input noise, but it might
also occur due to bandwidth limitations, especially if full parts of
a population do not spike. On both analog platforms we had the
experience that, if a single neuron spikes at a rate somewhere close
to the values measured in Table 1, the results cannot be trusted
anymore. Careful tuning of parameters can reduce the average spike
frequency and thus reduce the load on these hardware systems.
Investigating the results from Figure 3 one can see that in the
simulated case both competing populations are activated roughly
with equal probabilities on the SpiNNaker system. However, on the
analog Spikey system neuron mismatch impairs the results. There
is a difference between how likely neurons get activated, and this
leads to favouring of one of the populations. This implies that results
with winner-takes-all based architectures on this specific analog

hardware may be slightly worse than those from a simulation, at
least without neuron specific parameter tuning.

Finally, Table 2 shows some selected results for solving Sudokus,
as an example for constraint satisfaction problems, on all target
platforms. Target benchmark criterion is the fraction of solved Su-
dokus for 100 of these puzzles and the average solving time. The
latter is separated into two measures, the bio-time required to find
a solution, referring to the neuron model internal elapsed time, and
the elapsed wall-clock time to solution. This wall-clock time takes
into account the backend-specific acceleration or slow-down factor,
for example BrainScaleS requires only 0.1 µs for simulating 1.0ms
of the model time. The applied winner-takes-all architecture resem-
bles the one described before. All populations have independent
random noise input that represents the stochastic portion of this
algorithm. Sudoku rules are then implemented through inhibitory
connections, realized again either via direct inhibition or via mirror
populations. All in all, we implemented three different flavours of
the solver:

• Using a virtual population for every possible number in
the Sudoku and direct inhibition between competing neu-
ron populations. This leads to large overheads on e.g. the
SpiNNaker system, where every population is mapped to a
single core

• Using a single virtual population for the whole network and
direct inhibition mitigating the aforementioned drawbacks
of the SpiNNaker network mapping

• Using a single virtual population for the whole network
and inhibition via mirror populations to satisfy network
constraints on the Spikey system

Although the benchmark framework distinguishes between all
three implementation styles, we will only present one of the results
for every benchmark for the sake of simplicity. The most strik-
ing results are that the analog systems are much more time- and
energy-efficient with the drawback of reduced solving capabilities
(as predicted by the WTA benchmark). This is caused by the huge
speed-ups of these analog systems, as they run 10, 000 times faster
than biological real-time [22]. Second, the SpiNNaker system is
less efficient than a general purpose CPU. This is mainly due to
two facts: the benchmark did not utilize the full SpiNNaker system,
leaving some cores idle. Furthermore, the manufacturing process
of the SpiNNaker CPU is 130 nm, while the employed CPU uses a
modern and more efficient 22 nm technology. For larger Sudokus
and networks this difference shrinks (not shown in Table 2), which
supports the focus of the SpiNNaker architecture on large scale
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networks. For a comprehensive analysis of all results and imple-
mentation details see [20].

At the time of writing, the presented benchmark framework
supports the four discussed simulator backends (compare Figure 1).
Furthermore, support for the CPU/GPU code-generation framework
GeNN [29] has been added and is currently under test. For the future
we plan to extend the suite in two directions: First, we will consider
the extension of the suite to support more hardware platforms,
like Loihi [8] and DYNAPs [18], as well as the second generation
BrainScaleS [1] and SpiNNaker [17] platforms as soon as they are
available. Second, we plan to extend the range of benchmarked
applications. We identified pre-trained artificial neural networks
that can be converted to spiking neural networks [4], combined
with an in-the-loop training for the analog target systems [24] as
promising candidates for benchmarking neuromorphic hardware
and are currently working on fully integrating these into our suite.
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